Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Anatol Kontush

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1365 KiB  
Article
Abnormal Lipoproteins Trigger Oxidative Stress-Mediated Apoptosis of Renal Cells in LCAT Deficiency
by Monica Gomaraschi, Marta Turri, Arianna Strazzella, Marie Lhomme, Chiara Pavanello, Wilfried Le Goff, Anatol Kontush, Laura Calabresi and Alice Ossoli
Antioxidants 2023, 12(8), 1498; https://doi.org/10.3390/antiox12081498 - 27 Jul 2023
Cited by 3 | Viewed by 2355
Abstract
Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disease caused by the loss of function mutations in the LCAT gene. LCAT deficiency is characterized by an abnormal lipoprotein profile with severe reduction in plasma levels of high-density lipoprotein (HDL) cholesterol and [...] Read more.
Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disease caused by the loss of function mutations in the LCAT gene. LCAT deficiency is characterized by an abnormal lipoprotein profile with severe reduction in plasma levels of high-density lipoprotein (HDL) cholesterol and the accumulation of lipoprotein X (LpX). Renal failure is the major cause of morbidity and mortality in FLD patients; the pathogenesis of renal disease is only partly understood, but abnormalities in the lipoprotein profile could play a role in disease onset and progression. Serum and lipoprotein fractions from LCAT deficient carriers and controls were tested for renal toxicity on podocytes and tubular cells, and the underlying mechanisms were investigated at the cellular level. Both LpX and HDL from LCAT-deficient carriers triggered oxidative stress in renal cells, which culminated in cell apoptosis. These effects are partly explained by lipoprotein enrichment in unesterified cholesterol and ceramides, especially in the HDL fraction. Thus, alterations in lipoprotein composition could explain some of the nephrotoxic effects of LCAT deficient lipoproteins on podocytes and tubular cells. Full article
(This article belongs to the Collection Feature Papers in ROS, RNS, RSS)
Show Figures

Figure 1

11 pages, 979 KiB  
Article
Capacity of HDL to Efflux Cellular Cholesterol from Lipid-Loaded Macrophages Is Reduced in Patients with Familial Hypercholesterolemia
by Shiva Ganjali, Susan Hosseini, Manfredi Rizzo, Anatol Kontush and Amirhossein Sahebkar
Metabolites 2023, 13(2), 197; https://doi.org/10.3390/metabo13020197 - 29 Jan 2023
Cited by 9 | Viewed by 1939
Abstract
This study aimed to evaluate the high-density lipoprotein (HDL) capacity to efflux cellular cholesterol from lipid-loaded macrophages to find a reliable and low-cost biomarker with the purpose of better evaluating the risk of premature cardiovascular (CV) events in FH patients. This case-controlled study [...] Read more.
This study aimed to evaluate the high-density lipoprotein (HDL) capacity to efflux cellular cholesterol from lipid-loaded macrophages to find a reliable and low-cost biomarker with the purpose of better evaluating the risk of premature cardiovascular (CV) events in FH patients. This case-controlled study comprised 16 homozygous (HOFH) and 18 heterozygous (HEFH) FH patients, as well as 20 healthy subjects recruited as controls. Two main subfractions of HDL (HDL2 (d = 1.063–1.125 g/mL) and HDL3 (d = 1.125–1.210 g/mL)) were isolated from the patients’ serum samples using sequential ultracentrifugation. After compositional characterization, the capacity of HDL to efflux cholesterol (CEC%) from lipid-laden macrophages was measured. The HDL2 and HDL3 subfractions showed some differences in lipid and protein composition between the studied groups. In addition, both HDL subfractions (p < 0.001) revealed significantly reduced CEC% in HOFH patients (HDL2: 2.5 ± 0.1 and HDL3: 3.2 ± 0.2) in comparison with the HEFH (HDL2: 3.2 ± 0.1% and HDL3: 4.1 ± 0.2%) and healthy (HDL2: 3.3 ± 0.2% and HDL3: 4.5 ± 0.3%) subjects. Additionally, multinomial logistic regression results indicated that the CEC% of both HDL2 (OR: 0.091; 95% CI: 0.018–0.452, p < 0.01) and HDL3 (OR: 0.118; 95% CI: 0.035–0.399, p < 0.01) subfractions are strongly and inversely associated with the homozygous form of FH. A decreased capacity of HDL particles to efflux cholesterol from macrophages might identify homozygous FH patients who are at elevated risk for premature CVDs. Prospective studies with a large sample size are warranted to evaluate this hypothesis. Full article
(This article belongs to the Special Issue The Role of Lipid Metabolism in Dyslipidemias and Atherosclerosis)
Show Figures

Figure 1

24 pages, 5353 KiB  
Article
Mathematical Modelling of Material Transfer to High-Density Lipoprotein (HDL) upon Triglyceride Lipolysis by Lipoprotein Lipase: Relevance to Cardioprotective Role of HDL
by Svetlana Schekatolina, Viktoriia Lahovska, Aleksandr Bekshaev, Sergey Kontush, Wilfried Le Goff and Anatol Kontush
Metabolites 2022, 12(7), 623; https://doi.org/10.3390/metabo12070623 - 6 Jul 2022
Cited by 4 | Viewed by 2100
Abstract
High-density lipoprotein (HDL) contributes to lipolysis of triglyceride-rich lipoprotein (TGRL) by lipoprotein lipase (LPL) via acquirement of surface lipids, including free cholesterol (FC), released upon lipolysis. According to the reverse remnant-cholesterol transport (RRT) hypothesis recently developed by us, acquirement of FC by HDL [...] Read more.
High-density lipoprotein (HDL) contributes to lipolysis of triglyceride-rich lipoprotein (TGRL) by lipoprotein lipase (LPL) via acquirement of surface lipids, including free cholesterol (FC), released upon lipolysis. According to the reverse remnant-cholesterol transport (RRT) hypothesis recently developed by us, acquirement of FC by HDL is reduced at both low and extremely high HDL concentrations, potentially underlying the U-shaped relationship between HDL-cholesterol and cardiovascular disease. Mechanisms underlying impaired FC transfer however remain indeterminate. We developed a mathematical model of material transfer to HDL upon TGRL lipolysis by LPL. Consistent with experimental observations, mathematical modelling showed that surface components of TGRL, including FC, were accumulated in HDL upon lipolysis. The modelling successfully reproduced major features of cholesterol accumulation in HDL observed experimentally, notably saturation of this process over time and appearance of a maximum as a function of HDL concentration. The calculations suggested that the both phenomena resulted from competitive fluxes of FC through the HDL pool, including primarily those driven by FC concentration gradient between TGRL and HDL on the one hand and mediated by lecithin-cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) on the other hand. These findings provide novel opportunities to revisit our view of HDL in the framework of RRT. Full article
Show Figures

