Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Authors = Anton Popelka

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2602 KiB  
Article
An Enhancement of Compositional Stability of Phase Change Materials by Lamination with Aluminum Sheet
by Nithusha Kallingal, Patrik Sobolčiak, Himyan Mohammed Akbar, Igor Krupa, Igor Novak and Anton Popelka
Coatings 2023, 13(2), 444; https://doi.org/10.3390/coatings13020444 - 15 Feb 2023
Cited by 2 | Viewed by 1556
Abstract
The wax leakage from shape-stabilized phase change materials (SSPCMs) is a limitation because it reduces their functionality. In this work, an enhancement of the compositional stability of SSPCMs formed by high-density polyethylene (HDPE) and paraffin wax blends through a lamination by aluminum (Al) [...] Read more.
The wax leakage from shape-stabilized phase change materials (SSPCMs) is a limitation because it reduces their functionality. In this work, an enhancement of the compositional stability of SSPCMs formed by high-density polyethylene (HDPE) and paraffin wax blends through a lamination by aluminum (Al) foil was studied. The materials’ thermal conductivity was enhanced by adding expanded graphite (EG). The lamination of SSPCMs is the simplest method of reducing leakage, but it suffers from poor adhesion between polymer-based blends and protecting layers. The improved adhesion between SSPCMs and Al foil was achieved by adding 2 wt.% of maleated polyethylene (PE) acting as an adhesion promoter into SSPCMs or by plasma treatment of both SSPCMs and Al surfaces. Microscopic, spectroscopic, and optical techniques were used to analyze the surface and adhesion properties of SSPCMs. The peel resistance of SSPCMs after plasma treatment or modification by maleated PE increased from 2.2 N/m to 7.2 N/m or 55.1 N/m, respectively. The wax leakage from the treated or modified SSPCMs was suppressed significantly. The plasma-treated or maleated PE-modified SSPCMs showed leakage of 0.5 wt.% or 0.2 wt.%, respectively, after three days of leakage test. It indicates a good potential of this treatment/modification for industrially applied SSPCMs. Full article
Show Figures

Figure 1

13 pages, 4837 KiB  
Article
An Adhesion Improvement of Low-Density Polyethylene to Aluminum through Modification with Functionalized Polymers
by Mohamed Nassr, Igor Krupa, Mabrouk Ouederni, Senthil Kumar Krishnamoorthy and Anton Popelka
Polymers 2023, 15(4), 916; https://doi.org/10.3390/polym15040916 - 11 Feb 2023
Cited by 6 | Viewed by 4293
Abstract
An interfacial adhesion improvement between low-density polyethylene (LDPE) and aluminum (Al) foil is an important challenge in designing multilayered packaging (TetraPak packaging type) due to insufficient inherent adhesion between both untreated materials. Therefore, extra adhesive layers are often used. The hydrophobic character of [...] Read more.
An interfacial adhesion improvement between low-density polyethylene (LDPE) and aluminum (Al) foil is an important challenge in designing multilayered packaging (TetraPak packaging type) due to insufficient inherent adhesion between both untreated materials. Therefore, extra adhesive layers are often used. The hydrophobic character of LDPE is responsible for poor adhesion to Al and can result in delamination. This study deals with the comparative study of the bulk modification of LDPE with various commercially available adhesive promoters with different chemical compositions to increase LDPE’s adhesive characteristics and ensure good adhesion in LDPE/Al laminates. A copolymer of ethylene and methacrylic acid; a terpolymer of ethylene, maleic anhydride, and acrylic ester; or maleated polyethylene (PE) were used as adhesive promoters, and their effect on adhesion improvement of LDPE to Al was investigated. The best adhesion improvement was observed in LDPE-modified samples with maleated PE, while 0.1 wt.% additive content significantly increased peel resistance (from zero to 105 N/m). An additional increase in additive content (0.5 wt.%) in LDPE led to stronger adhesion forces than the cohesion forces in Al foil. Adding 0.5 wt.% of maleated PE into LDPE improved the LDPE/Al laminates’ adhesion and can be applied in multilayered lamination applications. Full article
(This article belongs to the Special Issue Polymer-Metal Hybrid Materials)
Show Figures

