Comparison of Oxytocin vs. Carbetocin Uterotonic Activity after Caesarean Delivery Assessed by Electrohysterography: A Randomised Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Protocol
2.3. Parameters
2.4. Statistical Analyses
2.5. Ethics Statement
3. Results
3.1. Participants
3.2. Change in Power Density Spectrum (PDS) Peak Frequency
3.3. Change in Haemoglobin and Haematocrit
3.4. Side Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlembach, D.; Helmer, H.; Henrich, W.; von Heymann, C.; Kainer, F.; Korte, W.; Kühnert, M.; Lier, H.; Maul, H.; Rath, W.; et al. Peripartum Haemorrhage, Diagnosis and Therapy. Guideline of the DGGG, OEGGG and SGGG (S2k Level, AWMF Registry No. 015/063, March 2016). Geburtshilfe Frauenheilkd. 2018, 78, 382–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallos, I.D.; Papadopoulou, A.; Man, R.; Athanasopoulos, N.; Tobias, A.; Price, M.J.; Williams, M.J.; Diaz, V.; Pasquale, J.; Chamillard, M.; et al. Uterotonic Agents for Preventing Postpartum Haemorrhage: A Network Meta-Analysis. Cochrane Database Syst. Rev. 2018, 12, CD011689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widmer, M.; Piaggio, G.; Nguyen, T.M.H.; Osoti, A.; Owa, O.O.; Misra, S.; Coomarasamy, A.; Abdel-Aleem, H.; Mallapur, A.A.; Qureshi, Z.; et al. Heat-Stable Carbetocin versus Oxytocin to Prevent Hemorrhage after Vaginal Birth. N. Engl. J. Med. 2018, 379, 743–752. [Google Scholar] [CrossRef]
- Moertl, M.G.; Friedrich, S.; Kraschl, J.; Wadsack, C.; Lang, U.; Schlembach, D. Haemodynamic Effects of Carbetocin and Oxytocin given as Intravenous Bolus on Women Undergoing Caesarean Delivery: A Randomised Trial. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- RG Guideline. Prevention and Management of Postpartum Haemorrhage: Green-Top Guideline No. 52. BJOG Int. J. Obstet. Gynaecol. 2017, 124, e106–e149. [Google Scholar] [CrossRef] [PubMed]
- P Hemorrhage. Committee on Practice Bulletins-Obstetrics Practice Bulletin No. 183: Postpartum Hemorrhage. Obstet. Gynecol. 2017, 130, e168–e186. [Google Scholar] [CrossRef]
- Lawrie, T.A.; Rogozińska, E.; Sobiesuo, P.; Vogel, J.P.; Ternent, L.; Oladapo, O.T. A Systematic Review of the Cost-Effectiveness of Uterotonic Agents for the Prevention of Postpartum Hemorrhage. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2019, 146, 56–64. [Google Scholar] [CrossRef]
- Taheripanah, R.; Shoman, A.; Karimzadeh, M.A.; Zamaniyan, M.; Malih, N. Efficacy of Oxytocin versus Carbetocin in Prevention of Postpartum Hemorrhage after Cesarean Section under General Anesthesia: A Prospective Randomized Clinical Trial. J. Matern.-Fetal Neonatal Med. 2018, 31, 2807–2812. [Google Scholar] [CrossRef]
- Elbohoty, A.E.H.; Mohammed, W.E.; Sweed, M.; Bahaa Eldin, A.M.; Nabhan, A.; Abd-El-Maeboud, K.H.I. Randomized Controlled Trial Comparing Carbetocin, Misoprostol, and Oxytocin for the Prevention of Postpartum Hemorrhage Following an Elective Cesarean Delivery. Int. J. Gynaecol. Obstet. 2016, 134, 324–328. [Google Scholar] [CrossRef]
- Vinken, M.P.G.C.; Rabotti, C.; Mischi, M.; Oei, S.G. Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery: A Review of the Literature. Obstet. Gynecol. Surv. 2009, 64, 529–541. [Google Scholar] [CrossRef]
- Devedeux, D.; Marque, C.; Mansour, S.; Germain, G.; Duchêne, J. Uterine Electromyography: A Critical Review. Am. J. Obstet. Gynecol. 1993, 169, 1636–1653. [Google Scholar] [CrossRef]
- Garfield, R.E.; Maner, W.L. Physiology and Electrical Activity of Uterine Contractions. Semin. Cell Dev. Biol. 2007, 18, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfs, G.M.J.A.; van Leeuwen, M. Electromyographic Observations on the Human Uterus during Labour. Acta Obstet. Gynecol. Scand. 1979, 58, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Trojner Bregar, A.; Lucovnik, M.; Verdenik, I.; Jager, F.; Gersak, K.; Garfield, R.E. Uterine Electromyography during Active Phase Compared with Latent Phase of Labor at Term. Acta Obstet. Gynecol. Scand. 2016, 95, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Jacod, B.C.; Graatsma, E.M.; Van Hagen, E.; Visser, G.H.A. A Validation of Electrohysterography for Uterine Activity Monitoring during Labour. J. Matern. Fetal Neonatal Med. 2010, 23, 17–22. [Google Scholar] [CrossRef]
