Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inhalation Risk Assessment
2.2. Study Design
2.2.1. Sampling Site
Seoul
Incheon
Wonju
2.2.2. Sampling Method
2.2.3. Chemical Analysis and Quality Assurance/Quality Control
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Statistical Analysis Distribution of PM2.5 and Its Components
3.2. Inhalation Risk Assessment
3.2.1. Exposure Assessment
3.2.2. Non-Carcinogenic Risk Assessment
3.2.3. Carcinogenic Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADD | Average daily dose |
AT | Average exposure time |
BW | Body weight |
CTE | Central tendency exposure |
ECR | Excess cancer risk |
ED | Exposure duration |
EF | Exposure frequency |
ET | Exposure time |
FB | Field blank |
HI | Hazard index |
HQ | Hazard quotient |
KOSIS | Korea Statistical Information Service |
LADD | Lifetime average daily dose |
LAB | Laboratory blank |
LT | Lifetime |
NAS | National Academy of Sciences |
NIER | National Institute of Environmental Research |
PM | Particulate matter |
PM2.5 | Particulate matter with an aerodynamic diameter of 2.5 μm or less |
RfC | Reference concentration |
RfD | Reference dose |
RME | Reasonable maximum exposure |
TECR | Total excess cancer risk |
US EPA | United States Environmental Protection Agency |
References
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Murray, C.J. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the Global Burden of Disease Study 2017. Lancet Planet. Health 2020, 4, e386–e398. [Google Scholar] [CrossRef] [PubMed]
- Bowe, B.; Xie, Y.; Yan, Y.; Al-Aly, Z. Burden of cause-specific mortality associated with PM2.5 air pollution in the United States. JAMA Netw. Open 2019, 2, e1915834. [Google Scholar] [CrossRef] [PubMed]
- Health Effects Institute. State of Global Air; Special Report; Health Effects Institute: Boston, MA, USA, 2019. [Google Scholar]
- WHO. Pollutants Not Only Severely Impact health, but Also the Earth’s Climate and Ecosystems Globally; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Hong, Y.C.; Hwang, S.S.; Kim, J.H.; Lee, K.H.; Lee, H.J.; Lee, K.H.; Kim, D.S. Metals in particulate pollutants affect peak expiratory flow of schoolchildren. Environ. Health Perspect. 2007, 115, 430–434. [Google Scholar] [CrossRef]
- Jimoda, L.A.; Sulaymon, I.D.; Alade, A.O.; Adebayo, G.A. Assessment of environmental impact of open burning of scrap tyres on ambient air quality. Int. J. Environ. Res. Public Health 2018, 15, 1323–1330. [Google Scholar] [CrossRef]
- Baumgartner, J.; Zhang, Y.; Schauer, J.J.; Huang, W.; Wang, Y.; Ezzati, M. Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China. Proc. Natl. Acad. Sci. USA 2014, 111, 13229–13234. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Kang, S.; Anderson, H.R.; Mills, I.C.; Walton, H.A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: A systematic review and meta-analysis. Thorax 2014, 69, 660–665. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.M. The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar]
- Chow, W.S.; Huang, X.H.; Leung, K.F.; Huang, L.; Wu, X.; Yu, J.Z. Molecular and elemental marker-based source apportionment of fine particulate matter at six sites in Hong Kong, China. Sci. Total Environ. 2022, 813, 152652. [Google Scholar] [CrossRef]
- Peng, X.; Shi, G.; Liu, G.; Xu, J.; Tian, Y.; Zhang, Y.; Russell, A.G. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environ. Pollut. 2017, 221, 335–342. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Chao, S.; Cao, H.; Zhang, A.; Yang, Y. Emission control priority of PM2.5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective. Sci. Total Environ. 2018, 644, 20–30. [Google Scholar] [CrossRef]
- IARC. Gallium arsenide, cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monogr. Eval. Carcinog. Risks Hum. 2006, 86, 163–196. [Google Scholar]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sulaymon, I.D.; Mei, X.; Yang, S.; Chen, S.; Zhang, Y.; Hopke, P.K.; Zhang, Y. PM2.5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. Atmos. Res. 2020, 237, 104833. [Google Scholar] [CrossRef]
