Humidity-Activated Ammonia Sensor Based on Carboxylic Functionalized Cross-Linked Hydrogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of NH3 Sensors
2.3. Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, X.; Debliquy, M.; Lahem, D.; Yan, Y.; Raskin, J.P. A Review on Functionalized Graphene Sensors for Detection of Ammonia. Sensors 2021, 21, 1443. [Google Scholar] [CrossRef]
- Cheng, K.; Tian, X.; Yuan, S.; Feng, Q.; Wang, Y. Research Progress on Ammonia Sensors Based on Ti3C2Tx MXene at Room Temperature: A Review. Sensors 2024, 24, 4465. [Google Scholar] [CrossRef]
- Shetty, S.S.; Jayarama, A.; Bhat, S.; Karunasagar, I.; Pinto, R. A Review on Metal-Oxide Based Trace Ammonia Sensor for Detection of Renal Disease by Exhaled Breath Analysis. Mater. Today-Proc. 2022, 55, 113–117. [Google Scholar] [CrossRef]
- Luo, S.L.; Swager, T.M. Wireless Detection of Trace Ammonia: A Chronic Kidney Disease Biomarker. ACS Nano 2023, 18, 364–372. [Google Scholar] [CrossRef]
- Wu, H.; Gong, X.; Tao, W.; Zhao, L.; Wang, T.; Liu, F.; Yan, X.; Sun, P.; Lu, G. Humidity-Activated Ammonia Sensor Based on Mesoporous AlOOH Towards Breath Diagnosis. Sens. Actuators B Chem. 2023, 380, 133322. [Google Scholar] [CrossRef]
- Lv, C.; Zhou, X.; Chen, C.; Liu, X.; Qian, J. Highly Sensitive and Flexible Ammonia Sensor Based on PEDOT:PSS Doped with Lewis Acid for Wireless Food Monitoring. Chem. Eng. J. 2024, 493, 152652. [Google Scholar] [CrossRef]
- Preethichandra, D.M.G.; Gholami, M.D.; Izake, E.L.; O’Mullane, A.P.; Sonar, P. Conducting Polymer Based Ammonia and Hydrogen Sulfide Chemical Sensors and Their Suitability for Detecting Food Spoilage. Adv. Mater. Technol. 2023, 8, 2200841. [Google Scholar] [CrossRef]
- Lee, S.; Lee, E.H.; Lee, S.W. A Flexible and Attachable Colorimetric Film Sensor for the Detection of Gaseous Ammonia. Biosensors 2022, 12, 664. [Google Scholar] [CrossRef]
- Wu, R.; Selvaganapathy, P.R. Porous Biocompatible Colorimetric Nanofiber-Based Sensor for Selective Ammonia Detection on Personal Wearable Protective Equipment. Sens. Actuators B Chem. 2023, 393, 134270. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.; Li, J.; Duan, Z.; Yang, Y.; Yuan, Z.; Jiang, Y.; Tai, H. Pd-Decorated ZnO Hexagonal Microdiscs for NH3 Sensor. Chemosensors 2024, 12, 43. [Google Scholar] [CrossRef]
- Rawat, A.; Panwar, S.; Purohit, L.P. Hollow Cylindrical Ternary ZnO/Co3O4/CuO Nanocomposite Thick Film on Inter-Digitated Electrodes for Selective Ammonia Gas Sensing. Surf. Interfaces 2023, 42, 103404. [Google Scholar] [CrossRef]
- Pauly, A.; Ali, S.S.; Varenne, C.; Brunet, J.; Llobet, E.; Ndiaye, A.L. Phthalocyanines and Porphyrins/Polyaniline Composites (PANI/CuPctBu and PANI/TPPH2) as Sensing Materials for Ammonia Detection. Polymers 2022, 14, 891. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Duan, Z.; Zhang, Y.; Liu, B.; Li, X.; Zhao, Q.; Yuan, Z.; Jiang, Y.; Tai, H. Enhanced NH3 Sensing Performance of Polyaniline via A Facile Morphology Modification Strategy. Sens. Actuators B Chem. 2022, 369, 132302. [Google Scholar] [CrossRef]
