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Abstract: This study aimed to evaluate the high-density lipoprotein (HDL) capacity to efflux cel-
lular cholesterol from lipid-loaded macrophages to find a reliable and low-cost biomarker with
the purpose of better evaluating the risk of premature cardiovascular (CV) events in FH patients.
This case-controlled study comprised 16 homozygous (HOFH) and 18 heterozygous (HEFH) FH
patients, as well as 20 healthy subjects recruited as controls. Two main subfractions of HDL (HDL2
(d = 1.063–1.125 g/mL) and HDL3 (d = 1.125–1.210 g/mL)) were isolated from the patients’ serum
samples using sequential ultracentrifugation. After compositional characterization, the capacity of
HDL to efflux cholesterol (CEC%) from lipid-laden macrophages was measured. The HDL2 and
HDL3 subfractions showed some differences in lipid and protein composition between the studied
groups. In addition, both HDL subfractions (p < 0.001) revealed significantly reduced CEC% in HOFH
patients (HDL2: 2.5 ± 0.1 and HDL3: 3.2 ± 0.2) in comparison with the HEFH (HDL2: 3.2 ± 0.1%
and HDL3: 4.1 ± 0.2%) and healthy (HDL2: 3.3 ± 0.2% and HDL3: 4.5 ± 0.3%) subjects. Additionally,
multinomial logistic regression results indicated that the CEC% of both HDL2 (OR: 0.091; 95% CI:
0.018–0.452, p < 0.01) and HDL3 (OR: 0.118; 95% CI: 0.035–0.399, p < 0.01) subfractions are strongly
and inversely associated with the homozygous form of FH. A decreased capacity of HDL particles to
efflux cholesterol from macrophages might identify homozygous FH patients who are at elevated
risk for premature CVDs. Prospective studies with a large sample size are warranted to evaluate
this hypothesis.

Keywords: familial hypercholesterolemia; HDL cholesterol efflux; macrophage

1. Introduction

Familial hypercholesterolemia (FH) is a set of inherited genetic defects causing in-
tensely increased circulating low-density lipoprotein cholesterol (LDL-C) concentrations,
which can further deposit in the coronary arteries and proximal aorta and lead to elevated
premature atherosclerotic cardiovascular disease (ASCVD) risk [1–3]. FH is diagnosed
based on the identification of mutations in the genes involved in the hepatic clearance of
LDL-C, including LDL receptor (LDLR), apolipoprotein B (APOB) and/or proprotein convertase
subtilisin/kexin type 9 (PCSK9) [1,4].

Metabolites 2023, 13, 197. https://doi.org/10.3390/metabo13020197 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13020197
https://doi.org/10.3390/metabo13020197
https://doi.org/10.3390/metabo13020197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-9549-8504
https://doi.org/10.3390/metabo13020197
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13020197?type=check_update&version=2


Metabolites 2023, 13, 197 2 of 11

The most frequent mutations in these genes are small nucleotide variations that are
present all over the gene; while other changes, including nonsense/missense variants,
altered initiation codons, frameshift variants, splicing alterations, and large deletions in-
volving one or more exons, may also exist [5]. FH may be either heterozygous (HEFH),
with the prevalence of 1 in 250 births or homozygous (HOFH), which carries biallelic
pathogenic variants whose prevalence is estimated at 1:160,000 to 1:400,000 and illustrates
a more severe phenotype of disease [6–8]. The HOFH with the LDL-C concentration of
13 mmol/L are susceptible to experiencing premature cardiovascular (CV) events at
an early age [9,10].

During the lifetime, increased levels of circulating LDL-C, low high-density lipoprotein
cholesterol (HDL-C) phenotype, and defective HDL functionality, may all contribute to the
development of ASCVDs in these patients [11]. The main cardioprotective effect of HDL
arguably involves its role in the key step of the reverse cholesterol transport (RCT) process,
and the efflux of cholesterol from macrophagic foam cells [12–14]. As previously reported,
the cholesterol efflux capacity (CEC) of HDL is impaired in FH individuals, an observation
that can contribute to an increase in ASCVDs in these patients [15–17].