- Duan, S.; Zhang, M.; Sun, Y.; Fang, Z.; Wang, H.; Li, S.; Peng, Y.; Li, J.; Li, J.; Tian, J.; et al. Mechanism of PM2.5-induced human bronchial epithelial cell toxicity in central China. J. Hazard. Mater. 2020, 396, 122747. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- MohseniBandpi, A.; Eslami, A.; Ghaderpoori, M.; Shahsavani, A.; Jeihooni, A.K.; Ghaderpoury, A.; Alinejad, A. Health risk assessment of heavy metals on PM2.5 in Tehran air, Iran. Data Brief 2018, 17, 347–355. [Google Scholar] [CrossRef]
- Cui, Y.; Ji, D.; He, J.; Kong, S.; Wang, Y. In situ continuous observation of hourly elements in PM2.5 in urban Beijing, China: Occurrence levels, temporal variation, potential source regions and health risks. Atmos. Environ. 2020, 222, 117164. [Google Scholar] [CrossRef]
- Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef]
- Park, S.Y.; Jeon, J.I.; Jung, J.Y.; Yoon, S.W.; Kwon, J.; Lee, C.M. PM2.5 and heavy metals in urban and agro-industrial areas: Health risk assessment considerations. Asian J. Atmos. Environ. 2024, 18, 16. [Google Scholar] [CrossRef]
- Lin, Y.C.; Hsu, S.C.; Chou, C.C.K.; Zhang, R.; Wu, Y.; Kao, S.J.; Huang, Y.T. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals. Environ. Pollut. 2016, 208, 284–293. [Google Scholar] [CrossRef]
- Li, Q.; Liu, H.; Alattar, M.; Jiang, S.; Han, J.; Ma, Y.; Jiang, C. The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats. Sci. Rep. 2015, 5, 16936. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69. [Google Scholar] [PubMed]
- Cho, C.C.; Hsieh, W.Y.; Tsai, C.H.; Chen, C.Y.; Chang, H.F.; Lin, C.S. In vitro and in vivo experimental studies of PM2.5 on disease progression. Int. J. Environ. Res. Public Health 2018, 15, 1380. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Risk Assessment in the Federal Government: Managing the Process; National Academy: Washington, DC, USA, 1983. [Google Scholar]
- US EPA. Chapter 7 Characterizing Risk and Hazard. In Human Health Risk Assessment Protocol; US EPA: Washington, DC, USA, 2005. [Google Scholar]
- US EPA. Guidelines for Carcinogen Risk Assessment; US EPA: Washington, DC, USA, 2005.
- US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); US EPA: Washington, DC, USA, 2009.
- Sim, K.T.; Kim, D.H.; Lee, J.W.; Lee, C.H.; Park, S.Y.; Seok, K.S.; Kim, Y.H. Exposure and risk assessments of multimedia of arsenic in environment. J. Environ. Impact Assess. 2019, 28, 152–168. [Google Scholar]
- National Institute of Environmental Research (NIER). Korean Exposure Factors Handbook for Children; National Institute of Environmental Research (NIER): Incheon, Republic of Korea, 2019.
- Chen, R.; Zhao, Y.; Tian, Y.; Feng, X.; Feng, Y. Sources and uncertainties of health risks for PM2.5-bound heavy metals based on synchronous online and offline filter-based measurements in a Chinese megacity. Environ. Int. 2022, 164, 107236. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W.; Yu, Y.; Hu, B.; Xin, J.; Sun, Y.; Wang, Y. Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: Emerging results from the CARE-China network. Atmos. Chem. Phys. 2018, 18, 8849–8871. [Google Scholar] [CrossRef]
- Hoddinott, K.B.; Lee, A.P. The use of environmental risk assessment methodologies for an indoor air quality investigation. Chemosphere 2000, 41, 77–84. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund: Volume III Part A, Process for Conducting Probabilistic Risk Assessment; Environmental Protection Agency: Washington, DC, USA, 2001.
- Ji, W.; Zeng, J.; Zhao, K.; Liu, J. Source apportionment and health-risk assessment of PM2.5-bound elements in indoor/outdoor residential buildings in Chinese megacities. Build. Environ. 2025, 267, 112250. [Google Scholar] [CrossRef]
- US EPA. User’s Guide/Technical Background Document for US EPA Region 9’s RSL (Regional Screening Levels) Tables; US EPA: Washington, DC, USA, 2013.