Graphical abstract

16 pages, 9525 KiB  
Article
Novel Slippery Liquid-Infused Porous Surfaces (SLIPS) Based on Electrospun Polydimethylsiloxane/Polystyrene Fibrous Structures Infused with Natural Blackseed Oil
by Asma Abdulkareem, Aya E. Abusrafa, Sifani Zavahir, Salma Habib, Patrik Sobolčiak, Marian Lehocky, Hana Pištěková, Petr Humpolíček and Anton Popelka
Int. J. Mol. Sci. 2022, 23(7), 3682; https://doi.org/10.3390/ijms23073682 - 27 Mar 2022
Cited by 11 | Viewed by 4161
Abstract
Hydrophobic fibrous slippery liquid-infused porous surfaces (SLIPS) were fabricated by electrospinning polydimethylsiloxane (PDMS) and polystyrene (PS) as a carrier polymer on plasma-treated polyethylene (PE) and polyurethane (PU) substrates. Subsequent infusion of blackseed oil (BSO) into the porous structures was applied for the preparation [...] Read more.
Hydrophobic fibrous slippery liquid-infused porous surfaces (SLIPS) were fabricated by electrospinning polydimethylsiloxane (PDMS) and polystyrene (PS) as a carrier polymer on plasma-treated polyethylene (PE) and polyurethane (PU) substrates. Subsequent infusion of blackseed oil (BSO) into the porous structures was applied for the preparation of the SLIPS. SLIPS with infused lubricants can act as a repellency layer and play an important role in the prevention of biofilm formation. The effect of polymer solutions used in the electrospinning process was investigated to obtain well-defined hydrophobic fibrous structures. The surface properties were analyzed through various optical, macroscopic and spectroscopic techniques. A comprehensive investigation of the surface chemistry, surface morphology/topography, and mechanical properties was carried out on selected samples at optimized conditions. The electrospun fibers prepared using a mixture of PDMS/PS in the ratio of 1:1:10 (g/g/mL) using tetrahydrofuran (THF) solvent showed the best results in terms of fiber uniformity. The subsequent infusion of BSO into the fabricated PDMS/PS fiber mats exhibited slippery behavior regarding water droplets. Moreover, prepared SLIPS exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli bacterium strains. Full article
(This article belongs to the Special Issue SMART and Macromolecular Biomaterials: From Materials to Biology)
Show Figures

Figure 1

17 pages, 4080 KiB  
Article
Surface Modification of Poly(lactic acid) Film via Cold Plasma Assisted Grafting of Fumaric and Ascorbic Acid
by Asma Abdulkareem, Peter Kasak, Mohammed G. Nassr, Abdelrahman A. Mahmoud, Mahmoud Khatib A. A. Al-Ruweidi, Khalid J. Mohamoud, Mohammed K. Hussein and Anton Popelka
Polymers 2021, 13(21), 3717; https://doi.org/10.3390/polym13213717 - 28 Oct 2021
Cited by 23 | Viewed by 3805
Abstract
Plant-based materials have found their application in the packaging with a yearly growing production rate. These naturally biodegradable polymers are obtained from renewable and sustainable natural resources with reduced environmental impact and affordable cost. These materials have found their utilization in fully-renewable plant-based [...] Read more.
Plant-based materials have found their application in the packaging with a yearly growing production rate. These naturally biodegradable polymers are obtained from renewable and sustainable natural resources with reduced environmental impact and affordable cost. These materials have found their utilization in fully-renewable plant-based packaging products, such as Tetra Pak®-like containers, by replacing commonly-used polyethylene as the polymer component. Poly(lactic acid) (PLA) is one of the representative plant-based polymers because of its eco-friendliness and excellent chemical and mechanical properties. In this work, a PLA surface was modified by various food additives, namely ascorbic acid (ASA) and fumaric acid (FA), using plasma-initiated grafting reactions in order to improve the surface and adhesion properties of PLA. Various analytical and microscopic techniques were employed to prove the grafting process. Moreover, the improved adhesion of the modified PLA foil to aluminum (Al) foil in a laminate configuration was proven by peel resistance measurements. The peel resistance of modified PLA increased by 74% and 184% for samples modified by ASA and FA, respectively, compared with untreated PLA. Full article
(This article belongs to the Special Issue Advances in Plasma Processes for Polymers)
Show Figures

