Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Elissavet Rousanoglou

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2813 KiB  
Article
Beyond Simple Tapping: Is Timed Body Movement Influenced When Balance Is Threatened?
by Analina Emmanouil, Konstantinos Boudolos and Elissavet Rousanoglou
Appl. Sci. 2024, 14(18), 8541; https://doi.org/10.3390/app14188541 - 23 Sep 2024
Viewed by 1087
Abstract
The tapping paradigm offers valuable insights into movement timing; however, it simplifies mechanics by minimizing force, restricting motion, and relying on a clear contact endpoint. Thus, it may not fully capture the complexity of larger-scale multi-segmental (or single-segment) timed body movements. The aim [...] Read more.
The tapping paradigm offers valuable insights into movement timing; however, it simplifies mechanics by minimizing force, restricting motion, and relying on a clear contact endpoint. Thus, it may not fully capture the complexity of larger-scale multi-segmental (or single-segment) timed body movements. The aim of this study was to extend beyond the tapping paradigm by examining the timing of two large-scale movements commonly performed in physical fitness or rehabilitation modalities, with varying inherent balance threats: two-legged squatting (low balance threat) and standing hip abduction (higher balance threat) paced by a metronome set at the participants’ preferred tempo (N = 39, all physically active). In synchronization with the metronome audio signal, the trunk and shank angular velocities were also recorded to extract the entrainment, synchronization, and pace stability metrics. Paired t-tests indicated similar entrainment in both movements (p > 0.05 for IRI match) but significant differences in timing metrics’ manifestations (p ≤ 0.05, standing hip abduction: 50% greater IRI error, 30% lower synchronization error, 2.6% units lower pace stability). The similar entrainment but different synchronization error and pace stability highlight a complex timing interplay between balance threat/challenges and movement complexity concerning the two large-scale movements employed in physical fitness and rehabilitation modalities. Full article
(This article belongs to the Special Issue Motor Control and Movement Biomechanics)
Show Figures

Figure 1

25 pages, 12181 KiB  
Article
Two Repetitions May Be Enough! Reliability of Movement Timing in Physical Fitness Exercises Performed by Young, Trained Adults Using Inertial Sensors
by Analina Emmanouil, Elissavet Rousanoglou and Konstantinos Boudolos
Biomechanics 2024, 4(1), 84-108; https://doi.org/10.3390/biomechanics4010006 - 19 Feb 2024
Cited by 2 | Viewed by 1718
Abstract
This study aimed to determine the minimum number of repetitions for a high reliability of movement timing in fundamental physical fitness exercises using inertial sensors. Fifteen young men and fifteen women performed eight exercises (two-leg hop, forward lunge, squat, sit-up, shoulder abduction, hip [...] Read more.
This study aimed to determine the minimum number of repetitions for a high reliability of movement timing in fundamental physical fitness exercises using inertial sensors. Fifteen young men and fifteen women performed eight exercises (two-leg hop, forward lunge, squat, sit-up, shoulder abduction, hip abduction, back extension, and push-up) (preferred tempo, 3 trials, 20 repetitions per trial). The movement timing (cycle of movement in seconds and its phases in seconds and %tcycle) was tested for intra- and inter-trial reliability (SPSS 28.0, p ≤ 0.05). Just two repetitions were adequate for excellent intra- and inter-trial relative reliability (ICCs ≥ 0.75, isolated exceptions only for durations expressed as %tcycle, in only three out of the eight exercises: hip abduction, back extension, and push-up), as well as for high absolute intra- and inter-trial reliability (average SEM% at 5.9%, respectively, and 6.8% and average MDC95% at 13.7% and 15.9%, respectively, which was consistently higher than the upper boundary limit of SEM%, and a rather low CV% ranging from 1.5% to 4.9% and averaging at 3.1%). A total of four repetitions, excluding the initial and the final one, appears adequate for high overall reliability of movement timing in the eight physical fitness exercises examined. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