- Fang, B.; Zeng, H.; Zhang, L.; Wang, H.; Liu, J.; Hao, K.; Yang, W. Toxic metals in outdoor/indoor airborne PM2.5 in port city of Northern, China: Characteristics, sources, and personal exposure risk assessment. Environ. Pollut. 2021, 279, 116937. [Google Scholar] [CrossRef]
- Chen, X.; Yin, L.; Fan, Y.; Song, L.; Ji, T.; Liu, Y.; Tian, J.; Zheng, W. Temporal evolution characteristics of PM2.5 concentration based on continuous wavelet transform. Sci. Total Environ. 2020, 699, 134244. [Google Scholar]
- Statistics Korea. Population and Population Density by Region. South Korean Government, 2024. Available online: https://www.index.go.kr/unity/potal/main/EachDtlPageDetail.do?idx_cd=1007#:~:text=%C2%B0%20%EC%A7%80%EC%97%AD%EB%B3%84%20%EC%9D%B8%EA%B5%AC%20%ED%86%B5%EA%B3%84%EC%9E%90%EB%A3%8C,%EC%9E%88%EC%9D%8C%EC%9D%84%20%EC%95%8C%20%EC%88%98%20%EC%9E%88%EC%9D%8C (accessed on 22 January 2025).
- Ministry of the Interior and Safety. Resident Registration Population and Household Status by Administrative District. South Korean Government, 2024. Available online: https://jumin.mois.go.kr/statMonth.do (accessed on 22 January 2025).
- Hong, S.; Lee, S.; Han, Y. Characteristics of ionic and carbonaceous constituents of PM2.5 collected near the industrial complexes and charcoal manufacturing facility in Wonju, Korea. J. Korean Soc. Atmos. Environ. 2023, 39, 239–250. [Google Scholar] [CrossRef]
- Lee, H.; Park, S.; Jeon, J.; Hong, J.; Hong, S.; Lee, Y.; Han, Y. Comparable study on the chemical characteristics of PM2.5 measured in Chuncheon and Wonju, Gangwon-do. J. Korean Soc. Atmos. Environ. 2023, 39, 165–177. [Google Scholar] [CrossRef]
- Ministry of Environment, National Fine Dust Information Center. Emission of Air Pollutants. Ministry of Environment. Available online: https://www.index.go.kr/unity/potal/main/EachDtlPageDetail.do?idx_cd=1037 (accessed on 18 December 2024).
- Yoo, J.W.; Park, S.Y.; Lee, K.; Lee, D.; Lee, Y.; Lee, S.H. Impacts of plateau-induced lee troughs on regional PM2.5 over the Korean Peninsula. Atmos. Pollut. Res. 2022, 13, 101459. [Google Scholar] [CrossRef]
- Park, S.Y.; Jang, H.; Kwon, J.; Choi, Y.; Kim, K.R.; Ha, H.J.; Lim, H.; Park, J.S.; Lee, C.M. Integrated source analysis of particulate and gaseous pollutants: Seoul as an urban case study. J. Hazard. Mater. Adv. 2025, 17, 100535. [Google Scholar] [CrossRef]
- NIER. Air Pollution Process Testing Standards; South Korean Government: Seoul, Republic of Korea, 2024.
- Lee, Y.S.; Kim, Y.K.; Choi, E.; Jo, H.; Hyun, H.; Yi, S.M.; Kim, J.Y. Health risk assessment and source apportionment of PM2.5-bound toxic elements in the industrial city of Siheung, Korea. Environ. Sci. Pollut. Res. 2022, 29, 66591–66604. [Google Scholar]
- Zhang, X.; Eto, Y.; Aikawa, M. Risk assessment and management of PM2.5-bound heavy metals in the urban area of Kitakyushu, Japan. Sci. Total Environ. 2021, 795, 148748. [Google Scholar] [CrossRef]
- Okuda, T.; Nakao, S.; Katsuno, M.; Tanaka, S. Source identification of nickel in TSP and PM2.5 in Tokyo, Japan. Atmos. Environ. 2007, 41, 7642–7648. [Google Scholar]
- Li, J.; Cen, Y.; Li, Y. The research advances in the mechanism of manganese-induced neurotoxicity. Toxin Rev. 2019, 38, 54–60. [Google Scholar] [CrossRef]
- Sharma, S.; Katrak, S.M. Chronic manganese toxicity in Indian mines—An historical account of the contributions of Dr. TP Niyogi. Indian Acad. Neurol. 2021, 24, 81–83. [Google Scholar] [CrossRef]
- Al Kuisi, M.; Al-Hwaiti, M.; Mashal, K.; Abed, A.M. Spatial distribution patterns of molybdenum (Mo) concentrations in potable groundwater in Northern Jordan. Environ. Monit. Assess. 2015, 187, 1–26. [Google Scholar]
- Ji, Y.; Feng, Y.; Wu, J.; Zhu, T.; Bai, Z.; Duan, C. Using geoaccumulation index to study source profiles of soil dust in China. J. Environ. Sci. 2008, 20, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Shi, Y.; Liu, Y.; Zhang, C.; Wang, X.; Cao, Q.; Zhang, F. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Process. Technol. 2014, 126, 469–475. [Google Scholar] [CrossRef]
- Mokhtar, M.M.; Taib, R.M.; Hassim, M.H. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. J. Air Waste Manag. Assoc. 2014, 64, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, E.; Gidhagen, L.; Johansson, C. Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization. Atmos. Environ. 2005, 39, 549–561. [Google Scholar]
- Dai, Q.L.; Bi, X.H.; Wu, J.H.; Zhang, Y.F.; Wang, J.; Xu, H.; Feng, Y.C. Characterization and source identification of heavy metals in ambient PM10 and PM2.5 in an integrated iron and steel industry zone compared with a background site. Aerosol Air Qual. Res. 2015, 15, 875–887. [Google Scholar] [CrossRef]
- Jablonska, M.; Rietmeijer, F.J.; Janeczek, J. Fine-grained barite in coal fly ash from the Upper Silesian Industrial Region. Environ. Geol. 2001, 40, 941–948. [Google Scholar]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Grandjean, P. Widening perspectives of lead toxicity: A review of health effects of lead exposure in adults. Environ. Res. 1978, 17, 303–321. [Google Scholar] [CrossRef]
- WHO. Lead Poisoning. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 19 January 2025).
