Intervention Strategies for Seasonal and Emerging Respiratory Viruses with Drugs and Vaccines Targeting Viral Surface Glycoproteins
Abstract
1. Respiratory Viruses
2. Novel Vaccines
3. Novel Drugs
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Li, Y.; O’Brien, K.L.; Madhi, S.A.; Widdowson, M.A.; Byass, P.; Omer, S.B.; Abbas, Q.; Ali, A.; Amu, A.; et al. Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: A systematic review and modelling study. Lancet Glob. Health 2020, 8, e497–e510. [Google Scholar] [CrossRef]
- Shi, T.; Arnott, A.; Semogas, I.; Falsey, A.R.; Openshaw, P.; Wedzicha, J.A.; Campbell, H.; Nair, H.; Investigators, R. The etiological role of common respiratory viruses in acute respiratory infections in older adults: A systematic review and meta-analysis. J. Infect. Dis. 2020, 222, S563–S569. [Google Scholar] [CrossRef]
- West, J.V. Acute upper airway infections. Br. Med. Bull. 2002, 61, 215–230. [Google Scholar] [CrossRef]
- Chatterjee, A.; Mavunda, K.; Krilov, L.R. Current state of respiratory syncytial virus disease and management. Infect. Dis. Ther. 2021, 3, 1–12. [Google Scholar]
- Tin Tin Htar, M.; Yerramalla, M.S.; Moisi, J.C.; Swerdlow, D.L. The burden of respiratory syncytial virus in adults: A systematic review and meta-analysis. Epidemiol. Infect. 2020, 148, e48. [Google Scholar] [CrossRef] [PubMed]
- Henderson, F.W.; Collier, A.M.; Clyde, W.A., Jr.; Denny, F.W. Respiratory-syncytial-virus infections, reinfections and immunity. A prospective, longitudinal study in young children. N. Engl. J. Med. 1979, 300, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.M.; Bloom, H.H.; Mufson, M.A.; Chanock, R.M. Natural reinfection of adults by respiratory syncytial virus. Possible relation to mild upper respiratory disease. N. Engl. J. Med. 1962, 267, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Bender, B.S.; Small, P.A., Jr. Influenza: Pathogenesis and host defense. Semin. Respir. Infect. 1992, 7, 38–45. [Google Scholar]
- Szewczuk, M.R.; Wade, A.W. Aging and the mucosal-associated lymphoid system. Ann. N. Y. Acad. Sci. 1983, 409, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Efstathiou, C.; Abidi, S.H.; Harker, J.; Stevenson, N.J. Revisiting respiratory syncytial virus’s interaction with host immunity, towards novel therapeutics. Cell Mol. Life Sci. 2020, 77, 5045–5058. [Google Scholar] [CrossRef]
- Coultas, J.A.; Smyth, R.; Openshaw, P.J. Respiratory syncytial virus (rsv): A scourge from infancy to old age. Thorax 2019, 74, 986–993. [Google Scholar] [CrossRef]
- Griffiths, C.; Drews, S.J.; Marchant, D.J. Respiratory syncytial virus: Infection, detection, and new options for prevention and treatment. Clin. Microbiol. Rev. 2017, 30, 277–319. [Google Scholar] [CrossRef] [PubMed]
- Mejias, A.; Rodriguez-Fernandez, R.; Oliva, S.; Peeples, M.E.; Ramilo, O. The journey to a respiratory syncytial virus vaccine. Ann. Allergy Asthma Immunol. 2020, 125, 36–46. [Google Scholar] [CrossRef]
- Boyoglu-Barnum, S.; Chirkova, T.; Anderson, L.J. Biology of infection and disease pathogenesis to guide rsv vaccine development. Front. Immunol. 2019, 10, 1675. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.L.; Melero, J.A. Progress in understanding and controlling respiratory syncytial virus: Still crazy after all these years. Virus Res. 2011, 162, 80–99. [Google Scholar] [CrossRef] [PubMed]
- Becker, Y. Respiratory syncytial virus (rsv) evades the human adaptive immune system by skewing the th1/th2 cytokine balance toward increased levels of th2 cytokines and ige, markers of allergy—A review. Virus Genes 2006, 33, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Eichinger, K.M.; Kosanovich, J.L.; Lipp, M.; Empey, K.M.; Petrovsky, N. Strategies for active and passive pediatric rsv immunization. Ther. Adv. Vaccines Immunother. 2021, 9, 2515135520981516. [Google Scholar] [PubMed]
