Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Ben Thuy ORCID = 0000-0001-8231-9565

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 15119 KiB  
Article
Skin Anatomy, Bone Histology and Taphonomy of a Toarcian (Lower Jurassic) Ichthyosaur (Reptilia: Ichthyopterygia) from Luxembourg, with Implications for Paleobiology
by Ida Bonnevier Wallstedt, Peter Sjövall, Ben Thuy, Randolph G. De La Garza, Mats E. Eriksson and Johan Lindgren
Diversity 2024, 16(8), 492; https://doi.org/10.3390/d16080492 - 12 Aug 2024
Viewed by 3434
Abstract
A partial ichthyosaur skeleton from the Toarcian (Lower Jurassic) bituminous shales of the ‘Schistes Carton’ unit of southern Luxembourg is described and illustrated. In addition, associated remnant soft tissues are analyzed using a combination of imaging and molecular techniques. The fossil (MNHNL TV344) [...] Read more.
A partial ichthyosaur skeleton from the Toarcian (Lower Jurassic) bituminous shales of the ‘Schistes Carton’ unit of southern Luxembourg is described and illustrated. In addition, associated remnant soft tissues are analyzed using a combination of imaging and molecular techniques. The fossil (MNHNL TV344) comprises scattered appendicular elements, together with a consecutive series of semi-articulated vertebrae surrounded by extensive soft-tissue remains. We conclude that TV344 represents a skeletally immature individual (possibly of the genus Stenopterygius) and that the soft parts primarily consist of fossilized skin, including the epidermis (with embedded melanophore pigment cells and melanosome organelles) and dermis. Ground sections of dorsal ribs display cortical microstructures reminiscent of lines of arrested growth (LAGs), providing an opportunity for a tentative age determination of the animal at the time of death (>3 years). It is further inferred that the exceptional preservation of TV344 was facilitated by seafloor dysoxia/anoxia with periodical intervals of oxygenation, which triggered phosphatization and the subsequent formation of a carbonate concretion. Full article
Show Figures

Figure 1

10 pages, 2270 KiB  
Article
The Northernmost Occurrence of the Tropical-Subtropical Brittle Star Ophiocoma (Echinodermata, Ophiuroidea) from a Late Cretaceous Rocky Shore in Southern Sweden
by Ben Thuy and Lea D. Numberger-Thuy
Taxonomy 2023, 3(3), 346-355; https://doi.org/10.3390/taxonomy3030020 - 25 Jun 2023
Viewed by 2449
Abstract
In spite of considerable progress during the last few years, the fossil record of the ophiuroids, or brittle stars, is still poorly known, especially with respect to taxa restricted to specific environments. Here, we describe new ophiuroid fossils collected from an Upper Cretaceous [...] Read more.
In spite of considerable progress during the last few years, the fossil record of the ophiuroids, or brittle stars, is still poorly known, especially with respect to taxa restricted to specific environments. Here, we describe new ophiuroid fossils collected from an Upper Cretaceous rocky shore in Ivö Klack, southern Sweden, consisting of fully disarticulated skeletal remains retrieved from the sediments deposited between boulders and hummocks. The fossils are identified as a new species of the extant ophiocomid genus Ophiocoma. In a critical revision of the ophiocomid fossil record, we show that all fossils previously assigned to the Ophiocomidae belong to other families. Thus, the fossil record of the Ophiocomidae is currently restricted to the new species described herein, and Amphiura? gigantiformis from the Miocene of Austria which, in fact, is a species of Ophiocoma. Since recent species of Ophiocoma exclusively occur in tropical to subtropical shallow subtidal environments, our discovery of a fossil Ophiocoma species in the rocky shore sediments of Ivö therefore conforms with the previously assumed subtropical palaeotemperatures prevailing in southern Sweden during the Late Cretaceous. Most notably, it represents the northernmost occurrence of an ophiocomid recorded to date. Full article
Show Figures

