Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = A. Sakurai

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7241 KiB  
Article
Novel Drug Delivery Particles Can Provide Dual Effects on Cancer “Theranostics” in Boron Neutron Capture Therapy
by Abdul Basith Fithroni, Haruki Inoue, Shengli Zhou, Taufik Fatwa Nur Hakim, Takashi Tada, Minoru Suzuki, Yoshinori Sakurai, Manabu Ishimoto, Naoyuki Yamada, Rani Sauriasari, Wolfgang A. G. Sauerwein, Kazunori Watanabe, Takashi Ohtsuki and Eiji Matsuura
Cells 2025, 14(1), 60; https://doi.org/10.3390/cells14010060 - 6 Jan 2025
Cited by 1 | Viewed by 1918
Abstract
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved [...] Read more.
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, “AB-type” Lactosome® nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely o-Carborane (Carb) or 1,2-dihexyl-o-Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the “molecular glue” effect. Here we present in vivo and ex vivo studies with human pancreatic cancer (AsPC-1) cells to find therapeutically optimal formulas and the appropriate treatment conditions for these particles. The biodistribution of the particles was assessed by the tumor/normal tissue ratio (T/N) in terms of tumor/muscle (T/M) and tumor/blood (T/B) ratios using near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG). The in vivo and ex vivo accumulation of B delivered by the injected AB-Lac particles in tumor lesions reached a maximum by 12 h post-injection. Irradiation studies conducted both in vitro and in vivo showed that AB-Lac particles-loaded with either 10B-Carb or 10B-diC6-Carb significantly inhibited the growth of AsPC-1 cancer cells or strongly inhibited their growth, with the latter method being significantly more effective. Surprisingly, a similar in vitro and in vivo irradiation study showed that ICG-labeled AB-Lac particles alone, i.e., without any 10B compounds, also revealed a significant inhibition. Therefore, we expect that our ICG-labeled AB-Lac particles-loaded with 10B compound(s) may be a novel and promising candidate for providing not only NIRF imaging for a practical diagnosis but also the dual therapeutic effects of induced cancer cell death, i.e., “theranostics”. Full article
Show Figures

Figure 1

6 pages, 353 KiB  
Article
A Clinical Investigation of the Association between Perioperative Oral Management and Prognostic Nutritional Index in Patients with Digestive and Urinary Cancers
by H. Otagiri, S. Yamadav, M. Hashidume, A. Sakurai, M. Morioka, E. Kondo, H. Sakai and H. Kurita
Curr. Oncol. 2020, 27(5), 257-262; https://doi.org/10.3747/co.27.5963 - 1 Oct 2020
Cited by 8 | Viewed by 1448
Abstract
Background: The prognostic nutritional index (PNI) is a simple metric calculated using serum albumin and the peripheral lymphocyte count. It was reported that a low PNI score is significantly associated with major postoperative complications and poor prognosis. The purpose of [...] Read more.
Background: The prognostic nutritional index (PNI) is a simple metric calculated using serum albumin and the peripheral lymphocyte count. It was reported that a low PNI score is significantly associated with major postoperative complications and poor prognosis. The purpose of the present study was to investigate the effects of perioperative oral management (POM) on the perioperative PNI profiles of patients with digestive system or urinary cancers. Study Design: The medical records of 181 patients with cancer who underwent surgery and for whom a PNI could be calculated were retrospectively reviewed. Results: The intervention rate with POM was 34.8%. The median preoperative PNI score was 48.25 in all patients with a POM intervention [25% to 75% interquartile range (IQR): 44.38–54.13] and 47.25 in those without an intervention (IQR: 42.0–53.5). Compared with patients not receiving POM, those who received POM had significantly higher PNI scores from the early postoperative period (p < 0.05). Notably, of patients who could resume oral intake within 3 days after surgery, those who received POM intervention, compared with those who did not, had significantly higher PNI scores from the early postoperative period (p < 0.05). Conclusions: Perioperative oral management interventions might have positive effects on the postoperative PNI scores of patients with cancer. Full article
13 pages, 2823 KiB  
Article
Metabolomics Analysis Reveals Global Metabolic Changes in the Evolved E. coli Strain with Improved Growth and 1-Butanol Production in Minimal Medium
by Walter A. Laviña, Sana Subhan Memon Sakurai, Sammy Pontrelli, Sastia Prama Putri and Eiichiro Fukusaki
Metabolites 2020, 10(5), 192; https://doi.org/10.3390/metabo10050192 - 13 May 2020
Cited by 4 | Viewed by 3943
Abstract
Production of 1-butanol from microorganisms has garnered significant interest due to its prospect as a drop-in biofuel and precursor for a variety of commercially relevant chemicals. Previously, high 1-butanol titer has been reported in Escherichia coli strain JCL166, which contains a modified clostridial [...] Read more.
Production of 1-butanol from microorganisms has garnered significant interest due to its prospect as a drop-in biofuel and precursor for a variety of commercially relevant chemicals. Previously, high 1-butanol titer has been reported in Escherichia coli strain JCL166, which contains a modified clostridial 1-butanol pathway. Although conventional and metabolomics-based strain improvement strategies of E. coli strain JCL166 have been successful in improving production in rich medium, 1-butanol titer was severely limited in minimal medium. To further improve growth and consequently 1-butanol production in minimal medium, adaptive laboratory evolution (ALE) using mutD5 mutator plasmid was done on JCL166. Comparative metabolomics analysis of JCL166 and BP1 revealed global perturbations in the evolved strain BP1 compared to JCL166 (44 out of 64 metabolites), encompassing major metabolic pathways such as glycolysis, nucleotide biosynthesis, and CoA-related processes. Collectively, these metabolic changes in BP1 result in improved growth and, consequently, 1-butanol production in minimal medium. Furthermore, we found that the mutation in ihfB caused by ALE had a significant effect on the metabolome profile of the evolved strain. This study demonstrates how metabolomics was utilized for characterization of ALE-developed strains to understand the overall effect of mutations acquired through evolution. Full article
(This article belongs to the Special Issue Metabolic Engineering and Synthetic Biology Volume 2)
Show Figures

Figure 1

20 pages, 377 KiB  
Article
The Role of Relativistic Many-Body Theory in Electron Electric Dipole Moment Searches Using Cold Molecules
by V. S. Prasannaa, A. Sunaga, M. Abe, M. Hada, N. Shitara, A. Sakurai and B. P. Das
Atoms 2019, 7(2), 58; https://doi.org/10.3390/atoms7020058 - 10 Jun 2019
Cited by 2 | Viewed by 3781
Abstract
In this review article, we survey some of our results pertaining to the search for the electric dipole moment of the electron (eEDM), using heavy polar molecules. In particular, we focus on the relativistic coupled cluster method (RCCM) and its applications to eEDM [...] Read more.
In this review article, we survey some of our results pertaining to the search for the electric dipole moment of the electron (eEDM), using heavy polar molecules. In particular, we focus on the relativistic coupled cluster method (RCCM) and its applications to eEDM searches in YbF, HgX (X = F, Cl, Br, and I), BaF, HgA (A = Li, Na, and K), and YbOH. Our results are presented in a systematic manner, by first introducing the eEDM and its measurement using molecules, the importance of relativistic many-body theory, and finally our results, followed by future prospects. Full article
(This article belongs to the Special Issue Search for New Physics with Cold and Controlled Molecules)
Show Figures

Figure 1

Back to TopTop