Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Elisa Rambaldi ORCID = 0000-0001-7502-8209

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2745 KiB  
Article
Functional Activity of Cytokine-Induced Killer Cells Enhanced by CAR-CD19 Modification or by Soluble Bispecific Antibody Blinatumomab
by Silvia Zaninelli, Silvia Panna, Sarah Tettamanti, Giusi Melita, Andrea Doni, Francesca D’Autilia, Rut Valgardsdottir, Elisa Gotti, Alessandro Rambaldi, Josée Golay and Martino Introna
Antibodies 2024, 13(3), 71; https://doi.org/10.3390/antib13030071 - 30 Aug 2024
Viewed by 2191
Abstract
Strategies to increase the anti-tumor efficacy of cytokine-induced killer cells (CIKs) include genetic modification with chimeric antigen receptors (CARs) or the addition of soluble T-cell engaging bispecific antibodies (BsAbs). Here, CIKs were modified using a transposon system integrating two distinct anti-CD19 CARs (CAR-MNZ [...] Read more.
Strategies to increase the anti-tumor efficacy of cytokine-induced killer cells (CIKs) include genetic modification with chimeric antigen receptors (CARs) or the addition of soluble T-cell engaging bispecific antibodies (BsAbs). Here, CIKs were modified using a transposon system integrating two distinct anti-CD19 CARs (CAR-MNZ and CAR-BG2) or combined with soluble CD3xCD19 BsAb blinatumomab (CIK + Blina). CAR-MNZ bearing the CD28-OX40-CD3ζ signaling modules, and CAR-BG2, designed on the Tisagenlecleucel CAR sequence (Kymriah®), carrying the 4-1BB and CD3ζ signaling elements, were employed. After transfection and CIK expansion, cells expressed CAR-CD19 to a similar extent (35.9% CAR-MNZ and 17.7% CAR-BG2). In vitro evaluations demonstrated robust proliferation and cytotoxicity (~50% cytotoxicity) of CARCIK-MNZ, CARCIK-BG2, and CIK + Blina against CD19+ target cells, suggesting similar efficacy. All effectors formed an increased number of synapses, activated NFAT and NFkB, and secreted IL-2 and IFN-ɣ upon encountering targets. CIK + Blina displayed strongest NFAT and IFN-ɣ induction, whereas CARCIK-BG2 demonstrated superior synapse formation. All the effectors have shown therapeutic activity in vivo against the CD19+ Daudi tumor model, with CARCIK cells showing a more durable response compared to CIK + Blina, likely due to the short half-life of Blina in this model. Full article
Show Figures

Figure 1

11 pages, 3309 KiB  
Article
Validation of Antibacterial Systems for Sustainable Ceramic Tiles
by Valeria La Torre, Elisa Rambaldi, Giulia Masi, Silvia Nici, Daniele Ghezzi, Martina Cappelletti and Maria Chiara Bignozzi
Coatings 2021, 11(11), 1409; https://doi.org/10.3390/coatings11111409 - 19 Nov 2021
Cited by 10 | Viewed by 4107
Abstract
Ceramic tiles are bacteriostatic materials; however, the COVID-19 emergency has pushed tile producers to improve surfaces’ antibacterial properties. The aim of this work was to validate a silver-based antibacterial treatment applied to porcelain stoneware tiles based on natural and waste materials, thus correlating [...] Read more.
Ceramic tiles are bacteriostatic materials; however, the COVID-19 emergency has pushed tile producers to improve surfaces’ antibacterial properties. The aim of this work was to validate a silver-based antibacterial treatment applied to porcelain stoneware tiles based on natural and waste materials, thus correlating surface functionalization to tile composition and relevant physical, microstructural, and textural parameters. The treatment was applied before firing, with and without a polymeric primer. Antibacterial activity tests, stain resistance tests, and contact angle measurements were carried out on fired tiles. Further investigations were made by SEM and optical profilometry in order to study the morphological–structural profile of tile surfaces. Results showed strong antibacterial activities for all the functionalized tiles, which were mainly correlated to the morphological and textural parameters of ceramic surfaces, as well as the presence of the polymeric primer. Full article
(This article belongs to the Special Issue Functional Coatings for Metallic and Ceramic Materials)
Show Figures