Figure 1

12 pages, 1864 KiB  
Article
New Brittle Stars (Echinodermata, Ophiuroidea) from the Oligocene of the Mainz Basin, Germany
by Ben Thuy, Kai Nungesser and Lea D. Numberger-Thuy
Taxonomy 2022, 2(2), 196-207; https://doi.org/10.3390/taxonomy2020015 - 27 Apr 2022
Viewed by 2981
Abstract
The fossil record of the Ophiuroidea is still patchy, especially in the Cenozoic. Only four species have been described from the entire Oligocene, which is in stark contrast to the present-day diversity counting more than 2000 species. Here, we describe two new species [...] Read more.
The fossil record of the Ophiuroidea is still patchy, especially in the Cenozoic. Only four species have been described from the entire Oligocene, which is in stark contrast to the present-day diversity counting more than 2000 species. Here, we describe two new species of ophiuroid, Ophiura tankardi sp. nov. and Ophiodoris niersteinensis sp. nov., from the Lower Oligocene of the Mainz Basin. The species are based on microfossils extracted from the sieving residues of bulk sediment samples from a flush drill in Nierstein, Rhineland-Palatinate. The new species belong to extant genera and add to the poor Oligocene fossil record of the class. Based on present-day distributions, the occurrence of Ophiodoris suggests deep sublittoral to shallow bathyal palaeodepths for the Nierstein area of the Mainz Basin. Full article
Show Figures

Figure 1

18 pages, 1937 KiB  
Article
Functional and Phenotypic Characterization of Siglec-6 on Human Mast Cells
by Piper A. Robida, Clayton H. Rische, Netali Ben-Baruch Morgenstern, Rethavathi Janarthanam, Yun Cao, Rebecca A. Krier-Burris, Wouter Korver, Alan Xu, Thuy Luu, Julia Schanin, John Leung, Marc E. Rothenberg, Joshua B. Wechsler, Bradford A. Youngblood, Bruce S. Bochner and Jeremy A. O’Sullivan
Cells 2022, 11(7), 1138; https://doi.org/10.3390/cells11071138 - 28 Mar 2022
Cited by 26 | Viewed by 7997
Abstract
Mast cells are tissue-resident cells that contribute to allergic diseases, among others, due to excessive or inappropriate cellular activation and degranulation. Therapeutic approaches to modulate mast cell activation are urgently needed. Siglec-6 is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptor selectively expressed by [...] Read more.
Mast cells are tissue-resident cells that contribute to allergic diseases, among others, due to excessive or inappropriate cellular activation and degranulation. Therapeutic approaches to modulate mast cell activation are urgently needed. Siglec-6 is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptor selectively expressed by mast cells, making it a promising target for therapeutic intervention. However, the effects of its engagement on mast cells are poorly defined. Siglec-6 expression and endocytosis on primary human mast cells and mast cell lines were assessed by flow cytometry. SIGLEC6 mRNA expression was examined by single-cell RNAseq in esophageal tissue biopsy samples. The ability of Siglec-6 engagement or co-engagement to prevent primary mast cell activation was determined based on assessments of mediator and cytokine secretion and degranulation markers. Siglec-6 was highly expressed by all mast cells examined, and the SIGLEC6 transcript was restricted to mast cells in esophageal biopsy samples. Siglec-6 endocytosis occurred with delayed kinetics relative to the related receptor Siglec-8. Co-crosslinking of Siglec-6 with FcεRIα enhanced the inhibition of mast cell activation and diminished downstream ERK1/2 and p38 phosphorylation. The selective, stable expression and potent inhibitory capacity of Siglec-6 on human mast cells are favorable for its use as a therapeutic target in mast cell-driven diseases. Full article
(This article belongs to the Collection Mast Cells in Health and Diseases)
Show Figures

