Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Gaylan Rasul Faqe Ibrahim

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6717 KiB  
Article
Suitable Site Selection for Rainwater Harvesting and Storage Case Study Using Dohuk Governorate
by Gaylan Rasul Faqe Ibrahim, Azad Rasul, Arieann Ali Hamid, Zana Fattah Ali and Amanj Ahmad Dewana
Water 2019, 11(4), 864; https://doi.org/10.3390/w11040864 - 25 Apr 2019
Cited by 87 | Viewed by 14170
Abstract
The Middle East is an inherently dry zone. It has experienced severe drought for the last seven years, and climate change has made the situation worse. The Dohuk governorate has been suffering from an appalling water crisis. One possible way of relieving this [...] Read more.
The Middle East is an inherently dry zone. It has experienced severe drought for the last seven years, and climate change has made the situation worse. The Dohuk governorate has been suffering from an appalling water crisis. One possible way of relieving this water crisis is by properly harvesting the rainwater. Rainwater harvesting is a widely used method of storing rainwater in the countries presenting with drought characteristics. Several pieces of research have derived and developed different criteria and techniques to select suitable sites for harvesting rainwater. The main aim of this research was to identify and select suitable sites for the potential erection of dams, as well as to derive a model builder in ArcMap 10.4.1. The model combined several parameters, such as slope, runoff potential, land cover/use, stream order, soil quality, and hydrology to determine the suitability of the site for harvesting rainwater. To compute the land use/cover categories, the study depended on Landsat image data from 2018. Supervised classification was applied using the ENVI 5 software, while the slope mapping and drainage order were extracted using a digital elevation model. Inverse distance weighting (IDW) was used for the spatial interpolation of the rain data. The results demonstrated that suitable areas for water harvesting, are located in the middle and northern part of the research area, and in intensively cultivated zones. The main soil texture in these suitable sites was loam, while the rainfall rate amounted to 750 to 900 mm. This research shows that 15% and 13% of the area studied can be categorized as having excellent and good suitability for water harvesting, respectively. Furthermore, 21% and 27% of the area studied were of moderate and poor suitability, while the remaining 24% were not suitable at all. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

13 pages, 8472 KiB  
Article
Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates
by Azad Rasul, Heiko Balzter, Gaylan R. Faqe Ibrahim, Hasan M. Hameed, James Wheeler, Bashir Adamu, Sa’ad Ibrahim and Peshawa M. Najmaddin
Land 2018, 7(3), 81; https://doi.org/10.3390/land7030081 - 4 Jul 2018
Cited by 187 | Viewed by 17307
Abstract
Arid and semi-arid regions have different spectral characteristics from other climatic regions. Therefore, appropriate remotely sensed indicators of land use and land cover types need to be defined for arid and semi-arid lands, as indices developed for other climatic regions may not give [...] Read more.
Arid and semi-arid regions have different spectral characteristics from other climatic regions. Therefore, appropriate remotely sensed indicators of land use and land cover types need to be defined for arid and semi-arid lands, as indices developed for other climatic regions may not give plausible results in arid and semi-arid regions. For instance, the normalized difference built-up index (NDBI) and normalized difference bareness index (NDBaI) are unable to distinguish between built-up areas and bare and dry soil that surrounds many cities in dry climates. This paper proposes the application of two newly developed indices, the dry built-up index (DBI) and dry bare-soil index (DBSI) to map built-up and bare areas in a dry climate from Landsat 8. The developed DBI and DBSI were applied to map urban areas and bare soil in the city of Erbil, Iraq. The results show an overall classification accuracy of 93% (κ = 0.86) and 92% (κ = 0.84) for DBI and DBSI, respectively. The results indicate the suitability of the proposed indices to discriminate between urban areas and bare soil in arid and semi-arid climates. Full article
Show Figures

Figure 1

18 pages, 7487 KiB  
Article
Urban Land Use Land Cover Changes and Their Effect on Land Surface Temperature: Case Study Using Dohuk City in the Kurdistan Region of Iraq
by Gaylan Rasul Faqe Ibrahim
Climate 2017, 5(1), 13; https://doi.org/10.3390/cli5010013 - 20 Feb 2017
Cited by 162 | Viewed by 14567
Abstract
The growth of urban areas has a significant impact on land use by replacing areas of vegetation with residential and commercial areas and their related infrastructure; this escalates the land surface temperature (LST). Rapid urban growth has occurred in Duhok City due to [...] Read more.
The growth of urban areas has a significant impact on land use by replacing areas of vegetation with residential and commercial areas and their related infrastructure; this escalates the land surface temperature (LST). Rapid urban growth has occurred in Duhok City due to enhanced political and economic growth during the period of this study. The objective is to investigate the effect of land use changes on LST; this study depends on data from three Landsat images (two Landsat 5-TM and Landsat OLI_TIRS-8) from 1990, 2000 and 2016. Supervised classification was used to compute land use/cover categories, and to generate the land surface temperature (LST) maps the Mono-window algorithm was used. Images were also used to create the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference bareness index (NDBAI) and normalized difference water index (NDWI) maps. Linear regression analysis was used to generate relationships between LST with NDVI, NDBI, NDBAI and NDWI. The study outcome proves that the changes in land use/cover have a significant role in the escalation of land surface temperatures. The highest temperatures are associated with barren land and built-up areas, ranging from 47°C, 50°C, 56°C while lower temperatures are related to water bodies and forests, ranging from 25°C, 26°C, 29°C respectively, in 1990, 2000 and 2016. This study also proves that NDVI and NDWI correlate negatively with low temperatures while NDBI and NDBAI correlate positively with high temperatures. Full article
Show Figures

Figure 1

Back to TopTop