- Boyoglu-Barnum, S.; Tripp, R.A. Up-to-date role of biologics in the management of respiratory syncytial virus. Expert Opin. Biol. Ther. 2020, 20, 1073–1082. [Google Scholar] [CrossRef]
- Lukacs, N.W.; Malinczak, C.A. Harnessing cellular immunity for vaccination against respiratory viruses. Vaccines (Basel) 2020, 8, 783. [Google Scholar] [CrossRef]
- Durbin, J.E.; Durbin, R.K. Respiratory syncytial virus-induced immunoprotection and immunopathology. Viral Immunol. 2004, 17, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.C.G.; Boukhvalova, M.S.; Morrison, T.G.; Vogel, S.N. A multifaceted approach to rsv vaccination. Hum. Vaccin. Immunother. 2018, 14, 1734–1745. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.S.; Modjarrad, K.; McLellan, J.S. Novel antigens for rsv vaccines. Curr. Opin. Immunol. 2015, 35, 30–38. [Google Scholar] [CrossRef]
- Walsh, E.E.; Brandriss, M.W.; Schlesinger, J.J. Immunological differences between the envelope glycoproteins of two strains of human respiratory syncytial virus. J. Gen. Virol. 1987, 68 Pt 8, 2169–2176. [Google Scholar] [CrossRef]
- Phung, E.; Chang, L.A.; Morabito, K.M.; Kanekiyo, M.; Chen, M.; Nair, D.; Kumar, A.; Chen, G.L.; Ledgerwood, J.E.; Graham, B.S.; et al. Epitope-specific serological assays for rsv: Conformation matters. Vaccines (Basel) 2019, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Jordan, E.; Lawrence, S.J.; Meyer, T.P.H.; Schmidt, D.; Schultz, S.; Mueller, J.; Stroukova, D.; Koenen, B.; Gruenert, R.; Silbernagl, G.; et al. Broad antibody and cellular immune response from a phase 2 clinical trial with a novel multivalent poxvirus based rsv vaccine. J. Infect. Dis. 2020, 29, 1062–1072. [Google Scholar]
- Khan, I.U.; Huang, J.; Li, X.; Xie, J.; Zhu, N. Nasal immunization with rsv f and g protein fragments conjugated to an m cell-targeting ligand induces an enhanced immune response and protection against rsv infection. Antiviral Res. 2018, 159, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Air, G.M. Influenza neuraminidase. Influenza Other Respir. Viruses 2012, 6, 245–256. [Google Scholar] [CrossRef]
- Houser, K.; Subbarao, K. Influenza vaccines: Challenges and solutions. Cell Host Microbe 2015, 17, 295–300. [Google Scholar] [CrossRef]
- Coelingh, K.L.; Luke, C.J.; Jin, H.; Talaat, K.R. Development of live attenuated influenza vaccines against pandemic influenza strains. Expert Rev. Vaccines 2014, 13, 855–871. [Google Scholar] [CrossRef]
- Sautto, G.A.; Kirchenbaum, G.A.; Ross, T.M. Towards a universal influenza vaccine: Different approaches for one goal. Virol. J. 2018, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Slaoui, M.; Hepburn, M. Developing safe and effective covid vaccines - operation warp speed’s strategy and approach. N. Engl. J. Med. 2020, 383, 1701–1703. [Google Scholar] [CrossRef]
- O’Callaghan, K.P.; Blatz, A.M.; Offit, P.A. Developing a sars-cov-2 vaccine at warp speed. JAMA 2020, 324, 437–438. [Google Scholar] [CrossRef] [PubMed]
- Marx, V. Coronavirus jolts labs to warp speed. Nat. Methods 2020, 17, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Ho, R.J.Y. Warp-speed covid-19 vaccine development: Beneficiaries of maturation in biopharmaceutical technologies and public-private partnerships. J. Pharm. Sci. 2021, 110, 615–618. [Google Scholar] [CrossRef]
- Moore, J.P.; Klasse, P.J. Covid-19 vaccines: “Warp speed” needs mind melds, not warped minds. J. Virol. 2020, 94, e01083–e01120. [Google Scholar] [CrossRef]
- Noor, R. Developmental status of the potential vaccines for the mitigation of the covid-19 pandemic and a focus on the effectiveness of the pfizer-biontech and moderna mrna vaccines. Curr. Clin. Microbiol. Rep. 2021, 1–8. [Google Scholar]
- Bettini, E.; Locci, M. Sars-cov-2 mrna vaccines: Immunological mechanism and beyond. Vaccines (Basel) 2021, 9, 147. [Google Scholar] [CrossRef]
