Smart Driving Technology for Non-Invasive Detection of Age-Related Cognitive Decline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Smart Driving System Hardware Overview
2.2. Human Subjects
2.3. Standardized Driving Tests
2.4. Signal Processing Algorithms
2.4.1. Driving Performance Algorithm
2.4.2. Driver’s Metabolic Rate Algorithm
2.4.3. Driver’s Metabolic Environment Algorithm
2.5. Development of Machine Learning Models with Customized Feature Engineering
2.5.1. Modeling with Customized Feature Engineering
2.5.2. Random Forest Algorithm
- Handling High Dimensionality: It effectively managed datasets with a high number of features without the need for extensive feature elimination.
- Mitigating Overfitting: By averaging across multiple trees, the algorithm reduced the risk of overfitting, enhancing the model’s generalizability.
- Importance of Features: The model could determine the most significant features in predicting driving performance.
- Versatility: It was suitable for both classification and regression tasks, making it applicable for a wide range of driving data analyses.
3. Results and Discussion
3.1. Pilot Study #1: Feasibility Tests
3.1.1. Subjects and Test Characteristics
3.1.2. Driving Performance Signature Characterization
3.1.3. Driving Performance Signature Machine Learning Model
3.2. Pilot Study #2: Development of a Machine Learning Model for Assessment of Cognitive Decline
3.2.1. Standardized Driving Test Overview
3.2.2. Feature Analysis and Extraction
3.2.3. Development of a New Machine Learning Model for Early Detection of Cognitive Decline: Model Performance and Results
3.2.4. New Machine Learning Model Testing for Early Detection of Cognitive Decline
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casey, D.A.; Antimisiaris, D.; O’Brien, J. Drugs for Alzheimer’s disease: Are they effective? Pharm. Ther. 2010, 35, 208–211. [Google Scholar]
- Knopman, D.S.; Parisi, J.E.; Salviati, A.; Floriach-Robert, M.; Boeve, B.F.; Ivnik, R.J.; Smith, G.E.; Dickson, D.W.; Johnson, K.A.; Petersen, L.E.; et al. Neuropathology of cognitively normal elderly. J. Neuropathol. Exp. Neurol. 2003, 62, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.A.; Schneider, J.A.; Arvanitakis, Z.; Kelly, J.F.; Aggarwal, N.T.; Shah, R.C.; Wilson, R.S. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006, 66, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Better, M.A. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023, 19, 1598–1695. [Google Scholar]
- Krell-Roesch, J.; Feder, N.T.; Roberts, R.O.; Mielke, M.M.; Christianson, T.J.; Knopman, D.S.; Petersen, R.C.; Geda, Y.E. Leisure-Time Physical Activity and the Risk of Incident Dementia: The Mayo Clinic Study of Aging. J. Alzheimers Dis. 2018, 63, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Krell-Roesch, J.; Pink, A.; Roberts, R.O.; Stokin, G.B.; Mielke, M.M.; Spangehl, K.A.; Bartley, M.M.; Knopman, D.S.; Christianson, T.J.; Petersen, R.C.; et al. Timing of Physical Activity, Apolipoprotein E ε4 Genotype, and Risk of Incident Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2016, 64, 2479–2486. [Google Scholar] [CrossRef]
- Geda, Y.E.; Ragossnig, M.; Roberts, L.A.; Roberts, R.O.; Pankratz, V.S.; Christianson, T.J.; Mielke, M.M.; Levine, J.A.; Boeve, B.F.; Sochor, O.; et al. Caloric intake, aging, and mild cognitive impairment: A population-based study. J. Alzheimers Dis. 2013, 34, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Krell-Roesch, J.; Syrjanen, J.A.; Vassilaki, M.; Machulda, M.M.; Mielke, M.M.; Knopman, D.S.; Kremers, W.K.; Petersen, R.C.; Geda, Y.E. Quantity and quality of mental activities and the risk of incident mild cognitive impairment. Neurology 2019, 93, e548–e558. [Google Scholar] [CrossRef] [PubMed]