- Lemly, A.D. Evaluation of the hazard quotient method for risk assessment of selenium. Ecotoxicol. Environ. Saf. 1996, 35, 156–162. [Google Scholar] [CrossRef]
- Khillare, P.S.; Sarkar, S. Airborne inhalable metals in residential areas of Delhi, India: Distribution, source apportionment and health risks. Atmos. Pollut. Res. 2012, 3, 46–54. [Google Scholar]
- Fan, M.Y.; Zhang, Y.L.; Lin, Y.C.; Cao, F.; Sun, Y.; Qiu, Y.; Xing, G.; Dao, X.; Fu, P. Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing China. Atmos. Environ. 2021, 246, 118112. [Google Scholar] [CrossRef]
Exposure Factor | Unit | Value | References | |
---|---|---|---|---|
CTE a | RME b | |||
IR | m3/day | 14.10 | 18.0 | [31] |
ET | hr/day | 2.27 | 6.26 | [31] |
EF | days/yr | 350 | 365 | [32,33] |
ED | yrs | 30 | [34] | |
BW | kg | 59.78 | [31] | |
AT | h | ED × 365 × 24 | This study | |
LT | h | 82.7 × 365 × 24 | [31] |
Component | Unit | Concentration | ||||||
---|---|---|---|---|---|---|---|---|
N a | Seoul | N a | Incheon | N a | Wonju | p-Value | ||
PM2.5 | µg/m3 | 80 | 30.11 ± 14.93 | 80 | 27.17 ± 18.17 | 40 | 15.13 ± 11.40 | 0.00 |
Al | ng/m3 | 14 | 266.59 ± 335.24 | 5 | 79.78 ± 55.11 | 1 | 54.10 | N.A. |
V | 72 | 1.67 ± 1.49 | 71 | 1.82 ± 1.60 | 28 | 0.61 ± 0.34 | 0.00 | |
Mn | 80 | 17.49 ± 9.35 | 80 | 17.34 ± 14.18 | 39 | 8.31 ± 8.66 | 0.00 | |
Ni | 79 | 1.92 ± 1.68 | 79 | 2.88 ± 1.99 | 39 | 0.87 ± 0.50 | 0.00 | |
Co | 72 | 1.53 ± 0.81 | 79 | 1.42 ± 0.76 | 37 | 0.62 ± 0.57 | 0.00 | |
As | 80 | 7.23 ± 6.43 | 78 | 9.07 ± 11.64 | 36 | 1.64 ± 2.27 | 0.00 | |
Mo | 35 | 3.01 ± 2.86 | 49 | 2.01 ± 1.85 | 20 | 1.54 ± 1.10 | 0.03 | |
Cd | 60 | 6.61 ± 5.59 | 60 | 4.35 ± 4.78 | 31 | 4.45 ± 4.04 | 0.03 | |
Ba | 59 | 18.93 ± 11.40 | 73 | 19.38 ± 23.55 | 27 | 10.21 ± 7.51 | 0.06 | |
Cr | 80 | 3.52 ± 1.74 | 80 | 4.01 ± 2.25 | 39 | 2.44 ± 1.52 | 0.00 | |
Pb | 80 | 20.55 ± 11.68 | 79 | 24.15 ± 23.39 | 32 | 6.10 ± 5.12 | 0.00 |
Component | Seoul | Incheon | Wonju | |||
---|---|---|---|---|---|---|
CTE a | RME b | CTE a | RME b | CTE a | RME b | |
PM2.5 | 1.5 × 10−1 | 1.1 × 100 | 1.4 × 10−1 | 1.1 × 100 | 7.6 × 10−2 | 6.4 × 10−1 |
Al | 4.0 × 10−3 | 4.5 × 10−2 | 1.2 × 10−3 | 8.2 × 10−3 | 8.1 × 10−4 | 3.0 × 10−3 |