- Li, Q.; Chen, W.; Liu, W.; Sun, M.; Xu, M.; Peng, H.; Wu, H.; Song, S.; Li, T.; Tang, X. Highly Sensitive Graphene Ammonia Sensor Enhanced by Concentrated Nitric Acid Treatment. Appl. Surf. Sci. 2022, 586, 152689. [Google Scholar] [CrossRef]
- Stulik, J.; Slauf, J.; Polansky, R.; Mergl, M.; Kalbac, M. Highly Sensitive Room-Temperature Ammonia Sensors Based on Single-Wall Carbon Nanotubes Modified by PEDOT. IEEE Sens. J. 2022, 22, 3024–3032. [Google Scholar] [CrossRef]
- Shooshtari, M. Ammonia Gas Sensors Based on Multi-Wall Carbon Nanofiber Field Effect Transistors by Using Gate Modulation. Colloid Surface A 2025, 704, 135563. [Google Scholar] [CrossRef]
- Wang, S.; Fu, Y.; Wang, T.; Liu, W.; Wang, J.; Zhao, P.; Ma, H.; Chen, Y.; Cheng, P.; Zhang, Z. Fabrication of Robust and Cost-Efficient Hoffmann-type MOF Sensors for Room Temperature Ammonia Detection. Nat. Commun. 2023, 14, 7261. [Google Scholar] [CrossRef]
- Jo, Y.M.; Kim, D.H.; Wang, J.; Oppenheim, J.J.; Dinca, M. Humidity-Mediated Dual Ionic-Electronic Conductivity Enables High Sensitivity in MOF Chemiresistors. J. Am. Chem. Soc. 2024, 146, 20213–20220. [Google Scholar] [CrossRef]
- Guan, Y.; Ding, Y.; Fang, Y.; Wang, G.; Zhao, S.; Wang, L.; Huang, J.; Chen, M.; Hao, J.; Xu, C.; et al. Femtosecond Laser-Driven Phase Engineering of WS2 for Nano-Periodic Phase Patterning and Sub-ppm Ammonia Gas Sensing. Small 2023, 19, 2303654. [Google Scholar] [CrossRef]
- Yu, H.; Dai, L.; Liu, Y.; Zhou, Y.; Fan, P.; Luo, J.; Zhong, A. Ti3C2Tx MXene-SnO2 Nanocomposite for Superior Room Temperature Ammonia Gas Sensor. J. Alloys Compd. 2023, 962, 171170. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.; Duan, Z.; Zhao, Q.; Zhang, Y.; Xie, G.; Jiang, Y.; Li, S.; Tai, H. PANI Nanofibers-Supported Nb2CTx Nanosheets-Enabled Selective NH3 Detection Driven by TENG at Room Temperature. Sens. Actuators B Chem. 2021, 327, 128923. [Google Scholar] [CrossRef]
- Aliha, H.M.; Khodadadi, A.A.; Mortazavi, Y.; Lotfollahi, M.N. Novel SnO2/PAni Nanocomposites for Selective Detection of Ammonia at Room Temperature. Appl. Surf. Sci. 2023, 615, 156381. [Google Scholar] [CrossRef]
- Samà, J.; Barth, S.; Domènech-Gil, G.; Prades, J.D.; López, N.; Casals, O.; Gràcia, I.; Cané, C.; Romano-Rodríguez, A. Site-Selectively Grown SnO2 NWs Networks on Micromembranes for Efficient Ammonia Sensing in Humid Conditions. Sens. Actuators B Chem. 2016, 232, 402–409. [Google Scholar] [CrossRef]
- Kim, H.; Kim, K.; Kim, B.; Han, J.W.; Meyyappan, M. Silicon Pillars Decorated with SWCNT-COOH for Gas Sensors. Sens. Actuators B Chem. 2024, 418, 136234. [Google Scholar] [CrossRef]
- Zhou, T.; Cao, S.; Sui, N.; Tu, J.; Zhang, T. Ultra-Sensitive Detection of Acetone Based on Zn-Fe Spinel Type Ferrites. Sens. Actuators B Chem. 2021, 344, 130152. [Google Scholar] [CrossRef]
