Network Toxicology and Molecular Docking Analysis of Tetracycline-Induced Acute Pancreatitis: Unveiling Core Mechanisms and Targets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Network Analysis of Tetracycline Toxicity
2.2. Collection of Tetracycline Targets
2.3. Selection of Acute Pancreatitis-Related Target Network
2.4. Construction of Protein Interaction Network and Screening of Major Targets
2.5. Gene Function Analysis and Target Protein Pathway Enrichment
2.6. Molecular Docking of Tetracycline with Major Targets
3. Results
3.1. Preliminary Network Assessment of Tetracycline Toxicity
3.2. Identification of Tetracycline-Induced Acute Pancreatitis Targets
3.3. Potential Targets and the Interaction Network of Essential Gene Acquisition
3.4. GO and KEGG Analysis of Potential Targets
3.5. Molecular Docking of Tetracycline and Core Target Proteins in Acute Pancreatitis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ljung, R.; Lagergren, J.; Bexelius, T.S.; Mattsson, F.; Lindblad, M. Increased risk of acute pancreatitis among tetracycline users in a Swedish population-based case-control study. Gut 2012, 61, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Overkamp, H. On the tetracycline treatment of acute pancreatitis. Medizinische 1959, 37, 1717–1722. [Google Scholar]
- Gu, K.; Wang, Q. Establishment and Validation of a Dynamic Nomogram for Persistent Organ Failure in Acute Biliary Pancreatitis: A Retrospective Study. J. Inflamm. Res. 2024, 17, 8513–8530. [Google Scholar] [CrossRef]
- Banfi, R.; Borselli, G.; Cappelletti, S.; Mari, L.; Aiazzi, M.; Taddei, V. Gabexate mesilate and acute pancreatitis: An experience of evidence based drug information for improving rational drug use. Pharm. World Sci. 2005, 27, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.H.; Ma, Q.Y. Resveratrol: A medical drug for acute pancreatitis. World J. Gastroenterol. 2005, 11, 3171–3174. [Google Scholar] [CrossRef] [PubMed]
- Tenner, S. Drug-induced acute pancreatitis: Underdiagnosis and overdiagnosis. Dig. Dis. Sci. 2010, 55, 2706–2708. [Google Scholar] [CrossRef] [PubMed]
- Kaurich, T. Drug-induced acute pancreatitis. Proc. (Bayl. Univ. Med. Cent.) 2008, 21, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Badalov, N.; Baradarian, R.; Iswara, K.; Li, J.; Steinberg, W.; Tenner, S. Drug-induced acute pancreatitis: An evidence-based review. Clin. Gastroenterol. Hepatol. 2007, 5, 648–661. [Google Scholar] [CrossRef]
- Oliver, L.; Liu, C.; Sadowski, B. A Case of Recurrent Liver Injury-Associated Acute Pancreatitis (LIAAP). Cureus 2024, 16, e65272. [Google Scholar] [CrossRef] [PubMed]
- Váncsa, S.; Sipos, Z.; Váradi, A.; Nagy, R.; Ocskay, K.; Juhász, F.M.; Márta, K.; Teutsch, B.; Mikó, A.; Hegyi, P.J.; et al. Metabolic-associated fatty liver disease is associated with acute pancreatitis with more severe course: Post hoc analysis of a prospectively collected international registry. United Eur. Gastroenterol. J. 2023, 11, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zhang, J.; Yang, T.; Sun, J.; Hou, J.; Chen, Z.; Yu, X.; Yuan, X.; Lu, X.; Xie, T.; et al. Non-Alcoholic Fatty Liver Disease (NAFLD) Is an Independent Risk Factor for Developing New-Onset Diabetes After Acute Pancreatitis: A Multicenter Retrospective Cohort Study in Chinese Population. Front. Endocrinol. 2022, 13, 903731. [Google Scholar] [CrossRef] [PubMed]
- Torosis, J.; Vender, R. Tetracycline-induced pancreatitis. J. Clin. Gastroenterol. 1987, 9, 580–581. [Google Scholar] [CrossRef]
- Chu, Z.Y.; Zi, X.J. Network toxicology and molecular docking for the toxicity analysis of food contaminants: A case of Aflatoxin B(1). Food Chem. Toxicol. 2024, 188, 114687. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic. Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Li, C.; Xing, H.; He, Q.; Liu, J.; Liu, H.; Li, Y.; Chen, X. Network Toxicology Guided Mechanism Study on the Association between Thyroid Function and Exposures to Polychlorinated Biphenyls Mixture. Biomed. Res. Int. 2022, 2022, 2394398. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef] [PubMed]