21 pages, 3491 KiB  
Article
Inertial Sensing of the Abdominal Wall Kinematics during Diaphragmatic Breathing in Head Standing
by Elissavet Rousanoglou, Apostolina Foskolou, Analina Emmanouil and Konstantinos Boudolos
Biomechanics 2024, 4(1), 63-83; https://doi.org/10.3390/biomechanics4010005 - 2 Feb 2024
Cited by 3 | Viewed by 1465
Abstract
Head standing (HS) in concurrence with diaphragmatic breathing is an atypical deviation from daily activity, yet commonly practiced. The study aimed at the inertially sensed effect of diaphragmatic versus normal breathing on the abdomen wall kinematics during HS. Twenty-eight men and women maintained [...] Read more.
Head standing (HS) in concurrence with diaphragmatic breathing is an atypical deviation from daily activity, yet commonly practiced. The study aimed at the inertially sensed effect of diaphragmatic versus normal breathing on the abdomen wall kinematics during HS. Twenty-eight men and women maintained HS and erect standing (ES) under normal and diaphragmatic breathing. An inertial sensor (LORD MicroStrain®, 3DM-GX3®-45, 2 cm above the umbilicus, 100 Hz, MicroStrain, Williston, VT, USA) recorded the 3D abdomen wall angular displacement (AD) (bandpass filter (0.1–0.5 Hz)). ANOVAs (p ≤ 0.05, SPSS 28.0) were applied to the extracted variables (AD path: magnitude, individual variability-%CVind, and diaphragmatic to normal ratio). Reliability measures (ICC and %SEM) and the minimal detectable change (%MDC90) were estimated. Diaphragmatic breathing increased the AD path (p ≤ 0.05) with the diaphragmatic to normal ratio being lower in HS (p ≤ 0.05). The similar AD time series (cross-correlations at p ≤ 0.05) and the ICCs (>0.80) indicated excellent reliability with the similar across conditions %CVind (p ≤ 0.05), further enhancing reliability. The %MDC90 was consistently higher than the %SEM upper boundary, indicating the differences as “real” ones. The results contribute to the limited data concerning a widely practiced atypical deviation from daily activity, as HS in concurrence with diaphragmatic breathing. Full article
(This article belongs to the Special Issue Inertial Sensor Assessment of Human Movement)
Show Figures

Figure 1

16 pages, 1902 KiB  
Article
Abdominal Breathing Effect on Postural Stability and the Respiratory Muscles’ Activation during Body Stances Used in Fitness Modalities
by Apostolina Foskolou, Analina Emmanouil, Konstantinos Boudolos and Elissavet Rousanoglou
Biomechanics 2022, 2(3), 478-493; https://doi.org/10.3390/biomechanics2030037 - 12 Sep 2022
Cited by 6 | Viewed by 9151
Abstract
In popular fitness modalities, the participants often perform abdominal breathing while maintaining stable or rather unstable as well as inverted body stances that may challenge the respiratory muscles’ activation. This study aimed to examine the abdominal breathing effect on postural stability and the [...] Read more.
In popular fitness modalities, the participants often perform abdominal breathing while maintaining stable or rather unstable as well as inverted body stances that may challenge the respiratory muscles’ activation. This study aimed to examine the abdominal breathing effect on postural stability and the respiratory muscles’ activation during four body stances: the Upright Stance, the Quadrupled Inverted V, the Elbow Side-Bridge, and the Headstand. Participants (n = 29) maintained (40 s) the body stances under regular and abdominal breathing (the latter verified through visual inspection and 3D inertial sensing of the abdominal wall angular displacements, LORD-MicroStrain®, 100 Hz, MicroStrain, Inc., Williston, VT, USA). The trajectory of the center of pressure (CoP) (Kistler force plate, 100 Hz, Kistler Group, Winterthur, Switzerland) was recorded in synchronization with the respiratory muscles’ (sternocleidomastoid, external intercostals, diaphragm, rectus abdominis) vibromyographic activation (Biopac VMG sensors, 2000 Hz, Biopac Systems, Inc., Santa Barbara, CA, USA). Abdominal breathing had a significant (p ≤ 0.05) deteriorating effect on postural stability and an increasing one on the respiratory muscles’ activation; however, this was not consistent across body stances. The body stance specificity of the abdominal breathing effect justifies the purpose of the present study. Thus, before the request for abdominal breathing in popular fitness modalities, one should acknowledge the postural and the breathing demands of each particular stance, particularly for the inverted ones. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

Back to TopTop