Figure 1

14 pages, 18250 KiB  
Article
Foamed Phase Change Materials Based on Recycled Polyethylene/Paraffin Wax Blends
by Patrik Sobolčiak, Miroslav Mrlik, Anton Popelka, Antonín Minařík, Marketa Ilcikova, Peter Srnec, Zuzana Nogellova, Mabrouk Ouederni and Igor Krupa
Polymers 2021, 13(12), 1987; https://doi.org/10.3390/polym13121987 - 17 Jun 2021
Cited by 18 | Viewed by 4052
Abstract
Foamed phase-change materials (FPCMs) were prepared using recycled linear low-density polyethylene (LLDPE) blended with 30 wt.% of paraffin wax (PW) and foamed by 1,1′-azobiscarbamide. The protection of pores’ collapse during foaming process was insured through chemical cross-linking by organic peroxide prior foaming. This [...] Read more.
Foamed phase-change materials (FPCMs) were prepared using recycled linear low-density polyethylene (LLDPE) blended with 30 wt.% of paraffin wax (PW) and foamed by 1,1′-azobiscarbamide. The protection of pores’ collapse during foaming process was insured through chemical cross-linking by organic peroxide prior foaming. This work represents one of very few attempts for a preparation of polymeric phase change foams without a use of micro-encapsulated phase change component leading to the enhancement of the real PCM component (PW) within a final product. The porous structure of fabricated foams was analyzed using micro-computed tomography, and direct observation, and reconstruction of the internal structure was investigated. The porosity of FPCMs was about 85–87 vol.% and resulting thermal conductivity 0.054–0.086 W/m·K. Differential Scanning Calorimetry was used to determine the specific enthalpies of melting (22.4–25.1 J/g) what is the latent heat of materials utilized during a heat absorption. A stability of samples during 10 heating/cooling cycles was demonstrated. The phase change changes were also investigated using the dynamic mechanical analysis from 0° to 65 °C during the 10 cycles, and the mechanical stability of the system and phase-change transition were clearly confirmed, as proved by DSC. Leaching test revealed a long-term release of PW (around 7% of its original content) from samples which were long term stored at temperatures over PW melting point. This is the usual problem concerning polymer/wax blends. The most common, industrially feasible solution is a lamination of products, for instance by aluminum foils. Finally, the measurement of the heat flow simulating the real conditions shows that samples containing PW decrease the energy passing through the sample from 68.56 to 34.88 kJ·m−2. In this respect, FPCMs provide very effective double functionality, firstly common thermal insulators, and second, as the heat absorbers acting through melting of the PW and absorbing the excessive thermal energy during melting. This improves the heat protection of buildings and reduces temperature fluctuations within indoor spaces. Full article
Show Figures

Graphical abstract

19 pages, 5760 KiB  
Article
Enhancement of Adhesion Characteristics of Low-Density Polyethylene Using Atmospheric Plasma Initiated-Grafting of Polyethylene Glycol
by Taghreed Abdulhameed Al-Gunaid, Igor Krupa, Mabrouk Ouederni, Senthil Kumar Krishnamoorthy and Anton Popelka
Polymers 2021, 13(8), 1309; https://doi.org/10.3390/polym13081309 - 16 Apr 2021
Cited by 14 | Viewed by 5459
Abstract
The low-density polyethylene/aluminum (LDPE/Al) joint in Tetra Pak provides stability and strength to food packaging, ensures protection against outside moisture, and maintains the nutritional values and flavors of food without the need for additives in the food products. However, a poor adhesion of [...] Read more.
The low-density polyethylene/aluminum (LDPE/Al) joint in Tetra Pak provides stability and strength to food packaging, ensures protection against outside moisture, and maintains the nutritional values and flavors of food without the need for additives in the food products. However, a poor adhesion of LDPE to Al, due to its non-polar surface, is a limiting factor and extra polymeric interlayers or surface treatment is required. Plasma-assisted grafting of the LDPE surface with different molecular weight compounds of polyethylene glycol (PEG) was used to improve LDPE/Al adhesion. It was found that this surface modification contributed to significantly improve the wettability of the LDPE surface, as was confirmed by contact angle measurements. The chemical composition changes after plasma treatment and modification process were observed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). A surface morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Adhesion characteristics of LDPE/Al adhesive joints were analyzed by the peel tests. The most significant adhesion improvement of the PEG modified LDPE surface was achieved using 10.0 wt.% aqueous (6000 M) PEG solution, while the peel resistance increased by approximately 54 times in comparison with untreated LDPE. Full article
(This article belongs to the Special Issue Advances in Plasma Processes for Polymers)
Show Figures