- Nowotka, M.M.; Gaulton, A.; Mendez, D.; Bento, A.P.; Hersey, A.; Leach, A. Using ChEMBL web services for building applications and data processing workflows relevant to drug discovery. Expert Opin. Drug Discov. 2017, 12, 757–767. [Google Scholar] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Gene Ontology, C. Gene Ontology Consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- Mello, S.S.; Flowers, B.M.; Mazur, P.K.; Lee, J.J.; Müller, F.; Denny, S.K.; Ferreira, S.; Hanson, K.; Kim, S.K.; Greenleaf, W.J.; et al. Multifaceted role for p53 in pancreatic cancer suppression. Proc. Natl. Acad. Sci. USA 2023, 120, e2211937120. [Google Scholar] [CrossRef] [PubMed]
- Blagih, J.; Buck, M.D.; Vousden, K.H. p53, cancer and the immune response. J. Cell. Sci. 2020, 133, jcs237453. [Google Scholar] [CrossRef] [PubMed]
- Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022, 29, 946–960. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Fogarasi, M.; Dima, S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024, 13, 1676. [Google Scholar] [CrossRef] [PubMed]
- Maitra, S.R.; Bhaduri, S.; Chen, E.; Shapiro, M.J. Role of chemically modified tetracycline on TNF-alpha and mitogen-activated protein kinases in sepsis. Shock 2004, 22, 478–481. [Google Scholar] [CrossRef]
- Zeng, L.; Zeng, J.; He, J.; Zhou, Y.; Li, Y.; Li, C.; Lin, Z.; Chen, G.; Wu, H.; Zhou, L. ALB-PRF facilitates chondrogenesis by promoting chondrocytes migration, proliferation and differentiation. Platelets 2024, 35, 2414792. [Google Scholar] [CrossRef]
- Chen, R.; Malagola, E.; Dietrich, M.; Zuellig, R.; Tschopp, O.; Bombardo, M.; Saponara, E.; Reding, T.; Myers, S.; Hills, A.P.; et al. Akt1 signalling supports acinar proliferation and limits acinar-to-ductal metaplasia formation upon induction of acute pancreatitis. J. Pathol. 2020, 250, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Sarker, R.S.; Steiger, K. A critical role for Akt1 signaling in acute pancreatitis progression(dagger). J. Pathol. 2020, 251, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Lu, B.; Li, M.; Li, J.; Li, N. The value of serum PCT/ALB and CRP/ALB ratios in evaluating the condition and prognosis of craniocerebral trauma. Folia Neuropathol. 2024, 62, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jin, K.; Guo, M.; Long, J.; Liu, L.; Liu, C.; Xu, J.; Ni, Q.; Luo, G.; Yu, X. Prognostic Value of the CRP/Alb Ratio, a Novel Inflammation-Based Score in Pancreatic Cancer. Ann. Surg. Oncol. 2017, 24, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Bianco, R.; Gelardi, T.; Damiano, V.; Ciardiello, F.; Tortora, G. Rational bases for the development of EGFR inhibitors for cancer treatment. Int. J. Biochem. Cell Biol. 2007, 39, 1416–1431. [Google Scholar] [CrossRef]
- Sebastian, S.; Settleman, J.; Reshkin, S.J.; Azzariti, A.; Bellizzi, A.; Paradiso, A. The complexity of targeting EGFR signalling in cancer: From expression to turnover. Biochim. Biophys. Acta 2006, 1766, 120–139. [Google Scholar] [CrossRef] [PubMed]
- Tod, P.; Farkas, N.; Németh, D.; Szénási, G.; Vincze, Á.; Hágendorn, R.; Czakó, L.; Illés, D.; Izbéki, F.; Dunás-Varga, V.; et al. Renal Function (eGFR) Is a Prognostic Marker of Severe Acute Pancreatitis: A Cohort-Analysis of 1,224 Prospectively Collected Cases. Front Med. 2021, 8, 671917. [Google Scholar] [CrossRef]
- Wodziak, D.; Dong, A.; Basin, M.F.; Lowe, A.W. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration. PLoS ONE 2016, 11, e0164968. [Google Scholar] [CrossRef] [PubMed]
- Estler, C.J.; Bocker, R. Role of sex and age in the tetracycline-induced hepatic steatosis. I. Comparative study on the effect of rolitetracycline on some parameters of hepatic lipid metabolism in male and female mice. Toxicol. Appl. Pharmacol. 1980, 54, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I. Plasmid-determined tetracycline resistance in Escherichia coli K12: Lack of evidence that resistance is related to changes in lipid metabolism [proceedings]. Biochem. Soc. Trans. 1978, 6, 431–433. [Google Scholar] [CrossRef]