Contrary to the inheritance nature of FH, genetic testing for the detection of these
patients is rarely used due to its high cost. Therefore, according to the importance of
early diagnosis of homozygous forms of FH patients who poorly respond to medica-
tions and have a deficient prognosis compared to the HEFH, this study aimed to evalu-
ate the HDL capacity to efflux cellular cholesterol from lipid-laden macrophages to find
a potential biomarker with the purpose of better evaluating the risk of premature CV events
in these patients.

2. Materials and Methods
2.1. Study Populations

In this case-control study, 16 patients with the homozygous form of FH (case group)
from all over Iran and 18 individuals with the heterozygous form of FH (control group)
among HOFH family members were recruited. The selection criteria were defined previ-
ously [18]. Briefly, FH scores for patients with suspected FH were calculated according
to the Dutch Lipid Clinic Network Criteria. Then, mutations in LDLR, APOB and PCSK9
genes were assessed by a next-generation sequencing technique and confirmed by the
Sanger sequencing method. Pathogenic mutations were the ones previously identified and
reported according to the ClinVar database, but for some novel mutations, their pathogenic-
ity was predicted by the SIFT database and PolyPhen software. The HEFH patients were
family members of the case group who are closely related to the HOFH patients in terms
of lifestyle and genetics. In addition, 20 healthy subjects were enrolled as a control group.
Written informed consent was obtained from all participants. All medical history data and
blood samples were collected previously, and the patients’ serum was stored at −80 ◦C
for further analysis. Biochemical analyses were performed using commercial kits (Pars
Azmoon, Iran).

2.2. Isolation and Compositional Characterization of HDL Subfraction

Two main subfractions of HDL (HDL2 (d = 1.063–1.125 g/mL) and HDL3
(d = 1.125–1.210 g/mL)) were isolated from the patients’ serum samples using sequential
ultracentrifugation, with different density solutions (d: 1.006, 1.21, and 1.24 g/mL), which
were prepared according to the previously reported protocol [19–21]. Separation was
achieved after a three-step ultracentrifugation followed by dialysis in PBS [22]. Thereafter,
total protein (TP) (by bicinchonic acid (BCA) assay) and the main lipid components (PL,
TC, TG, and FC) (by commercial kits (Diasys, France)) were quantified in the isolated HDL
subfractions. Cholesteryl ester (CE) content was estimated as (TC-FC) × 1.67 [23]. The
details were reported previously [22].



Metabolites 2023, 13, 197 3 of 11

2.3. Cholesterol Efflux Assay

A HDL concentration of 30 µg protein/mL was used for the measurement of the HDL
subfractions’ capacities to induce CEC in a human THP-1 monocytic cell system (ATCC)
according to the previously reported protocol [23,24]. Briefly, after differentiation of the
monocytes to macrophage-like cells with 50 ng/mL of phorbol 12-myristate 13-acetate
(PMA), the cells’ morphology was checked under the microscope, as differentiation resulted
in flat, elongated, amoeboid and adherent cells [25]. Then, the cells were loaded with [3H]
cholesterol-labeled acetylated LDL (1 µCi/mL) for 24 h to equilibrate the cell cholesterol
pools. Then, the efflux of cellular cholesterol to the HDL subfractions was evaluated after
4 h incubation of the cells in serum-free media. Finally, the CEC% was calculated as
[Medium counts per minute (cpm)/(medium cpm+ cell cpm)) × 100], and by subtracting
from the nonspecific CEC% that occurred in the absence of the cholesterol acceptors, and
the specific CEC% was determined.

2.4. Statistics

All variables were normally distributed and are shown as the mean ± standard error
of the mean (SE). Differences in variables were analyzed by one-way ANOVA, followed by
a Tukey multiple comparison test across the 3 groups (healthy, HEFH, and HOFH), or a t-test
for the independent samples between the 2 groups (HEFH and HOFH) when appropriate.
The between-group differences in categorical variables were presented as percentages, and
were calculated by a Chi squared analysis or by Fisher’s exact test. Pearson’s correlation
coefficient was applied to evaluate the association between CEC and HDL composition.
Multinomial and binary logistic regressions were also used to assess the predictive value
of CEC for FH risk assessment after adjustment for age or LDL-C. SPSS software, v. 11.5
(Chicago, IL, USA) was used and p < 0.05 was considered as significant.