- Krell-Roesch, J.; Vemuri, P.; Pink, A.; Roberts, R.O.; Stokin, G.B.; Mielke, M.M.; Christianson, T.J.H.; Knopman, D.S.; Petersen, R.C.; Kremers, W.K.; et al. Association Between Mentally Stimulating Activities in Late Life and the Outcome of Incident Mild Cognitive Impairment, With an Analysis of the APOE ε4 Genotype. JAMA Neurol. 2017, 74, 332–338. [Google Scholar] [CrossRef]
- Kramer, A.F.; Bherer, L.; Colcombe, S.J.; Dong, W.; Greenough, W.T. Environmental influences on cognitive and brain plasticity during aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004, 59, M940–M957. [Google Scholar] [CrossRef] [PubMed]
- Durmer, J.S.; Dinges, D.F. Neurocognitive consequences of sleep deprivation. Semin. Neurol. 2005, 25, 117–129. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Panahi, Y.; Sahraei, H.; Johnston, T.P.; Sahebkar, A. The impact of stress on body function: A review. EXCLI J. 2017, 16, 1057–1072. [Google Scholar]
- Taylor, L.; Watkins, S.L.; Marshall, H.; Dascombe, B.J.; Foster, J. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review. Front. Physiol. 2015, 6, 372. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.C.; Dubinsky, R.M. Driving simulator performance in patients with possible and probable Alzheimer’s disease. Ann. Adv. Automot. Med. 2011, 55, 325–334. [Google Scholar] [PubMed]
- Dubinsky, R.M.; Stein, A.C.; Lyons, K. Practice parameter: Risk of driving and Alzheimer’s disease (an evidence-based review): Report of the quality standards subcommittee of the American Academy of Neurology. Neurology 2000, 54, 2205–2211. [Google Scholar] [CrossRef]
- Bennett, J.M.; Chekaluk, E.; Batchelor, J. Cognitive Tests and Determining Fitness to Drive in Dementia: A Systematic Review. J. Am. Geriatr. Soc. 2016, 64, 1904–1917. [Google Scholar] [CrossRef]
- Di, X.; Shi, R.; DiGuiseppi, C.; Eby, D.W.; Hill, L.L.; Mielenz, T.J.; Molnar, L.J.; Strogatz, D.; Andrews, H.F.; Goldberg, T.E.; et al. Using Naturalistic Driving Data to Predict Mild Cognitive Impairment and Dementia: Preliminary Findings from the Longitudinal Research on Aging Drivers (LongROAD) Study. Geriatrics 2021, 6, 45. [Google Scholar] [CrossRef]
- Bayat, S.; Babulal, G.M.; Schindler, S.E.; Fagan, A.M.; Morris, J.C.; Mihailidis, A.; Roe, C.M. GPS driving: A digital biomarker for preclinical Alzheimer disease. Alzheimer’s Res. Ther. 2021, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Roe, C.M.; Stout, S.H.; Rajasekar, G.; Ances, B.M.; Jones, J.M.; Head, D.; Benzinger, T.L.S.; Williams, M.M.; Davis, J.D.; Ott, B.R.; et al. A 2.5-Year Longitudinal Assessment of Naturalistic Driving in Preclinical Alzheimer’s Disease. J. Alzheimers Dis. 2019, 68, 1625–1633. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.D.; Sokoloff, L. Regulation of Cerebral Metabolic Rate. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed.; Siegel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K., Uhler, M.D., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1999. [Google Scholar]
- Gall, E.T.; Mishra, A.K.; Li, J.; Schiavon, S.; Laguerre, A. Impact of Cognitive Tasks on CO2 and Isoprene Emissions from Humans. Environ. Sci. Technol. 2021, 55, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Sprowls, M.; Mora, S.J.; Kulick, D.; Tao, N.; Destaillats, H.; Forzani, E. An Unobstructive Sensing Method for Indoor Air Quality Optimization and Metabolic Assessment within Vehicles. Sensors 2020, 20, 7202. [Google Scholar] [CrossRef] [PubMed]