Graphical abstract

27 pages, 3959 KiB  
Review
Some Theoretical Aspects of Tertiary Treatment of Water/Oil Emulsions by Adsorption and Coalescence Mechanisms: A Review
by Patrik Sobolčiak, Anton Popelka, Aisha Tanvir, Mariam A. Al-Maadeed, Samer Adham and Igor Krupa
Water 2021, 13(5), 652; https://doi.org/10.3390/w13050652 - 28 Feb 2021
Cited by 27 | Viewed by 4283
Abstract
The massive increase in the volumes of oily contaminated produced waters associated with various industrial sectors has initiated considerable technological and scientific efforts related to the development of new cleaning strategies. The petrochemical industry (oil and gas production and processing) contributes to those [...] Read more.
The massive increase in the volumes of oily contaminated produced waters associated with various industrial sectors has initiated considerable technological and scientific efforts related to the development of new cleaning strategies. The petrochemical industry (oil and gas production and processing) contributes to those volumes by approximately 340 billion barrels per year. The removal of emulsified oily components is a matter of particular interest because the high emulsion stability necessitates sophisticated technological approaches as well as a deep theoretical understanding of key mechanisms of oil/water separation. This review deals with the theoretical aspects of the treatment of emulsified oil/water mixtures and is particularly focused on tertiary treatment, which means the reduction of the oil content from 70–100 ppm to below 10 ppm, depending on national regulations for water discharge. The review concerns the mechanisms of oil/water separation and it covers the (i) adsorption isotherms, (ii) kinetics of adsorption, (iii) interfacial interactions between oil/water mixtures and solid surfaces, and (iv) oil/water separation techniques based on the wettability of solid/oil/water interfaces. The advantages and drawbacks of commonly used as well as newly proposed kinetic and adsorption models are reviewed, and their applicability for the characterization of oil/water separation is discussed. The lack of suitable adsorption isotherms that can be correctly applied for a description of oil adsorption at external and internal solid surfaces of both nonporous and porous structures is pointed out. The direct using of common isotherms, which were originally developed for gas adsorption, often leads to the incorrect data description because the adsorption of oily components at solid surfaces does not fit the assumptions from which these models were originally derived. Particularly, it results in problematic calculations of the thermodynamic parameters of sorption. The importance of nonlinear analysis of data is discussed, since recent studies have indicated that the error structure of experimental data is usually changed if the original nonlinear adsorption isotherms are transformed into their linearized forms. The comparison between the pseudo-first-order and pseudo-second-order kinetic models was performed. It was shown that the correlation between data and models strongly depends on the selection of data, particularly on the frequency of collected data in time scale. The wettability of solid surfaces by oil in air and under water is discussed, regarding the surface morphology of surfaces. We demonstrate that the combination of surface chemistry and topology strongly influences the separation of oil/water emulsions. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 5201 KiB  
Article
The Separation of Emulsified Water/Oil Mixtures through Adsorption on Plasma-Treated Polyethylene Powder
by Asma Abdulkareem, Anton Popelka, Patrik Sobolčiak, Aisha Tanvir, Mabrouk Ouederni, Mariam A. AlMaadeed, Peter Kasak, Samer Adham and Igor Krupa
Materials 2021, 14(5), 1086; https://doi.org/10.3390/ma14051086 - 26 Feb 2021
Cited by 18 | Viewed by 2144
Abstract
This paper addresses the preparation and characterization of efficient adsorbents for tertiary treatment (oil content below 100 ppm) of oil/water emulsions. Powdered low-density polyethylene (LDPE) was modified by radio-frequency plasma discharge and then used as a medium for the treatment of emulsified diesel [...] Read more.
This paper addresses the preparation and characterization of efficient adsorbents for tertiary treatment (oil content below 100 ppm) of oil/water emulsions. Powdered low-density polyethylene (LDPE) was modified by radio-frequency plasma discharge and then used as a medium for the treatment of emulsified diesel oil/water mixtures in the concentration range from 75 ppm to 200 ppm. Plasma treatment significantly increased the wettability of the LDPE powder, which resulted in enhanced sorption capability of the oil component from emulsions in comparison to untreated powder. Emulsions formed from distilled water and commercial diesel oil (DO) with concentrations below 200 ppm were used as a model of oily polluted water. The emulsions were prepared using ultrasonication without surfactant. The droplet size was directly proportional to sonication time and ranged from 135 nm to 185 nm. A sonication time of 20 min was found to be sufficient to prepare stable emulsions with an average droplet size of approximately 150 nm. The sorption tests were realized in a batch system. The effect of contact time and initial oil concentrations were studied under standard atmospheric conditions at a stirring speed of 340 rpm with an adsorbent particle size of 500 microns. The efficiency of the plasma-treated LDPE powder in oil removal was found to be dependent on the initial oil concentration. It decreased from 96.7% to 79.5% as the initial oil concentration increased from 75 ppm to 200 ppm. The amount of adsorbed oil increased with increasing contact time. The fastest adsorption was observed during the first 30 min of treatment. The adsorption kinetics for emulsified oils onto sorbent followed a pseudo-second-order kinetic model. Full article
Show Figures