3. Results
3.1. Patients’ Characteristics

A total of 16, 18, and 20 individuals were classified as HOFH, HEFH, and healthy
groups, respectively. The HOFH group included significantly younger individuals than the
two other groups, although the HEFH patients were also younger than the healthy subjects
(Table 1). In addition, the HOFH patients demonstrated significantly elevated levels of total
cholesterol (TC), triglyceride (TG), and LDL-C in comparison with the two other groups;
by contrast, the HDL-C concentration showed no significant differences between the
three studied groups (Table 1).

The clinical characteristics of the FH patients are summarized in Table 2. All subjects
with HOFH had xanthomas and most of them (68.8%) experienced myocardial infarction
(MI). The FH score was expectedly higher in the HOFH relative to the HEFH group. Most
of the HEFH patients (66.6%) did not use any drugs and 33.3% of them were on statin
therapy alone, while most of the HOFH patients (75%) were on both statin and ezetimibe
medication and 18.8% of them were on statin therapy (Table 2).

3.2. Compositional Characterization of HDL Subfractions

As shown in Figure 1, the studied groups were different in terms of the chemical
composition of HDL2 (Figure 1A) and HDL3 (Figure 1B) particles. Indeed, both the
HDL2 and HDL3 particles revealed FC enrichment in the HOFH patients compared to
both the HEFH (p < 0.001) and healthy (p < 0.001) subjects. In addition, a markedly
reduced CE content was observed in HDL2 particles of the HEFH (p < 0.01) and HOFH
(p < 0.001) patients relative to the healthy groups. By contrast, TP showed a significantly
increased presence of HDL2 particles in the HEFH (p < 0.05) patients in comparison with the
two other groups. Moreover, the healthy subjects showed a significantly elevated TG
(p < 0.01) and reduced PL (p < 0.05) content in the HDL2 particles as compared with the
HEFH and HOFH, respectively (Figure 1).
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Table 1. Baseline characteristics of the subjects.

Variables

Familial Hypercholesterolemia
(N = 34) Healthy

(N = 20)
p-Value

HEFH
(N = 18)

HOFH
(N = 16)

Sex
Male 10 (55.6%) 5 (31.3%) 10 (50.0%)

0.361Female 8 (44.4%) 11 (68.8%) 10 (50.0%)
Age (y) 33.61 ± 2.3 a 14.0 ± 2.7 48.5 ± 1.9 a,b <0.001

TC (mmol/L) 6.4 ± 0.5 a 16.1 ± 1.2 4.9 ± 0.2 a <0.001
TG (mmol/L) 1.2 ± 0.1 a 2.3 ± 0.4 1.4 ± 0.1 a <0.01

HDL-C (mmol/L) 1.6 ± 0.3 1.6 ± 0.2 1.3 ± 0.1 0.376
LDL-C (mmol/L) 4.3 ± 0.4 a 11.9 ± 1.1 2.9 ± 0.1 a <0.001

HDL2
PL/TP 0.5 ± 0.0 a 0.6 ± 0.0 0.6 ± 0.0 <0.05
TC/TP 0.3 ± 0.0 0.4 ± 0.0 b 0.4 ± 0.0 b <0.01

HDL3
PL/TP 0.4 ± 0.0 0.5 ± 0.0 0.4 ± 0.0 0.080
TC/TP 0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.734

HDL2/HDL3 2.6 ± 0.1 a 1.6 ± 0.2 2.4 ± 0.2 a <0.001

Data are shown as the mean ± SE; a: Significant in comparison with HOFH group; b: Significant in comparison
with HEFH group. HDL-C: High-density lipoprotein cholesterol; HEFH: Heterozygous familial hypercholes-
terolemia; HOFH: Homozygous familial hypercholesterolemia; LDL-C: Low-density lipoprotein cholesterol;
mmol/L: Millimoles per liter; TC: Total cholesterol; TG: Triglyceride; y: Year.

Table 2. Clinical characteristics of the FH patients.