- Meléndez-Salcido, C.G.; Ramírez-Emiliano, J.; García-Ramírez, J.R.; Gómez-García, A.; Pérez-Vázquez, V. Curcumin Modulates the Differential Effects of Fructose and High-Fat Diet on Renal Damage, Inflammation, Fibrosis, and Lipid Metabolism. Curr. Pharm. Des. 2024, 31, 153–162. [Google Scholar] [CrossRef]
- Chen, J.M.; Jiang, M.M.; Ying, Y.M.; Ji, Y.M.; Chi, Y.M.; Tao, L.; Wu, F.M.; Chen, M. Network pharmacological mechanism analysis and evidence-based medical validation of Dahuang Mudan Decoction in the treatment of acute pancreatitis. Medicine 2024, 103, e39679. [Google Scholar] [CrossRef]
- Stanciu, S.; Ionita-Radu, F.; Stefani, C.; Miricescu, D.; Stanescu-Spinu, I.-I.; Greabu, M.; Totan, A.R.; Jinga, M. Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int. J. Mol. Sci. 2022, 23, 10132. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Mao, C.; Wang, J.; Wu, S.; Qu, Y.; Xie, Y.; Sun, F.; Jiang, D.; Song, Y. Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue. Curr. Issues Mol. Biol. 2024, 46, 7147–7168. [Google Scholar] [CrossRef]
- Li, X.; Yan, Z.; Cao, X.; Chen, X.; Guan, Z.; Tang, S.; Fan, J.; Duan, L.; Xu, X.; Zhang, H. Dachaihu Decoction alleviates chronic pancreatitis by regulating MAPK signaling pathway: Insights from network pharmacology and experimental validation. J. Ethnopharmacol. 2025, 337, 118833. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, S.; Zuo, A.; Zhang, J.; Wen, W.; Jiang, W.; Chen, H.; Liang, D.; Sun, J.; Wang, M. HIF-1alpha/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cell. Mol. Biol. Lett. 2021, 26, 40. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-L.; Lv, L.-L.; Tang, T.-T.; Wang, B.; Feng, Y.; Zhou, L.-T.; Cao, J.-Y.; Tang, R.-N.; Wu, M.; Liu, H.; et al. HIF-1alpha inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation. Kidney Int. 2019, 95, 388–404. [Google Scholar] [CrossRef] [PubMed]
Name | Degree | Betweenness | Closeness | |
---|---|---|---|---|
1 | TP53 | 175 | 5772.26 | 0.7652439 |
2 | TNF | 159 | 2887.652 | 0.73177844 |
3 | AKT1 | 158 | 2908.7302 | 0.72965115 |
4 | ALB | 150 | 4823.652 | 0.7130682 |
5 | EGFR | 145 | 1915.3193 | 0.69529086 |
6 | MYC | 139 | 1498.9303 | 0.6839237 |
7 | STAT3 | 138 | 1169.8619 | 0.68767124 |
8 | CASP3 | 137 | 1208.9492 | 0.6857923 |
9 | IL1B | 136 | 1645.6488 | 0.6820652 |
10 | BCL2 | 134 | 1067.7808 | 0.6783784 |
11 | SRC | 131 | 1757.402 | 0.6657825 |
12 | ESR1 | 126 | 1686.3923 | 0.66402113 |
13 | HIF1A | 123 | 1050.1356 | 0.6570681 |
14 | HSP90AA1 | 121 | 1374.9637 | 0.6536458 |
15 | TGFB1 | 119 | 986.43243 | 0.6485788 |
16 | CCND1 | 114 | 670.39246 | 0.6403061 |
17 | NFKB1 | 114 | 527.567 | 0.64194375 |
18 | MMP9 | 113 | 500.38266 | 0.64194375 |
19 | PTGS2 | 106 | 867.17944 | 0.62907267 |
20 | ERBB2 | 106 | 618.3276 | 0.62593514 |
21 | HSP90AB1 | 103 | 696.5803 | 0.6243781 |
22 | IGF1 | 100 | 470.61935 | 0.61975306 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, H.; Wu, Y.; Ma, W.; Yao, J.; Zhang, P.; Tian, Y.; Jiang, Y.; Xie, Z.; Zhu, L.; Tang, W. Network Toxicology and Molecular Docking Analysis of Tetracycline-Induced Acute Pancreatitis: Unveiling Core Mechanisms and Targets. Toxics 2024, 12, 929. https://doi.org/10.3390/toxics12120929
Lei H, Wu Y, Ma W, Yao J, Zhang P, Tian Y, Jiang Y, Xie Z, Zhu L, Tang W. Network Toxicology and Molecular Docking Analysis of Tetracycline-Induced Acute Pancreatitis: Unveiling Core Mechanisms and Targets. Toxics. 2024; 12(12):929. https://doi.org/10.3390/toxics12120929
Chicago/Turabian StyleLei, Hang, Yimao Wu, Wenjun Ma, Jiaqi Yao, Pengcheng Zhang, Yong Tian, Yuhong Jiang, Zhijun Xie, Lv Zhu, and Wenfu Tang. 2024. "Network Toxicology and Molecular Docking Analysis of Tetracycline-Induced Acute Pancreatitis: Unveiling Core Mechanisms and Targets" Toxics 12, no. 12: 929. https://doi.org/10.3390/toxics12120929
APA StyleLei, H., Wu, Y., Ma, W., Yao, J., Zhang, P., Tian, Y., Jiang, Y., Xie, Z., Zhu, L., & Tang, W. (2024). Network Toxicology and Molecular Docking Analysis of Tetracycline-Induced Acute Pancreatitis: Unveiling Core Mechanisms and Targets. Toxics, 12(12), 929. https://doi.org/10.3390/toxics12120929