Figure 1

18 pages, 8274 KiB  
Article
Slippery Liquid-Infused Porous Polymeric Surfaces Based on Natural Oil with Antimicrobial Effect
by Salma Habib, Sifani Zavahir, Aya E. Abusrafa, Asma Abdulkareem, Patrik Sobolčiak, Marian Lehocky, Daniela Vesela, Petr Humpolíček and Anton Popelka
Polymers 2021, 13(2), 206; https://doi.org/10.3390/polym13020206 - 8 Jan 2021
Cited by 18 | Viewed by 4448
Abstract
Many polymer materials have found a wide variety of applications in biomedical industries due to their excellent mechanical properties. However, the infections associated with the biofilm formation represent serious problems resulting from the initial bacterial attachment on the polymeric surface. The development of [...] Read more.
Many polymer materials have found a wide variety of applications in biomedical industries due to their excellent mechanical properties. However, the infections associated with the biofilm formation represent serious problems resulting from the initial bacterial attachment on the polymeric surface. The development of novel slippery liquid-infused porous surfaces (SLIPSs) represents promising method for the biofilm formation prevention. These surfaces are characterized by specific microstructural roughness able to hold lubricants inside. The lubricants create a slippery layer for the repellence of various liquids, such as water and blood. In this study, effective antimicrobial modifications of polyethylene (PE) and polyurethane (PU), as commonly used medical polymers, were investigated. For this purpose, low-temperature plasma treatment was used initially for activation of the polymeric surface, thereby enhancing surface and adhesion properties. Subsequently, preparation of porous microstructures was achieved by electrospinning technique using polydimethylsiloxane (PDMS) in combination with polyamide (PA). Finally, natural black seed oil (BSO) infiltrated the produced fiber mats acting as a lubricating layer. The optimized fiber mats’ production was achieved using PDMS/PA mixture at ratio 1:1:20 (g/g/mL) using isopropyl alcohol as solvent. The surface properties of produced slippery surfaces were analyzed by various microscopic and optics techniques to obtain information about wettability, sliding behavior and surface morphology/topography. The modified PE and PU substrates demonstrated slippery behavior of an impinged water droplet at a small tilting angle. Moreover, the antimicrobial effects of the produced SLIPs using black seed oil were proven against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). Full article
Show Figures