- Shojaee, A.; Vahedian-Azimi, A.; Faizi, F.; Rahimi-Bashar, F.; Shahriary, A.; Galeh, H.E.G.; Nehrir, B.; Guest, P.C.; Sahebkar, A. Relationship between covid-19 and angiotensin-converting enzyme 2: A scoping review. Adv. Exp. Med. Biol. 2021, 1321, 53–68. [Google Scholar]
- Tompa, D.R.; Immanuel, A.; Srikanth, S.; Kadhirvel, S. Trends and strategies to combat viral infections: A review on fda approved antiviral drugs. Int. J. Biol. Macromol. 2021, 172, 524–541. [Google Scholar] [CrossRef]
- Leroy, H.; Han, M.; Woottum, M.; Bracq, L.; Bouchet, J.; Xie, M.; Benichou, S. Virus-mediated cell-cell fusion. Int. J. Mol. Sci. 2020, 21, 9644. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Subbarao, N.; Rajala, M.S. Envelope proteins as antiviral drug target. J. Drug Target 2020, 28, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Domachowske, J.B.; Anderson, E.J.; Goldstein, M. The future of respiratory syncytial virus disease prevention and treatment. Infect. Dis. Ther. 2021, 10, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, R.; Du, L.; Liu, S. Roles of the hemagglutinin of influenza a virus in viral entry and development of antiviral therapeutics and vaccines. Protein Cell 2010, 1, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Palese, P.; Tobita, K.; Ueda, M.; Compans, R.W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 1974, 61, 397–410. [Google Scholar] [CrossRef]
- Kim, C.U.; Lew, W.; Williams, M.A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M.S.; Mendel, D.B.; Tai, C.Y.; et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 1997, 119, 681–690. [Google Scholar] [CrossRef] [PubMed]
- von Itzstein, M.; Wu, W.Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.; Oliver, S.W.; et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993, 363, 418–423. [Google Scholar] [CrossRef]
- Burmeister, W.P.; Henrissat, B.; Bosso, C.; Cusack, S.; Ruigrok, R.W. Influenza b virus neuraminidase can synthesize its own inhibitor. Structure 1993, 1, 19–26. [Google Scholar] [CrossRef]
- Cass, L.M.; Efthymiopoulos, C.; Bye, A. Pharmacokinetics of zanamivir after intravenous, oral, inhaled or intranasal administration to healthy volunteers. Clin. Pharm. 1999, 36, 1–11. [Google Scholar] [CrossRef]
- Babu, Y.S.; Chand, P.; Bantia, S.; Kotian, P.; Dehghani, A.; El-Kattan, Y.; Lin, T.H.; Hutchison, T.L.; Elliott, A.J.; Parker, C.D.; et al. Bcx-1812 (rwj-270201): Discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J. Med. Chem. 2000, 43, 3482–3486. [Google Scholar] [CrossRef]
- Barroso, L.; Treanor, J.; Gubareva, L.; Hayden, F.G. Efficacy and tolerability of the oral neuraminidase inhibitor peramivir in experimental human influenza: Randomized, controlled trials for prophylaxis and treatment. Antivir. Ther. 2005, 10, 901–910. [Google Scholar] [PubMed]
- Davies, W.L.; Grunert, R.R.; Haff, R.F.; McGahen, J.W.; Neumayer, E.M.; Paulshock, M.; Watts, J.C.; Wood, T.R.; Hermann, E.C.; Hoffmann, C.E. Antiviral activity of 1-adamantanamine (amantadine). Science 1964, 144, 862–863. [Google Scholar] [CrossRef] [PubMed]
- Lamb, R.A. The structure, function, and pathobiology of the influenza a and b virus ion channels. Cold Spring Harb. Perspect. Med. 2020, 10, a038505. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Watanabe, A. Baloxavir heralds a new era in influenza virus biology. Respir. Investig. 2019, 57, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Uyeki, T.M.; Bernstein, H.H.; Bradley, J.S.; Englund, J.A.; File, T.M.; Fry, A.M.; Gravenstein, S.; Hayden, F.G.; Harper, S.A.; Hirshon, J.M.; et al. Clinical practice guidelines by the infectious diseases society of america: 2018 update on diagnosis, treatment, chemoprophylaxis, and institutional outbreak management of seasonal influenzaa. Clin. Infect. Dis. 2019, 68, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Peng, C.; Luo, J.; Wang, C.; Han, L.; Wu, B.; Ji, G.; He, H. Adamantane-resistant influenza a viruses in the world (1902–2013): Frequency and distribution of m2 gene mutations. PLoS ONE 2015, 10, e0119115. [Google Scholar] [CrossRef] [PubMed]