Figure 1

21 pages, 2495 KiB  
Article
Increased Plasma Levels of lncRNAs LINC01268, GAS5 and MALAT1 Correlate with Negative Prognostic Factors in Myelofibrosis
by Sebastian Fantini, Sebastiano Rontauroli, Stefano Sartini, Margherita Mirabile, Elisa Bianchi, Filippo Badii, Monica Maccaferri, Paola Guglielmelli, Tiziana Ottone, Raffaele Palmieri, Elena Genovese, Chiara Carretta, Sandra Parenti, Selene Mallia, Lara Tavernari, Costanza Salvadori, Francesca Gesullo, Chiara Maccari, Michela Zizza, Alexis Grande, Silvia Salmoiraghi, Barbara Mora, Leonardo Potenza, Vittorio Rosti, Francesco Passamonti, Alessandro Rambaldi, Maria Teresa Voso, Cristina Mecucci, Enrico Tagliafico, Mario Luppi, Alessandro Maria Vannucchi and Rossella Manfrediniadd Show full author list remove Hide full author list
Cancers 2021, 13(19), 4744; https://doi.org/10.3390/cancers13194744 - 22 Sep 2021
Cited by 15 | Viewed by 3731
Abstract
Long non-coding RNAs (lncRNAs) have been recently described as key mediators in the development of hematological malignancies. In the last years, circulating lncRNAs have been proposed as a new class of non-invasive biomarkers for cancer diagnosis and prognosis and to predict treatment response. [...] Read more.
Long non-coding RNAs (lncRNAs) have been recently described as key mediators in the development of hematological malignancies. In the last years, circulating lncRNAs have been proposed as a new class of non-invasive biomarkers for cancer diagnosis and prognosis and to predict treatment response. The present study is aimed to investigate the potential of circulating lncRNAs as non-invasive prognostic biomarkers in myelofibrosis (MF), the most severe among Philadelphia-negative myeloproliferative neoplasms. We detected increased levels of seven circulating lncRNAs in plasma samples of MF patients (n = 143), compared to healthy controls (n = 65). Among these, high levels of LINC01268, MALAT1 or GAS5 correlate with detrimental clinical variables, such as high count of leukocytes and CD34+ cells, severe grade of bone marrow fibrosis and presence of splenomegaly. Strikingly, high plasma levels of LINC01268 (p = 0.0018), GAS5 (p = 0.0008) or MALAT1 (p = 0.0348) are also associated with a poor overall-survival while high levels of LINC01268 correlate with a shorter leukemia-free-survival. Finally, multivariate analysis demonstrated that the plasma level of LINC01268 is an independent prognostic variable, suggesting that, if confirmed in future in an independent patients’ cohort, it could be used for further studies to design an updated classification model for MF patients. Full article
Show Figures

Figure 1

16 pages, 3823 KiB  
Article
Pathway towards a High Recycling Content in Traditional Ceramics
by Elisa Rambaldi
Ceramics 2021, 4(3), 486-501; https://doi.org/10.3390/ceramics4030036 - 7 Sep 2021
Cited by 14 | Viewed by 7295
Abstract
The present work shows the path towards the industrial production of ceramic tiles containing a high amount of recycling materials in the substitution of natural raw materials. Starting from the applied research at laboratory scale, which is able to demonstrate the work feasibility, [...] Read more.
The present work shows the path towards the industrial production of ceramic tiles containing a high amount of recycling materials in the substitution of natural raw materials. Starting from the applied research at laboratory scale, which is able to demonstrate the work feasibility, other important milestones consist of pilot scale production until the proper industrial production. Finally, when all these steps are positively achieved, the practice is consolidated and it is possible to reach the concrete sustainability benefits (social, environmental and economic). The results of an industry driven project that aimed to produce porcelain stoneware tiles containing 85% of recycled materials were selected to show this path. This innovative ceramic product—containing soda-lime scrap glass from urban-separated collection (post-consumer waste) and unfired scrap tiles from industrial ceramic process (pre-consumer waste)—was sintered about 200 °C lower than a traditional porcelain stoneware tile. It maintains high technical performances belonging to class BIa of the International Standard of ceramic tile classification (EN ISO 14411). Moreover, this product fulfils the standard requirements for dry-pressed ceramic tiles with low water absorption (≤0.5%), and it obtained the certification UNI Keymark. The LCA study was also performed and the results showed a significantly lower environmental impact of this innovative product compared to a traditional porcelain stoneware tile. Full article
(This article belongs to the Special Issue Waste-Derived Functional Ceramic and Glass-Based Products)
Show Figures