Graphical abstract

26 pages, 1614 KiB  
Review
Materials and Technologies for the Tertiary Treatment of Produced Water Contaminated by Oil Impurities through Nonfibrous Deep-Bed Media: A Review
by Patrik Sobolciak, Anton Popelka, Aisha Tanvir, Mariam A Al-Maadeed, Samer Adham and Igor Krupa
Water 2020, 12(12), 3419; https://doi.org/10.3390/w12123419 - 4 Dec 2020
Cited by 19 | Viewed by 5729
Abstract
This review covers various aspects of the treatment of emulsified oil/water mixtures and is particularly focused on tertiary treatment, which means the reduction of the oil content from 70–100 ppm to below 10 ppm, depending on national regulations for water discharge. Emulsified oil/water [...] Read more.
This review covers various aspects of the treatment of emulsified oil/water mixtures and is particularly focused on tertiary treatment, which means the reduction of the oil content from 70–100 ppm to below 10 ppm, depending on national regulations for water discharge. Emulsified oil/water mixtures frequently occurs in water treatment processes because, in the petroleum industry, chemically enhanced oil recovery leads to the production of a vast amount of oil-emulsified wastewater. This review is focused on various aspects of tertiary treatment via granular deep-bed filtration. The importance of polymeric materials, as well as carbon nanostructures, which may be an alternative to the current media have been highlighting. The particular potential of polymers is based on their broad availability and low price (particularly for polyolefins), the simple treatment of their surfaces through a variety of chemical and physical methods to design surfaces with tailored surface free energy (wettability), and the porosity. Polymer technology offers a variety of well-established methods for designing foams with tailored porosity, which, together with appropriately tuned surface energy and controlled roughness, would open new avenues for the production of foamy media for efficient oil/water separation. Additionally, a crucial inventions in deep-bed filtration is discussed. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

19 pages, 3945 KiB  
Article
Thermally Conductive Polyethylene/Expanded Graphite Composites as Heat Transfer Surface: Mechanical, Thermo-Physical and Surface Behavior
by Patrik Sobolčiak, Asma Abdulgader, Miroslav Mrlik, Anton Popelka, Ahmed A. Abdala, Abdelnasser A. Aboukhlewa, Mustapha Karkri, Hendrik Kiepfer, Hans-Jörg Bart and Igor Krupa
Polymers 2020, 12(12), 2863; https://doi.org/10.3390/polym12122863 - 30 Nov 2020
Cited by 20 | Viewed by 3553
Abstract
Composites of high-density polyethylene (HDPE) and expanded graphite (EG) are prepared for heat exchangers in multi-effect distillation (MED) desalination. At 50 wt.% EG loading, the thermal conductivity of HDPE was increased by 372%. Moreover, the surface wettability of the HDPE/EG composite was enhanced [...] Read more.
Composites of high-density polyethylene (HDPE) and expanded graphite (EG) are prepared for heat exchangers in multi-effect distillation (MED) desalination. At 50 wt.% EG loading, the thermal conductivity of HDPE was increased by 372%. Moreover, the surface wettability of the HDPE/EG composite was enhanced by corona and RF plasma treatment as demonstrated by the increase in surface free energy from 28.5 mJ/m2 for untreated HDPE/EG to 55.5 and 54.5 mJ/m2 for HDPE/EG treated by corona and RF plasma, respectively. This enhanced surface wettability was retained over a long time with only a 9% and 18% decrease in RF and corona plasma-treated samples’ surface energy after two months. The viscoelastic moduli and the complex viscosity profiles indicated that EG content dictates the optimum processing technique. At loading below 30 wt.%, the extrusion process is preferred, while above 30 wt.% loading, injection molding is preferred. The plasma treatment also improved the HDPE/EG composite overall heat transfer coefficient with an overall heat transfer coefficient of the composite reaching about 98% that of stainless steel. Moreover, the plasma-treated composite exhibited superior resistance to crystallization fouling in both CaSO4 solution and artificial seawater compared to untreated composites and stainless-steel surfaces. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 7591 KiB  
Article
Surface Functionalization of a Polyurethane Surface via Radio-Frequency Cold Plasma Treatment Using Different Gases
by Aya E. Abusrafa, Salma Habib and Anton Popelka
Coatings 2020, 10(11), 1067; https://doi.org/10.3390/coatings10111067 - 6 Nov 2020
Cited by 13 | Viewed by 3604
Abstract
Herein, the surface treatment of polyurethane (PU) films via air, O2, N2, Ar, and their mixtures were tested. The treatment was performed to incorporate new polar functionalities on the polymer surface and achieve improved hydrophilic characteristics. The PU films [...] Read more.
Herein, the surface treatment of polyurethane (PU) films via air, O2, N2, Ar, and their mixtures were tested. The treatment was performed to incorporate new polar functionalities on the polymer surface and achieve improved hydrophilic characteristics. The PU films were subjected to RF low-temperature plasma treatment. It was found that plasma treatment immensely enhanced the hydrophilic surface properties of the PU films in comparison with those of the pristine samples; the maximum plasma effect occurred for the PU sample in the presence of air plasma with treatment time of 180 s at nominal power of 80 W. The surface topography was also found to vary with plasma exposure time and the type of gas being used due to the reactivity of the gaseous media. Roughness analysis revealed that at higher treatment times, the etching/degradation of the surface became more pronounced. Surface chemistry studies revealed increased O2 and N2 elemental groups on the surface upon exposure to O2, N2, air, and Ar. Additionally, the aging study revealed that samples treated in the presence of air and Ar were more stable in comparison to those of the other gases for both the contact angle and peel test measurements. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