- Kumar, S.; John, T.T. Quick Surface Adsorption and Sensing of Ammonia at Room Temperature by In2S3 Thin Films. Appl. Surf. Sci. 2023, 620, 156816. [Google Scholar] [CrossRef]
- Bu, Y.; Sun, Z.; Tao, Y.; Zhao, X.; Zhao, Y.; Liang, Y.; Hang, X.; Han, L. The Synergistic Effect of High Temperature and Relative Humidity on Non-Accidental Deaths at Different Urbanization Levels. Sci. Total Environ. 2024, 940, 173612. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Wang, Y.; Yu, H.; Zhang, R.; Li, J.; Zang, Z.; Li, X. MXene Ti3C2Tx-Derived Nitrogen-Functionalized Heterophase TiO2 Homojunctions for Room-Temperature Trace Ammonia Gas Sensing. ACS Appl. Mater. Interfaces 2021, 13, 56485–56497. [Google Scholar] [CrossRef]
- Ranjith, K.S.; Sonwal, S.; Mohammadi, A.; Raju, G.S.R.; Oh, M.H.; Huh, Y.S.; Han, Y.K. Imparting Hydrophobicity to a MOF on Layered MXene for the Selective, Rapid, and ppb Level Humidity-Independent Detection of NH3 at Room Temperature. J. Mater. Chem. A 2024, 12, 26132–26146. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, K.B.; Li, H.Y.; Na, C.W.; Lim, K.; Moon, Y.K.; Yoon, J.W.; Lee, J.H. Pure and Pr-Doped Ce4W9O33 with Superior Hydroxyl Scavenging Ability: Humidity-Independent Oxide Chemiresistors. J. Mater. Chem. A 2021, 9, 16359–16369. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, L.; Lin, X.; Dai, J.; Liu, S.; Fei, T.; Zhang, T. Proton-Conductive Gas Sensor: A New Way to Realize Highly Selective Ammonia Detection for Analysis of Exhaled Human Breath. ACS Sens. 2020, 5, 346–352. [Google Scholar] [CrossRef]
- Sibi, S.P.L.; Rajkumar, M.; Manoharan, M.; Mobika, J.; Priya, V.N.; Kumar, R.T.R. Humidity Activated Ultra-Selective Room Temperature Gas Sensor Based on W Doped MoS2/RGO Composites for Trace Level Ammonia Detection. Anal. Chim. Acta 2024, 1287, 342075. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Rawat, R.K.; Chauhan, P. Hierarchical α-MoO3: A Versatile Eco-Friendly Material for Humidity-Assisted Ammonia Sensing and Efficient Catalytic Activity in Wastewater Treatment. Colloids Surf. A 2023, 676, 132147. [Google Scholar] [CrossRef]
- Liu, L.; Fei, T.; Guan, X.; Lin, X.; Zhao, H.; Zhang, T. Room Temperature Ammonia Gas Sensor Based on Ionic Conductive Biomass Hydrogels. Sens. Actuators B Chem. 2020, 320, 128318. [Google Scholar] [CrossRef]
- Liu, L.; Fei, T.; Guan, X.; Zhao, H.; Zhang, T. Humidity-Activated Ammonia Sensor with Excellent Selectivity for Exhaled Breath Analysis. Sens. Actuators B Chem. 2021, 334, 129625. [Google Scholar] [CrossRef]
- Hoyle, C.E.; Bowman, C.N. Thiol-Ene Click Chemistry. Angew. Chem. Int. Ed. 2009, 49, 1540–1573. [Google Scholar] [CrossRef]
- Song, Z.; Liu, Y.; Wang, Y.; Chen, Y.; Li, J.; Li, L.; Yao, J. Polycrystalline Hollow MOF Derived Co3O4 Semiconductor to Achieve Room-Temperature Ammonia Detection in Human Exhaled Breath. Sens. Actuators B Chem. 2024, 411, 135701. [Google Scholar] [CrossRef]