Variables

Familial
Hypercholesterolemia

(N = 34) p-Value

HEFH
(N = 18)

HOFH
(N = 16)

FH score 15.0 ± 0.0 25.6 ± 0.5 <0.001
Number of patients with xanthoma symptoms 0.0% 100.0% <0.001

Number of patients with MI history 0% 68.8% <0.001

Mutation (%)
Previously reported 84.6% 84.6%

1.000Novel 15.4% 15.4%

Mutation type (%)

Missense 44.4% 50.0%

1.000
Truncated 27.8% 25.0%

Single
nucleotide variant 16.7% 12.5%

Single nucleotide
polymorphism 11.1% 6.3%

Missense, truncated 0.0% 6.3%
Position of LDLR

mutation (%)
Exon 72.7% 84.6%

0.630Intron 27.3% 12.5%

Drugs consumption (%)
No drug 66.7% 6.2%

<0.01Only statin 33.3% 18.8%
Statin + ezetimibe 0% 75.0%

FH: Familial hypercholesterolemia; LDLR: Low-density lipoprotein receptor; MI: Myocardial infarction.

The HDL2 subfraction showed a significantly decreased PL/TP ratio in the HEFH
compared with the HOFH (p < 0.05) group, while the TC/TP ratio was elevated in the
HOFH (p < 0.05) and healthy (p < 0.05) groups as compared with the HEFH group. Finally,
the HDL2/HDL3 ratio was also decreased in the HOFH (p < 0.01) patients compared to the
two other groups (Table 1).
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Figure 1. Comparison of wt% lipid and protein content of HDL subtraction between the groups;
a: p < 0.05 vs HOFH; b: p < 0.05 vs HEFH; c: p < 0.05 vs controls. CE: cholesterol ester; FC: free
cholesterol; PL: phospholipid; TG: triglyceride; TP: total protein.

3.3. The Percentage of Cholesterol Efflux Capacity of HDL Subfractions

Both HDLs (p < 0.001) revealed significantly reduced CEC% in the HOFH patients
relative to the HEFH and healthy subjects (Table 3). However, a significantly reduced
CEC/HDL-C ratio was only found for HDL3 (p < 0.05) in the HOFH patients relative to
healthy individuals (Table 3). In addition, females displayed the markedly highest HDL2
CEC% (p < 0.01) compared with the males in the HOFH patients. By contrast, age did not
affect the CEC% in any of the studied groups (data not shown).

Table 3. CEC% of HDL from FH patients and healthy controls.

Variables

Familial Hypercholesterolemia
(N = 34) Healthy

(N = 20)
p-Value

HEFH
(N = 18)

HOFH
(N = 16)

HDL2 CEC (%) 3.2 ± 0.1 a 2.5 ± 0.1 3.3 ± 0.2 a <0.001
HDL3 CEC (%) 4.1 ± 0.2 a 3.2 ± 0.2 4.5 ± 0.3 a <0.001

HDL2 CEC/HDL-C 2.3 ± 0.2 1.9 ± 0.3 2.6 ± 0.2 0.126
HDL3 CEC/HDL-C 2.9 ± 0.3 2.5 ± 0.3 3.6 ± 0.3 a <0.05

Data are shown as the mean ± SE; a: Significant in comparison with HOFH group. HDL-C: High-density
lipoprotein cholesterol; HEFH: Heterozygous familial hypercholesterolemia; HOFH: Homozygous familial
hypercholesterolemia; CEC: Cholesterol efflux capacity.

In addition, there was no correlation between the CEC% of both the HDL2 and HDL3
and the age and lipid profile in all studied groups (data not shown). Albeit, when all of
the HEFH and HOFH patients were analyzed together (as FH patients), there was a strong
positive relationship between both HDL2 CEC% (Figure 2A) and HDL3 CEC% (Figure 2B)
and age. Moreover, LDL-C levels were negatively correlated with HDL2 CEC% (Figure 2C)
and HDL3 CEC% (Figure 2D). Finally, the FH score showed a strong negative correlation
with HDL2 CEC% (Figure 2E).

Results of the multinomial logistic regression revealed that the HDL2 CEC% and HDL3
CEC% subfractions, as well as the HDL2 CEC/HDL-C and HDL3 CEC/HDL-C ratios, were
strongly and inversely associated with the homozygous form of FH (Table 4). However,
after an adjustment for age (Table 4) and LDL-C (data not shown), these associations
disappeared. In addition, the results of the binary logistic regression demonstrated strong
and inverse relationships between HDL2 CEC% and HDL3 CEC% and HOFH (Table 5).
After an adjustment for age (Table 5) and LDL-C (data not shown) as a confounder, these
associations were weakened.
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Figure 2. Correlations between the CEC% of HDL subfractions and age (A,B), LDL-C (C,D), and FH
score (E) in all FH patients, combined.

