Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Elisabeth Traiffort

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9065 KiB  
Article
Sonic Hedgehog Is an Early Oligodendrocyte Marker During Remyelination
by Mariagiovanna Russo, Amina Zahaf, Abdelmoumen Kassoussi, Ariane Sharif, Hélène Faure, Elisabeth Traiffort and Martial Ruat
Cells 2024, 13(21), 1808; https://doi.org/10.3390/cells13211808 - 1 Nov 2024
Cited by 1 | Viewed by 1605
Abstract
Failure of myelin regeneration by oligodendrocytes contributes to progressive decline in many neurological diseases. Here, using in vitro and in vivo rodent models, functional blockade, and mouse brain demyelination, we demonstrate that Sonic hedgehog (Shh) expression in a subset of oligodendrocyte progenitor cells [...] Read more.
Failure of myelin regeneration by oligodendrocytes contributes to progressive decline in many neurological diseases. Here, using in vitro and in vivo rodent models, functional blockade, and mouse brain demyelination, we demonstrate that Sonic hedgehog (Shh) expression in a subset of oligodendrocyte progenitor cells precedes the expression of myelin basic protein (MBP), a major myelin sheath protein. Primary cultures of rodent cortical oligodendrocytes show that Shh mRNA and protein are upregulated during oligodendrocyte maturation before the upregulation of MBP expression. Importantly, almost all MBP-positive cells are Shh positive during differentiation. During remyelination, we identify a rapid induction of Shh mRNA and peptide in oligodendroglial cells present in the demyelinated corpus callosum of mice, including a population of PDGFRα-expressing cells. Shh invalidation by an adeno-associated virus strategy demonstrates that the downregulation of Shh impairs the differentiation of oligodendrocytes in vitro and decreases MBP and myelin proteolipid protein expression in the demyelinated mouse brain at late stages of remyelination. We also report a parallel expression of Shh and MBP in oligodendroglial cells during early post-natal myelination of the mouse brain. Thus, we identify a crucial Shh signal involved in oligodendroglial cell differentiation and remyelination, with potential interest in the design of better-targeted remyelinating therapeutic strategies. Full article
Show Figures

Graphical abstract

14 pages, 3258 KiB  
Article
The Smoothened agonist SAG Modulates the Male and Female Peripheral Immune Systems Differently in an Immune Model of Central Nervous System Demyelination
by Abdelmoumen Kassoussi, Amina Zahaf, Tom Hutteau-Hamel, Claudia Mattern, Michael Schumacher, Pierre Bobé and Elisabeth Traiffort
Cells 2024, 13(8), 676; https://doi.org/10.3390/cells13080676 - 13 Apr 2024
Cited by 2 | Viewed by 2207
Abstract
Both Hedgehog and androgen signaling pathways are known to promote myelin regeneration in the central nervous system. Remarkably, the combined administration of agonists of each pathway revealed their functional cooperation towards higher regeneration in demyelination models in males. Since multiple sclerosis, the most [...] Read more.
Both Hedgehog and androgen signaling pathways are known to promote myelin regeneration in the central nervous system. Remarkably, the combined administration of agonists of each pathway revealed their functional cooperation towards higher regeneration in demyelination models in males. Since multiple sclerosis, the most common demyelinating disease, predominates in women, and androgen effects were reported to diverge according to sex, it seemed essential to assess the existence of such cooperation in females. Here, we developed an intranasal formulation containing the Hedgehog signaling agonist SAG, either alone or in combination with testosterone. We show that SAG promotes myelin regeneration and presumably a pro-regenerative phenotype of microglia, thus mimicking the effects previously observed in males. However, unlike in males, the combined molecules failed to cooperate in the demyelinated females, as shown by the level of functional improvement observed. Consistent with this observation, SAG administered in the absence of testosterone amplified peripheral inflammation by presumably activating NK cells and thus counteracting a testosterone-induced reduction in Th17 cells when the molecules were combined. Altogether, the data uncover a sex-dependent effect of the Hedgehog signaling agonist SAG on the peripheral innate immune system that conditions its ability to cooperate or not with androgens in the context of demyelination. Full article
Show Figures

Figure 1

27 pages, 979 KiB  
Review
Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis
by Elisabeth Traiffort, Séverine Morisset-Lopez, Mireille Moussaed and Amina Zahaf
Int. J. Mol. Sci. 2021, 22(7), 3426; https://doi.org/10.3390/ijms22073426 - 26 Mar 2021
Cited by 16 | Viewed by 5271
Abstract
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been [...] Read more.
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis)
Show Figures

Figure 1

20 pages, 1124 KiB  
Review
Hedgehog: A Key Signaling in the Development of the Oligodendrocyte Lineage
by Elisabeth Traiffort, Mary Zakaria, Yousra Laouarem and Julien Ferent
J. Dev. Biol. 2016, 4(3), 28; https://doi.org/10.3390/jdb4030028 - 8 Sep 2016
Cited by 35 | Viewed by 19782
Abstract
The Hedgehog morphogen aroused an enormous interest since it was characterized as an essential signal for ventral patterning of the spinal cord two decades ago. The pathway is notably implicated in the initial appearance of the progenitors of oligodendrocytes (OPCs), the glial cells [...] Read more.
The Hedgehog morphogen aroused an enormous interest since it was characterized as an essential signal for ventral patterning of the spinal cord two decades ago. The pathway is notably implicated in the initial appearance of the progenitors of oligodendrocytes (OPCs), the glial cells of the central nervous system which after maturation are responsible for axon myelination. In accordance with the requirement for Hedgehog signaling in ventral patterning, the earliest identifiable cells in the oligodendrocyte lineage are derived from the ventral ventricular zone of the developing spinal cord and brain. Here, we present the current knowledge about the involvement of Hedgehog signaling in the strict spatial and temporal regulation which characterizes the initiation and progression of the oligodendrocyte lineage. We notably describe the ability of the Hedgehog signaling to tightly orchestrate the appearance of specific combinations of genes in concert with other pathways. We document the molecular mechanisms controlling Hedgehog temporal activity during OPC specification. The contribution of the pathway to aspects of OPC development different from their specification is also highlighted especially in the optic nerve. Finally, we report the data demonstrating that Hedgehog signaling-dependency is not a universal situation for oligodendrocyte generation as evidenced in the dorsal spinal cord in contrast to the dorsal forebrain. Full article
(This article belongs to the Collection Hedgehog Signaling in Embryogenesis)
Show Figures

Figure 1

Back to TopTop