- Sett, A.; Majumder, S.; Bhattacharyya, T.K. Flexible Room Temperature Ammonia Gas Sensor Based on Low-Temperature Tuning of Functional Groups in Grapheme. IEEE Trans. Electron. Devices 2021, 68, 3181–3188. [Google Scholar] [CrossRef]
- Ömür, B.C. Humidity Effect on Adsorption Kinetics of Ammonia onto Electrospun SnO2 Nanofibers. Mater. Res. Express 2019, 6, 045043. [Google Scholar] [CrossRef]
- Srirattanapibul, S.; Nakarungsee, P.; Issro, C.; Tang, I.M.; Thongmee, S. Enhanced Room Temperature NH3 Sensing of rGO/Co3O4 Nanocomposites. Mater. Chem. Phys. 2021, 272, 125033. [Google Scholar] [CrossRef]
- Alizadeh, T.; Ahmadian, F. Thiourea-Treated Graphene Aerogel as A Highly Selective Gas Sensor for Sensing of Trace Level of Ammonia. Anal. Chim. Acta 2015, 897, 87–95. [Google Scholar] [CrossRef]
Sensor | PETMP (mg) | URA (mg) | PEGDA (mg) | DMPA (mg) | Methanol (mL) |
---|---|---|---|---|---|
S1 | 50.0 | 7.4 | 179.0 | 2.1 | 4.0 |
S2 | 50.0 | 14.9 | 153.5 | 2.1 | 4.0 |
S3 | 50.0 | 22.3 | 127.9 | 2.1 | 4.0 |
NH3 Concentration | Response (S1 Sensor) | Response (S2 Sensor) | Response (S3 Sensor) |
---|---|---|---|
3 ppm | 4.8% | 8.1% | 7.4% |
5 ppm | 13.0% | 16.5% | 32.9% |
10 ppm | 22.0% | 30.6% | 53.0% |
20 ppm | 28.7% | 43.9% | 65.6% |
30 ppm | 34.3% | 54.8% | 77.1% |
40 ppm | 37.4% | 63.7% | 87.7% |
50 ppm | 42.9% | 70.0% | 94.2% |
Sensing Material | Response (%) | Response/Recovery Time (s) | Operating Condition | Ref. |
---|---|---|---|---|
PH-Co3O4 | 280 (100 ppm) | 450/650 | RT/50% RH | [37] |
RGO | 80 (10 ppm) | 31/500 | RT/50% RH | [38] |
SnO2 | 286 (20 ppm) | ~575/~563 | RT/70% RH | [39] |
rGO/Co3O4 | 2 (100 ppm) | 351/1199 | RT/51% RH | [40] |
Graphene aerogel | 80 (90 ppm) | 60/500 | RT/45% RH | [41] |
PETMP-PEGDA-URA | 70 (50 ppm) | 106/347 | RT/80% RH | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Xia, Y.; Zhang, W.; Yu, Y.; Cui, Y.; Liu, L.; Zhang, T.; Liu, S.; Zhao, H.; Fei, T. Humidity-Activated Ammonia Sensor Based on Carboxylic Functionalized Cross-Linked Hydrogel. Sensors 2024, 24, 8154. https://doi.org/10.3390/s24248154
Song Y, Xia Y, Zhang W, Yu Y, Cui Y, Liu L, Zhang T, Liu S, Zhao H, Fei T. Humidity-Activated Ammonia Sensor Based on Carboxylic Functionalized Cross-Linked Hydrogel. Sensors. 2024; 24(24):8154. https://doi.org/10.3390/s24248154
Chicago/Turabian StyleSong, Yaping, Yihan Xia, Wei Zhang, Yunlong Yu, Yanyu Cui, Lichao Liu, Tong Zhang, Sen Liu, Hongran Zhao, and Teng Fei. 2024. "Humidity-Activated Ammonia Sensor Based on Carboxylic Functionalized Cross-Linked Hydrogel" Sensors 24, no. 24: 8154. https://doi.org/10.3390/s24248154
APA StyleSong, Y., Xia, Y., Zhang, W., Yu, Y., Cui, Y., Liu, L., Zhang, T., Liu, S., Zhao, H., & Fei, T. (2024). Humidity-Activated Ammonia Sensor Based on Carboxylic Functionalized Cross-Linked Hydrogel. Sensors, 24(24), 8154. https://doi.org/10.3390/s24248154