28 pages, 6643 KiB  
Article
Accelerated Weathering Effects on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV/TiO2 Nanocomposites
by Ana Antunes, Anton Popelka, Omar Aljarod, Mohammad K. Hassan, Peter Kasak and Adriaan S. Luyt
Polymers 2020, 12(8), 1743; https://doi.org/10.3390/polym12081743 - 5 Aug 2020
Cited by 38 | Viewed by 5068
Abstract
The effect of accelerated weathering on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV-based nanocomposites with rutile titanium (IV) dioxide (PHBV/TiO2) was investigated. The accelerated weathering test applied consecutive steps of UV irradiation (at 340 nm and 0.76 W m−2 irradiance) and moisture at [...] Read more.
The effect of accelerated weathering on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV-based nanocomposites with rutile titanium (IV) dioxide (PHBV/TiO2) was investigated. The accelerated weathering test applied consecutive steps of UV irradiation (at 340 nm and 0.76 W m−2 irradiance) and moisture at 50 °C following the ASTM D4329 standard for up to 2000 h of exposure time. The morphology, chemical structure, crystallization, as well as the mechanical and thermal properties were studied. Samples were characterized after 500, 1000, and 2000 h of exposure time. Different degradation mechanisms were proposed to occur during the weathering exposure and were confirmed based on the experimental data. The PHBV surface revealed cracks and increasing roughness with the increasing exposure time, whereas the PHBV/TiO2 nanocomposites showed surface changes only after 2000 h of accelerated weathering. The degradation of neat PHBV under moisture and UV exposure occurred preferentially in the amorphous phase. In contrast, the presence of TiO2 in the nanocomposites retarded this process, but the degradation would occur simultaneously in both the amorphous and crystalline segments of the polymer after long exposure times. The thermal stability, as well as the temperature and rate of crystallization, decreased in the absence of TiO2. TiO2 not only provided UV protection, but also restricted the physical mobility of the polymer chains, acting as a nucleating agent during the crystallization process. It also slowed down the decrease in mechanical properties. The mechanical properties were shown to gradually decrease for the PHBV/TiO2 nanocomposites, whereas a sharp drop was observed for the neat PHBV after an accelerated weathering exposure. Atomic force microscopy (AFM), using the amplitude modulation–frequency modulation (AM–FM) tool, also confirmed the mechanical changes in the surface area of the PHBV and PHBV/TiO2 samples after accelerated weathering exposure. The changes in the physical and chemical properties of PHBV/TiO2 confirm the barrier activity of TiO2 for weathering attack and its retardation of the degradation process. Full article
(This article belongs to the Special Issue Polymer Nanocomposites: Processing, Degradation and Applications)
Show Figures