Graphical abstract

18 pages, 1606 KiB  
Hypothesis
The Lipid Energy Model: Reimagining Lipoprotein Function in the Context of Carbohydrate-Restricted Diets
by Nicholas G. Norwitz, Adrian Soto-Mota, Bob Kaplan, David S. Ludwig, Matthew Budoff, Anatol Kontush and David Feldman
Metabolites 2022, 12(5), 460; https://doi.org/10.3390/metabo12050460 - 20 May 2022
Cited by 24 | Viewed by 59815
Abstract
When lean people adopt carbohydrate-restricted diets (CRDs), they may develop a lipid profile consisting of elevated LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) with low triglycerides (TGs). The magnitude of this lipid profile correlates with BMI such that those with lower BMI exhibit larger increases [...] Read more.
When lean people adopt carbohydrate-restricted diets (CRDs), they may develop a lipid profile consisting of elevated LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) with low triglycerides (TGs). The magnitude of this lipid profile correlates with BMI such that those with lower BMI exhibit larger increases in both LDL-C and HDL-C. The inverse association between BMI and LDL-C and HDL-C change on CRD contributed to the discovery of a subset of individuals—termed Lean Mass Hyper-Responders (LMHR)—who, despite normal pre-diet LDL-C, as compared to non-LMHR (mean levels of 148 and 145 mg/dL, respectively), exhibited a pronounced hyperlipidemic response to a CRD, with mean LDL-C and HDL-C levels increasing to 320 and 99 mg/dL, respectively, in the context of mean TG of 47 mg/dL. In some LMHR, LDL-C levels may be in excess of 500 mg/dL, again, with relatively normal pre-diet LDL-C and absent of genetic findings indicative of familial hypercholesterolemia in those who have been tested. The Lipid Energy Model (LEM) attempts to explain this metabolic phenomenon by positing that, with carbohydrate restriction in lean persons, the increased dependence on fat as a metabolic substrate drives increased hepatic secretion and peripheral uptake of TG contained within very low-density lipoproteins (VLDL) by lipoprotein lipase, resulting in marked elevations of LDL-C and HDL-C, and low TG. Herein, we review the core features of the LEM. We review several existing lines of evidence supporting the model and suggest ways to test the model’s predictions. Full article
Show Figures

Figure 1

15 pages, 2705 KiB  
Article
Endothelial Lipase Modulates Paraoxonase 1 Content and Arylesterase Activity of HDL
by Irene Schilcher, Julia T. Stadler, Margarete Lechleitner, Andelko Hrzenjak, Andrea Berghold, Gudrun Pregartner, Marie Lhomme, Michael Holzer, Melanie Korbelius, Florian Reichmann, Anna Springer, Christian Wadsack, Tobias Madl, Dagmar Kratky, Anatol Kontush, Gunther Marsche and Saša Frank
Int. J. Mol. Sci. 2021, 22(2), 719; https://doi.org/10.3390/ijms22020719 - 13 Jan 2021
Cited by 10 | Viewed by 4015
Abstract
Endothelial lipase (EL) is a strong modulator of the high-density lipoprotein (HDL) structure, composition, and function. Here, we examined the impact of EL on HDL paraoxonase 1 (PON1) content and arylesterase (AE) activity in vitro and in vivo. The incubation of HDL with [...] Read more.
Endothelial lipase (EL) is a strong modulator of the high-density lipoprotein (HDL) structure, composition, and function. Here, we examined the impact of EL on HDL paraoxonase 1 (PON1) content and arylesterase (AE) activity in vitro and in vivo. The incubation of HDL with EL-overexpressing HepG2 cells decreased HDL size, PON1 content, and AE activity. The EL modification of HDL did not diminish the capacity of HDL to associate with PON1 when EL-modified HDL was incubated with PON1-overexpressing cells. The overexpression of EL in mice significantly decreased HDL serum levels but unexpectedly increased HDL PON1 content and HDL AE activity. Enzymatically inactive EL had no effect on the PON1 content of HDL in mice. In healthy subjects, EL serum levels were not significantly correlated with HDL levels. However, HDL PON1 content was positively associated with EL serum levels. The EL-induced changes in the HDL-lipid composition were not linked to the HDL PON1 content. We conclude that primarily, the interaction of enzymatically active EL with HDL, rather than EL-induced alterations in HDL size and composition, causes PON1 displacement from HDL in vitro. In vivo, the EL-mediated reduction of HDL serum levels and the consequently increased PON1-to-HDL ratio in serum increase HDL PON1 content and AE activity in mice. In humans, additional mechanisms appear to underlie the association of EL serum levels and HDL PON1 content. Full article
Show Figures

Graphical abstract

Back to TopTop