Figure 1

16 pages, 2111 KiB  
Article
Nanopore Targeted Sequencing for Rapid Gene Mutations Detection in Acute Myeloid Leukemia
by Cosimo Cumbo, Crescenzio Francesco Minervini, Paola Orsini, Luisa Anelli, Antonella Zagaria, Angela Minervini, Nicoletta Coccaro, Luciana Impera, Giuseppina Tota, Elisa Parciante, Maria Rosa Conserva, Orietta Spinelli, Alessandro Rambaldi, Giorgina Specchia and Francesco Albano
Genes 2019, 10(12), 1026; https://doi.org/10.3390/genes10121026 - 9 Dec 2019
Cited by 31 | Viewed by 8025
Abstract
Acute myeloid leukemia (AML) clinical settings cannot do without molecular testing to confirm or rule out predictive biomarkers for prognostic stratification, in order to initiate or withhold targeted therapy. Next generation sequencing offers the advantage of the simultaneous investigation of numerous genes, but [...] Read more.
Acute myeloid leukemia (AML) clinical settings cannot do without molecular testing to confirm or rule out predictive biomarkers for prognostic stratification, in order to initiate or withhold targeted therapy. Next generation sequencing offers the advantage of the simultaneous investigation of numerous genes, but these methods remain expensive and time consuming. In this context, we present a nanopore-based assay for rapid (24 h) sequencing of six genes (NPM1, FLT3, CEBPA, TP53, IDH1 and IDH2) that are recurrently mutated in AML. The study included 22 AML patients at diagnosis; all data were compared with the results of S5 sequencing, and discordant variants were validated by Sanger sequencing. Nanopore approach showed substantial advantages in terms of speed and low cost. Furthermore, the ability to generate long reads allows a more accurate detection of longer FLT3 internal tandem duplications and phasing double CEBPA mutations. In conclusion, we propose a cheap, rapid workflow that can potentially enable all basic molecular biology laboratories to perform detailed targeted gene sequencing analysis in AML patients, in order to define their prognosis and the appropriate treatment. Full article
(This article belongs to the Special Issue Genetics and Genomics of Acute Myeloid Leukemia)
Show Figures

Figure 1

14 pages, 954 KiB  
Review
Nanostructured Zirconia-Based Ceramics and Composites in Dentistry: A State-of-the-Art Review
by Antonio Arena, Francesca Prete, Elisa Rambaldi, Maria Chiara Bignozzi, Carlo Monaco, Adolfo Di Fiore and Jérôme Chevalier
Nanomaterials 2019, 9(10), 1393; https://doi.org/10.3390/nano9101393 - 29 Sep 2019
Cited by 57 | Viewed by 6423
Abstract
The objective of this paper is to review the current knowledge on the development of nanostructured zirconia-based ceramics and composites suitable for application in dentistry. Isi Web of Science, Science Direct, Scientific.net databases, and Google were searched electronically for the period of 1980 [...] Read more.
The objective of this paper is to review the current knowledge on the development of nanostructured zirconia-based ceramics and composites suitable for application in dentistry. Isi Web of Science, Science Direct, Scientific.net databases, and Google were searched electronically for the period of 1980 to the present, matching the keywords “nano” with the keywords: “Zirconia, ZrO2, Y-TZP, and dental, dentistry”. A total of 74 papers were found, with the majority coming from Asia, indicating a more active scientific interest on the topic in this geographic area, followed by Europe, South America, and North America. The research shows, even though the scientific activity on nanostructured ceramics was intense in the last fifteen years, the development of fully dense zirconia-based nanoceramics is yet at an initial stage, most of all from the point of view of the clinical applications. It has been demonstrated that nanostructured ceramics can show improved properties because of the reduction of the grain size to the nanoscale. This is also true for zirconia-based nanoceramics, where some improvements in mechanical, optical, as well as resistance in low-temperature degradation have been observed. Potential applications of this class of material in the dental field are discussed, summarizing the results of the latest scientific research. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Dentistry)
Show Figures

Figure 1

Back to TopTop