- Lackenby, A.; Besselaar, T.G.; Daniels, R.S.; Fry, A.; Gregory, V.; Gubareva, L.V.; Huang, W.; Hurt, A.C.; Leang, S.K.; Lee, R.T.C.; et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016–2017. Antiviral Res. 2018, 157, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Zambon, M.; Hayden, F.G. Position statement: Global neuraminidase inhibitor susceptibility network. Antiviral Res. 2001, 49, 147–156. [Google Scholar] [CrossRef]
- Checkmahomed, L.; Padey, B.; Pizzorno, A.; Terrier, O.; Rosa-Calatrava, M.; Abed, Y.; Baz, M.; Boivin, G. In Vitro combinations of baloxavir acid and other inhibitors against seasonal influenza a viruses. Viruses 2020, 12, 1139. [Google Scholar] [CrossRef]
- Mifsud, E.J.; Hayden, F.G.; Hurt, A.C. Antivirals targeting the polymerase complex of influenza viruses. Antivir. Res. 2019, 169, 104545. [Google Scholar] [CrossRef]
- Kumar, P.; Sah, A.K.; Tripathi, G.; Kashyap, A.; Tripathi, A.; Rao, R.; Mishra, P.C.; Mallick, K.; Husain, A.; Kashyap, M.K. Role of ace2 receptor and the landscape of treatment options from convalescent plasma therapy to the drug repurposing in covid-19. Mol. Cell Biochem. 2021, 476, 553–574. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Stephen, P.; Tao, Y.; Zhang, W.; Lin, S.X. Human endeavor for anti-sars-cov-2 pharmacotherapy: A major strategy to fight the pandemic. Biomed. Pharmacother. 2021, 137, 111232. [Google Scholar] [CrossRef] [PubMed]
- Elshabrawy, H.A. Sars-cov-2: An update on potential antivirals in light of sars-cov antiviral drug discoveries. Vaccines (Basel) 2020, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Liumbruno, G.M. Convalescent plasma for the treatment of severe covid-19. Biologics 2021, 15, 31–38. [Google Scholar]
- Cohen, S.A.; Kellogg, C.; Equils, O. Neutralizing and cross-reacting antibodies: Implications for immunotherapy and sars-cov-2 vaccine development. Hum. Vaccin. Immunother. 2021, 17, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Serrao, V.H.B.; Lee, J.E. Freting over sars-cov-2: Conformational dynamics of the spike glycoprotein. Cell Host Microbe 2020, 28, 778–779. [Google Scholar] [CrossRef] [PubMed]
- Freitas, B.T.; Durie, I.A.; Murray, J.; Longo, J.E.; Miller, H.C.; Crich, D.; Hogan, R.J.; Tripp, R.A.; Pegan, S.D. Characterization and noncovalent inhibition of the deubiquitinase and deisgylase activity of sars-cov-2 papain-like protease. ACS Infect. Dis. 2020, 6, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Naik, R.R.; Shakya, A.K. Therapeutic strategies in the management of covid-19. Front. Mol. Biosci. 2020, 7, 636738. [Google Scholar] [CrossRef] [PubMed]
- Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Korompoki, E.; Fotiou, D.; Migkou, M.; Tzanninis, I.G.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Emerging treatment strategies for covid-19 infection. Clin. Exp. Med. 2020, 1–13. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripp, R.A.; Stambas, J. Intervention Strategies for Seasonal and Emerging Respiratory Viruses with Drugs and Vaccines Targeting Viral Surface Glycoproteins. Viruses 2021, 13, 625. https://doi.org/10.3390/v13040625
Tripp RA, Stambas J. Intervention Strategies for Seasonal and Emerging Respiratory Viruses with Drugs and Vaccines Targeting Viral Surface Glycoproteins. Viruses. 2021; 13(4):625. https://doi.org/10.3390/v13040625
Chicago/Turabian StyleTripp, Ralph A., and John Stambas. 2021. "Intervention Strategies for Seasonal and Emerging Respiratory Viruses with Drugs and Vaccines Targeting Viral Surface Glycoproteins" Viruses 13, no. 4: 625. https://doi.org/10.3390/v13040625
APA StyleTripp, R. A., & Stambas, J. (2021). Intervention Strategies for Seasonal and Emerging Respiratory Viruses with Drugs and Vaccines Targeting Viral Surface Glycoproteins. Viruses, 13(4), 625. https://doi.org/10.3390/v13040625