Graphical abstract

14 pages, 5173 KiB  
Article
Separation of Water/Oil Emulsions by an Electrospun Copolyamide Mat Covered with a 2D Ti3C2Tx MXene
by AbdolAli Moghaddasi, Patrik Sobolčiak, Anton Popelka and Igor Krupa
Materials 2020, 13(14), 3171; https://doi.org/10.3390/ma13143171 - 16 Jul 2020
Cited by 18 | Viewed by 2672
Abstract
Purpose: Copolyamide 6,10 (coPA) electrospun mats were covered with multilayered (ML) and single-layered (SL) MXene (Ti3C2Tx) as a membrane for the separation of water/vegetable oil emulsions. Methods: Prepared membranes were characterized by atomic force microscopy (AFM), profilometry, [...] Read more.
Purpose: Copolyamide 6,10 (coPA) electrospun mats were covered with multilayered (ML) and single-layered (SL) MXene (Ti3C2Tx) as a membrane for the separation of water/vegetable oil emulsions. Methods: Prepared membranes were characterized by atomic force microscopy (AFM), profilometry, the contact angle measurements of various liquids in air, and the underwater contact angle of vegetable oil. The separation efficiency was evaluated by measuring the UV transmittance of stock solutions compared to the UV transmittance of the filtrate. Results: The MXene coating onto coPA mats led to changes in the permeability, hydrophilicity, and roughness of the membranes and enhanced the separation efficiency of the water/vegetable oil emulsions containing 10, 100, and 1000 ppm of sunflower vegetable oil. It was found that membranes were highly oleophobic (>124°) under water, unlike in air, where the membranes showed high oleophobicity (<5°). The separation efficiency of water/oil emulsions for both types of covered membranes reached over 99%, with a surface coverage of 3.2 mg/cm2 Ti3C2Tx (for ML-Ti3C2Tx) and 2.9 mg/cm2 (for SL-Ti3C2Tx). Conclusions: The separation efficiency was greater than 98% for membranes covered with 2.65 mg/cm2 of ML-Ti3C2Tx, whereas the separation efficiency for membranes containing 1.89 and 0.77 mg/cm2 was less than 90% for all studied emulsion concentrations. Full article
Show Figures

Figure 1

25 pages, 6321 KiB  
Article
Effects of Rutile–TiO2 Nanoparticles on Accelerated Weathering Degradation of Poly(Lactic Acid)
by Ana Antunes, Anton Popelka, Omar Aljarod, Mohammad K. Hassan and Adriaan S. Luyt
Polymers 2020, 12(5), 1096; https://doi.org/10.3390/polym12051096 - 11 May 2020
Cited by 31 | Viewed by 4699
Abstract
The effect of accelerated weathering on poly(lactic acid) (PLA) and a PLA nanocomposite with rutile titanium (IV) dioxide (rutile–TiO2) was investigated. The accelerated weathering test applied consecutive steps of ultraviolet (UV) (at 340 nm and 0.76 W m−2 irradiance) and [...] Read more.
The effect of accelerated weathering on poly(lactic acid) (PLA) and a PLA nanocomposite with rutile titanium (IV) dioxide (rutile–TiO2) was investigated. The accelerated weathering test applied consecutive steps of ultraviolet (UV) (at 340 nm and 0.76 W m−2 irradiance) and moisture at 50 °C for 2000 h, following the ASTM D4329 standard. The morphology, chemical structure, molecular weight, crystallization, as well as mechanical and thermal properties were thoroughly studied. Samples were characterized after 500 h, 1000 h and 2000 h exposure. Different degradation mechanisms were proposed to happen during the weathering exposure and confirmed based on the experimental data. The PLA and PLA/TiO2 surfaces presented holes and increasing roughness over the exposure time. The molecular weight of the weathered samples decreased due to chain scission during the degradation processes. Thermal stability decreased in the presence of TiO2 and a double melting peak was observed for the PLA/TiO2 nanocomposite. A general improvement in the mechanical properties of the PLA/TiO2 nanocomposite was observed over time during the accelerated weathering analysis up to 1000 h of exposure time. After 2000 h of weathering exposure, the PLA and PLA/TiO2 became extremely brittle and lost their ductile properties. This was ascribed to a significant increase in the degree of crystallinity upon weathering, which was accelerated in the presence of TiO2. Atomic force microscopy (AFM) using amplitude modulation–frequency modulation (AM–FM) tool confirmed the mechanical changes in the surface area of the PLA samples after accelerated weathering exposure. The stiffness and Young’s modulus achieved higher values than the unweathered ones up to 1000 h of exposure time. The changes in the physical and chemical properties of PLA/TiO2 over the ageing time confirm the photocatalytic activity of rutile–TiO2. Full article
(This article belongs to the Special Issue Polymer Nanocomposites: Processing, Degradation and Applications)
Show Figures

Graphical abstract

Back to TopTop