- MathWorks. MATLAB: A High-Level Language and Interactive Environment for Numerical Computation, Visualization, and Programming, Version 9.12 (R2023a); The MathWorks, Inc.: Natick, MA, USA, 2023. [Google Scholar]
- Ruiz, I.; Sprowls, M.; Deng, Y.; Kulick, D.; Destaillats, H.; Forzani, E.S. Assessing metabolic rate and indoor air quality with passive environmental sensors. J. Breath. Res. 2018, 12, 036012. [Google Scholar] [CrossRef]
- Sprowls, M.; Destaillats, H.; Wheatley-Guy, C.M.; Tao, N.J.; Johnson, B.; Kulick, D.; Forzani, E. Smart Pad: A System for Passive Assessment of Energy Expenditure (EE) Under Free-living Conditions. In Proceedings of the Obesity Week Conference, Las Vegas, NV, USA, 3–7 November 2019. [Google Scholar]
- Sprowls, M.; Serhan, M.; Chou, E.F.; Lin, L.; Frames, C.; Kucherenko, I.; Mollaeian, K.; Li, Y.; Jammula, V.; Logeswaran, D.; et al. Integrated sensing systems for monitoring inter-related physiological parameters in older adults. Int. J. Progn. Health Manag. 2021, 12, 1–15. [Google Scholar]
- Sprowls, M.; Victor, S.; Mora, S.J.; Osorio, O.; Pyznar, G.; Destaillats, H.; Wheatley-Guy, C.; Johnson, B.; Kulick, D.; Forzani, E. A Smart System for the Contactless Measurement of Energy Expenditure. Sensors 2022, 22, 1355. [Google Scholar] [CrossRef] [PubMed]
- Sprowls, M.; Victor, S.; Serhan, M.; Destaillats, H.; Wheatley-Guy, C.; Johnson, B.; Kulick, D.; Forzani, E. A system for contact free energy expenditure assessment under free-living conditions: Monitoring metabolism for weight loss using carbon dioxide emission. J. Breath. Res. 2021, 15, 026004. [Google Scholar] [CrossRef]
- Cosmed. K5: Wearable Metabolic System for Both Laboratory and Field Testing. Available online: https://www.cosmed.com/en/products/cardio-pulmonary-exercise-test/k5 (accessed on 1 October 2024).
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, G. Machine Learning Algorithms: A Reference Guide to Popular Algorithms for Data Science and Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2017; ISBN 978-1-78588-962-2. [Google Scholar]
- Šimundić, A.M. Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC 2009, 19, 203–211. [Google Scholar]
- Petersen, R.C.; Doody, R.; Kurz, A.; Mohs, R.C.; Morris, J.C.; Rabins, P.V.; Ritchie, K.; Rossor, M.; Thal, L.; Winblad, B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001, 58, 1985–1992. [Google Scholar] [CrossRef]
- MOCA Test. Available online: https://mocacognition.com/ (accessed on 1 October 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serhan, P.; Victor, S.; Osorio Perez, O.; Abi Karam, K.; Elghoul, A.; Ransdell, M.; Al-Hindawi, F.; Geda, Y.; Chahal, G.; Eagan, D.; et al. Smart Driving Technology for Non-Invasive Detection of Age-Related Cognitive Decline. Sensors 2024, 24, 8062. https://doi.org/10.3390/s24248062
Serhan P, Victor S, Osorio Perez O, Abi Karam K, Elghoul A, Ransdell M, Al-Hindawi F, Geda Y, Chahal G, Eagan D, et al. Smart Driving Technology for Non-Invasive Detection of Age-Related Cognitive Decline. Sensors. 2024; 24(24):8062. https://doi.org/10.3390/s24248062
Chicago/Turabian StyleSerhan, Peter, Shaun Victor, Oscar Osorio Perez, Kevin Abi Karam, Anthony Elghoul, Madison Ransdell, Firas Al-Hindawi, Yonas Geda, Geetika Chahal, Danielle Eagan, and et al. 2024. "Smart Driving Technology for Non-Invasive Detection of Age-Related Cognitive Decline" Sensors 24, no. 24: 8062. https://doi.org/10.3390/s24248062
APA StyleSerhan, P., Victor, S., Osorio Perez, O., Abi Karam, K., Elghoul, A., Ransdell, M., Al-Hindawi, F., Geda, Y., Chahal, G., Eagan, D., Wu, T., Tsow, F., & Forzani, E. (2024). Smart Driving Technology for Non-Invasive Detection of Age-Related Cognitive Decline. Sensors, 24(24), 8062. https://doi.org/10.3390/s24248062