Table 4. Multinomial logistic regression for CEC in relation to FH status (Reference: healthy controls).

Variables

HOFH HEFH

Unadjusted Adjusted # Unadjusted Adjusted #

OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value

HDL2 CEC (%) 0.091
(0.018–0.452) <0.01 0.145

(0.018–1.175) 0.071 0.864
(0.330–2.258) 0.765 1.631

(0.386–6.887) 0.505

HDL3 CEC (%) 0.118
(0.035–0.399) <0.01 0.306

(0.062–1.498) 0.144 0.681
(0.345–1.343) 0.268 0.763

(0.295–1.972) 0.577

HDL2
CEC/HDL-C

0.439
(0.194–0.991) <0.05 1.149

(0.183–7.209) 0.882 0.721
(0.321–1.623) 0.430 1.187

(0.303–4.652) 0.805

HDL3
CEC/HDL-C

0.452
(0.240–0.852) <0.05 0.860

(0.196–3.777) 0.841 0.680
(0.240–1.250) 0.214 0.856

(0.318–2.301) 0.758

#: Adjusted for age. CI: Confidence interval; HEFH: Heterozygous familial hypercholesterolemia; HOFH:
Homozygous familial hypercholesterolemia; OR: odds ratio.
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Table 5. Binary logistic regression for CEC in relation to HOFH (Reference: HEFH).

Variables
Unadjusted Adjusted #

OR (95% CI) p Value OR (95% CI) p Value

HDL2 CEC (%) 0.004
(0.000–0.123) <0.01 0.010

(0.000–0.533) <0.05

HDL3 CEC (%) 0.181
(0.055–0.595) <0.01 0.385

(0.101–1.471) 0.163

HDL2 CEC/HDL-C 0.669
(0.300–1.490) 0.325 1.005

(0.254–3.966) 0.995

HDL3 CEC/HDL-C 0.708
(0.383–1.311) 0.272 1.013(0.317–

3.241) 0.982

#: Adjusted for age. CI: Confidence interval; HEFH: Heterozygous familial hypercholesterolemia; HOFH:
Homozygous familial hypercholesterolemia; OR: odds ratio.

4. Discussion

HDL-C is a traditional CVD risk marker that reflects cholesterol content [26,27]. How-
ever, HDL is a complex particle containing various enzymes, lipids, and proteins that can
influence its cardioprotective properties. Therefore, the assessment of HDL composition
and function has been suggested to be used for evaluating CVD risk, especially in FH
patients who are at high risk for CVD [11,28].

Hypercholesterolemia promotes compositional alterations in HDL particles, thereby
impairing their ability to induce cholesterol efflux from macrophages [29]. In this case-
controlled study, the HDL2 subfraction showed TG enrichment and PL and CE depletion
in both the HEFH and HOFH patients when compared to healthy subjects. Moreover, both
the HDL2 and HDL3 subfractions revealed FC enrichment in the HOFH patients compared
to the other groups. However, markedly elevated TP content was observed in the HDL2
subfractions of HEFH patients, which was accompanied by reduced PL content resulting in
the diminished PL/TP ratio in these patients when compared to the HOFH group. However,
the HDL2 TC/TP ratio was elevated in HOFH patients compared to the HEFH group,
which could reflect increased plasma cholesterol levels in HOFH. Reduced PL content of
the HDL3 particles was previously reported in FH patients relative to healthy controls [30].
Moreover, TG-rich HDL3 particles were present in FH patients with premature coronary
heart disease [31]. Moreover, in the present study, the HDL2/HDL3 ratio was decreased
in the HOFH patients compared to the other groups, potentially reflecting the decreased
HDL2 total mass in HOFH. In addition, our group previously reported the excessive
oxidative burden in HOFH patients; therefore, increased FC content in both the HDL2
and HDL3 particles of HOFH patients might be an important source of substrates to be
oxidized by different oxidative agents in these patients leading to HDL dysfunction. It has
been reported that HDL oxidation weakens the lipoprotein’s capability to clear cells from
cholesterol and this might explain the pro-atherogenic behavior of HDL particles [32].