V | 1.3 × 10−3 | 1.5 × 10−2 | 1.4 × 10−3 | 1.4 × 10−2 | 4.6 × 10−4 | 3.3 × 10−3 |
Mn | 2.6 × 10−2 | 1.7 × 10−1 | 2.6 × 10−2 | 1.9 × 10−1 | 1.2 × 10−2 | 1.5 × 10−1 |
Ni | 1.0 × 10−2 | 1.1 × 10−1 | 1.5 × 10−2 | 1.2 × 10−1 | 4.7 × 10−3 | 3.0 × 10−2 |
Co | 1.9 × 10−2 | 1.4 × 10−1 | 1.8 × 10−2 | 1.2 × 10−1 | 7.7 × 10−3 | 7.8 × 10−2 |
As | 3.6 × 10−2 | 3.4 × 10−1 | 4.5 × 10−2 | 7.1 × 10−1 | 8.2 × 10−3 | 1.3 × 10−2 |
Mo | 1.1 × 10−4 | 1.0 × 10−3 | 7.5 × 10−5 | 8.1 × 10−4 | 5.8 × 10−5 | 4.3 × 10−4 |
Cd | 4.9 × 10−2 | 5.0 × 10−1 | 3.3 × 10−2 | 3.6 × 10−1 | 3.3 × 10−2 | 3.4 × 10−1 |
Ba | 2.8 × 10−3 | 2.0 × 10−2 | 2.9 × 10−3 | 2.8 × 10−2 | 1.5 × 10−3 | 1.1 × 10−2 |
Cr(Ⅵ) | 3.8 × 10−4 | 1.7 × 10−2 | 4.3 × 10−4 | 2.4 × 10−2 | 2.6 × 10−4 | 1.5 × 10−2 |
Component | Seoul | Incheon | Wonju | |||
---|---|---|---|---|---|---|
CTE a | RME b | CTE a | RME b | CTE a | RME b | |
As | 2.3 × 10−6 | 2.2 × 10−5 | 2.9 × 10−6 | 4.6 × 10−5 | 5.3 × 10−7 | 8.5 × 10−6 |
Cr(VI) | 3.2 × 10−6 | 1.4 × 10−4, c | 3.6 × 10−6 | 2.0 × 10−4, c | 2.2 × 10−6 | 1.2 × 10−4, c |
Ni | 3.5 × 10−8 | 3.8 × 10−7 | 5.2 × 10−8 | 4.1 × 10−7 | 1.6 × 10−8 | 1.0 × 10−7 |
Co | 1.1 × 10−6 | 7.6 × 10−6 | 9.9 × 10−7 | 6.7 × 10−6 | 4.3 × 10−7 | 4.3 × 10−6 |
Cd | 8.9 × 10−7 | 8.9 × 10−6 | 5.9 × 10−7 | 6.4 × 10−6 | 6.0 × 10−7 | 6.0 × 10−6 |
Pb | 1.8 × 10−8 | 1.3 × 10−7 | 2.2 × 10−8 | 2.3 × 10−7 | 5.5 × 10−9 | 4.4 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-H.; Baek, S.-H.; Park, S.-Y.; Lee, C.-M.; Lee, J.-I. Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju. Toxics 2025, 13, 240. https://doi.org/10.3390/toxics13040240
Jung S-H, Baek S-H, Park S-Y, Lee C-M, Lee J-I. Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju. Toxics. 2025; 13(4):240. https://doi.org/10.3390/toxics13040240
Chicago/Turabian StyleJung, Seung-Hyun, Seon-Ho Baek, Shin-Young Park, Cheol-Min Lee, and Jung-Il Lee. 2025. "Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju" Toxics 13, no. 4: 240. https://doi.org/10.3390/toxics13040240
APA StyleJung, S.-H., Baek, S.-H., Park, S.-Y., Lee, C.-M., & Lee, J.-I. (2025). Regional Differences in PM2.5 Chemical Composition and Inhalation Risk Assessment: A Case Study of Seoul, Incheon, and Wonju. Toxics, 13(4), 240. https://doi.org/10.3390/toxics13040240