Graphical abstract

13 pages, 3362 KiB  
Article
Identification of Anthocyanin Compounds in Butterfly Pea Flowers (Clitoria ternatea L.) by Ultra Performance Liquid Chromatography/Ultraviolet Coupled to Mass Spectrometry
by Nguyen Minh Thuy, Vo Quang Minh, Tran Chi Ben, My Tuyen Thi Nguyen, Ho Thi Ngan Ha and Ngo Van Tai
Molecules 2021, 26(15), 4539; https://doi.org/10.3390/molecules26154539 - 27 Jul 2021
Cited by 39 | Viewed by 8593
Abstract
Butterfly pea flower have great sensory attraction, but they have not yet been used widely in Vietnam. Extracts of butterfly pea flowers can be used conveniently as a natural blue colorant for food products. In this study, the identification of anthocyanin compounds in [...] Read more.
Butterfly pea flower have great sensory attraction, but they have not yet been used widely in Vietnam. Extracts of butterfly pea flowers can be used conveniently as a natural blue colorant for food products. In this study, the identification of anthocyanin compounds in butterfly pea flowers was performed by UPLC coupled with a UV and Mass spectrometer instrument. Positive and negative ion electrospray MS/MS chromatograms and spectra of the anthocyanin compounds were determined. By analyzing the chromatograms and spectra for each ion, five anthocyanins were identified in the butterfly pea flower extract; these were delphinidin-3-(6″-p-coumaroyl)-rutinoside, cyanidin 3-(6″-p-coumaroyl)-rutinoside, delphinidin-3-(p-coumaroyl) glucose in both cis- and trans- isomers, cyanidin-3-(p-coumaroyl-glucoside) and delphinidin-3-pyranoside. Additionally, based on their intensity, it was determined that cyanidin-3-(p-coumaroyl-glucoside) was the most abundant anthocyanin, followed by cyanidin 3-(6″-p-coumaroyl)-rutinoside, delphinidin-3-(p-coumaroyl-glucoside), delphinidin-3-(6″-p-coumaroyl)-rutinoside and delphinidin-3-pyranoside. In this study, cyanidin derivatives were discovered in butterfly pea flower extract, where these compounds had not been detected in previous studies. Full article
Show Figures

Figure 1

14 pages, 764 KiB  
Article
Feed Preference Response of Weaner Bull Calves to Bacillus amyloliquefaciens H57 Probiotic and Associated Volatile Organic Compounds in High Concentrate Feed Pellets
by Thi Thuy Ngo, Nguyen N. Bang, Peter Dart, Matthew Callaghan, Athol Klieve, Ben Hayes and David McNeill
Animals 2021, 11(1), 51; https://doi.org/10.3390/ani11010051 - 29 Dec 2020
Cited by 8 | Viewed by 2648
Abstract
This study tested the hypothesis that Bacillus amyloliquefaciens strain H57 (H57) improves preference by reducing the development of microbial volatile organic compounds (mVOCs) in feed pellets. Sixteen bull calves were, for 4 weeks, provided equal access to a panel of 8 automated feed [...] Read more.
This study tested the hypothesis that Bacillus amyloliquefaciens strain H57 (H57) improves preference by reducing the development of microbial volatile organic compounds (mVOCs) in feed pellets. Sixteen bull calves were, for 4 weeks, provided equal access to a panel of 8 automated feed bunks in a single paddock with some hay. Each bunk contained pellets with (H57) or without (Control) the H57, each aged for 4 months at either ambient or chiller temperature. Each treatment was changed to a new bunk pair position weekly. Relative preference was determined according to weight of pellets remaining per hour per treatment bunk pair per 24 h. Pellets were analysed for volatile organic compounds (VOCs) and the concentrations tested for correlation with relative preference. Calves showed the lowest preference (p < 0.0001) for the Control/Ambient treatment whereas preference for all other treatments (H57/Ambient; H57/Chiller; Control/Chiller) was similar. The Control/Ambient treatment odour profile grouped differently to the other 3 treatments which grouped similarly to each other. Up to 16 mVOCs were determined to have potential as pre-ingestive signals for the extent of microbial spoilage. Further studies are required to find which combination of these mVOCs, when added to pellets, results in feed aversion. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

Back to TopTop