The efflux of cholesterol from lipid-laden macrophages is a key cardioprotective mecha-
nism against excess cholesterol uptake, so it is an important process in preventing the transfor-
mation of lipid-laden cells into foam cells and, subsequently, atherosclerotic plaque [33]. Nu-
merous studies have reported an abnormal CEC in FH patients [15,34–37]. In the present study,
impaired CEC was also found in both the HDL2 and HDL3 subfractions from HOFH pa-
tients relative to the HEFH and healthy groups. Several reports documented a decreased ca-
pacity of HDL from FH patients to efflux cholesterol from cultured macrophages [15,17,34].
In addition, plasma from HEFH patients with CVD displayed a reduced capacity to ef-
flux cholesterol compared to HEFH patients without CVD, possibly reflecting differences
in HDL composition [38]. Consistent with this hypothesis, the HDL2 CEC% showed,
respectively, a positive and negative correlation with TP and PL content of HDL2 from
all FH patients in the present study (data not shown). Since our HOFH patients were
younger subjects, we assessed the relationship between the CEC% of both the HDL2 and
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HDL3 and age in our group and found no significant correlation. However, when all of
the HEFH and HOFH patients were combined, a correlational analysis revealed a strong
positive relationship between both HDL2 CEC% and HDL3 CEC% and age. Moreover,
LDL-C levels were negatively correlated with the HDL2 CEC% and HDL3 CEC% in all FH
patients combined.

It was reported that altered HDL remodeling and composition was associated with
low HDL-C levels and dysfunctional RCT [39]. Despite an impaired CEC% in FH pa-
tients, HDL-C showed no statistical differences between the groups in the present study.
Therefore, we normalized the CEC% of both HDL subfractions to HDL-C levels, and only
observed a significantly reduced HDL3 CEC/HDL-C ratio in the HOFH patients vs. healthy
individuals, potentially reflecting a markedly diminished HDL3 CEC% in HOFH.

Furthermore, it was reported that male gender altered the HDL size and function [40].
In a subgroup analysis, the CEC% of the HDL subfraction was, therefore, compared between
males and females in each group. The results indicated that gender affected the CEC%, so
that females displayed a markedly elevated HDL2 CEC% than males in the HOFH patients.

Moreover, the HDL CEC% showed an inverse and independent association with
the presence of ASCVD (OR: 0.95; 95% CI: 0.90–0.99) in earlier studies [15]. Specifically,
the impaired HDL2 CEC found in the HOFH and HEFH patients showed an inverse
association with the development of atherosclerosis [41]. This association was confirmed
when a reduced CEC% was observed in HDL subfractions of HEFH patients relative to
normolipidemic individuals, revealing a relationship with CVD risk [42]. The results of
multinomial logistic regression showed that both the HDL2 CEC% and HDL3 CEC%,
as well as the HDL2 CEC/HDL-C and HDL3 CEC/HDL-C ratios, were strongly and
inversely associated with the homozygous form of FH. However, after an adjustment
for confounders, including age and LDL-C, these associations disappeared. In addition,
a strong and inverse relationship between HDL2 CEC% and HDL3 CEC% and HOFH was
found in the binary logistic regression analysis. Similarly, after an adjustment for age and
LDL-C as confounders, the association was weakened, reflecting the strong effects of the
two confounders on CEC%.

In conclusion, our data suggest that the reduced capacity of HDL particles to efflux
cellular cholesterol from macrophages might identify homozygous FH patients who are at
high risk for premature ASCVDs. However, the small sample size of our study was one of
the most important limitations in this study, which does not grant a definite conclusion.
Nevertheless, including the HEFH group as a valid control group, the subjects of which
were closely related to the HOFH patients in terms of lifestyle and genetics, is one of
the strengths of this pilot case-controlled study. A lack of a detailed assessment of the
comorbidities in the studied groups is another potential limitation. According to our results,
impaired CEC from cholesterol-laden macrophages could be considered a potential marker
for HOFH patients, and promoting RCT and cholesterol efflux processes can be a potentially
promising strategy for reducing CV events in FH patients. This has a particular clinical
relevance, since a more tailored approach with statins, PCSK9 targeting drugs and other
lipid-lowering agents [39], is needed in order to improve the CV outcome of FH patients.
Prospective studies with a large sample size are warranted to evaluate this hypothesis.
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