- Jezewski, J.; Horoba, K.; Matonia, A.; Wrobel, J. Quantitative Analysis of Contraction Patterns in Electrical Activity Signal of Pregnant Uterus as an Alternative to Mechanical Approach. Physiol. Meas. 2005, 26, 753–767. [Google Scholar] [CrossRef]
- Lucovnik, M.; Maner, W.L.; Chambliss, L.R.; Blumrick, R.; Balducci, J.; Novak-Antolic, Z.; Garfield, R.E. Noninvasive Uterine Electromyography for Prediction of Preterm Delivery. Am. J. Obstet. Gynecol. 2011, 204, 228.e1–228.e10. [Google Scholar] [CrossRef] [Green Version]
- Buhimschi, C.; Garfield, R.E. Uterine Contractility as Assessed by Abdominal Surface Recording of Electromyographic Activity in Rats during Pregnancy. Am. J. Obstet. Gynecol. 1996, 174, 744–753. [Google Scholar] [CrossRef]
- Maner, W.L.; Garfield, R.E. Identification of Human Term and Preterm Labor Using Artificial Neural Networks on Uterine Electromyography Data. Ann. Biomed. Eng. 2007, 35, 465–473. [Google Scholar] [CrossRef]
- Lucovnik, M.; Kuon, R.J.; Chambliss, L.R.; Maner, W.L.; Shi, S.-Q.; Shi, L.; Balducci, J.; Garfield, R.E. Use of Uterine Electromyography to Diagnose Term and Preterm Labor: Uterine Electromyography for Diagnosing Labor. Acta Obstet. Gynecol. Scand. 2011, 90, 150–157. [Google Scholar] [CrossRef]
- Mas-Cabo, J.; Ye-Lin, Y.; Garcia-Casado, J.; Díaz-Martinez, A.; Perales-Marin, A.; Monfort-Ortiz, R.; Roca-Prats, A.; López-Corral, Á.; Prats-Boluda, G. Robust Characterization of the Uterine Myoelectrical Activity in Different Obstetric Scenarios. Entropy 2020, 22, 743. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Casado, J.; Ye-Lin, Y.; Prats-Boluda, G.; Mas-Cabo, J.; Alberola-Rubio, J.; Perales, A. Electrohysterography in the Diagnosis of Preterm Birth: A Review. Physiol. Meas. 2018, 39, 02TR01. [Google Scholar] [CrossRef] [PubMed]
- Jager, F.; Libenšek, S.; Geršak, K. Characterization and Automatic Classification of Preterm and Term Uterine Records. PLoS ONE 2018, 13, e0202125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlembach, D.; Maner, W.L.; Garfield, R.E.; Maul, H. Monitoring the Progress of Pregnancy and Labor Using Electromyography. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 144 (Suppl. 1), S33–S39. [Google Scholar] [CrossRef] [PubMed]
- Rooijakkers, M.J.; Rabotti, C.; Oei, S.G.; Aarts, R.M.; Mischi, M. Low-Complexity Intrauterine Pressure Estimation Using the Teager Energy Operator on Electrohysterographic Recordings. Physiol. Meas. 2014, 35, 1215–1228. [Google Scholar] [CrossRef]
- Ye-Lin, Y.; Prats-Boluda, G.; Alberola-Rubio, J.; Bueno Barrachina, J.-M.; Perales, A.; Garcia-Casado, J. Prediction of Labor Using Non-Invasive Laplacian EHG Recordings. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2013, 2013, 7428–7431. [Google Scholar] [CrossRef] [PubMed]
- Fergus, P.; Cheung, P.; Hussain, A.; Al-Jumeily, D.; Dobbins, C.; Iram, S. Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE 2013, 8, e77154. [Google Scholar] [CrossRef]
- Diaz-Martinez, A.; Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Cardona-Urrego, K.; Monfort-Ortiz, R.; Lopez-Corral, A.; De Arriba-Garcia, M.; Perales, A.; Ye-Lin, Y. A Comparative Study of Vaginal Labor and Caesarean Section Postpartum Uterine Myoelectrical Activity. Sensors 2020, 20, 3023. [Google Scholar] [CrossRef]
- Kang, S.; Zhou, L.; Zhu, L.; Wang, Y.; Yue, Y.; Yan, L. Carbetocin versus Oxytocin for the Prevention of Postpartum Hemorrhage after Elective Caesarean Section in High Risk Women: A Prospective, Randomized, Open-Label, Controlled Trial in China. Clin. Exp. Obstet. Gynecol. 2022, 49, 1. [Google Scholar] [CrossRef]
- Cole, N.M.; Carvalho, J.C.A.; Erik-Soussi, M.; Ramachandran, N.; Balki, M. In Vitro Comparative Effect of Carbetocin and Oxytocin in Pregnant Human Myometrium with and without Oxytocin Pretreatment. Anesthesiology 2016, 124, 378–386. [Google Scholar] [CrossRef]
- Uvnäs Moberg, K.; Ekström-Bergström, A.; Buckley, S.; Massarotti, C.; Pajalic, Z.; Luegmair, K.; Kotlowska, A.; Lengler, L.; Olza, I.; Grylka-Baeschlin, S.; et al. Maternal Plasma Levels of Oxytocin during Breastfeeding—A Systematic Review. PLoS ONE 2020, 15, e0235806. [Google Scholar] [CrossRef]
- Taylor, E.; Gomel, V. The Uterus and Fertility. Fertil. Steril. 2008, 89, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Norwitz, E.R.; Shaw, J. Contemporary Management of Fibroids in Pregnancy. Rev. Obstet. Gynecol. 2010, 3, 20–27. [Google Scholar] [PubMed]
- Wallach, E.E.; Vu, K.K. Myomata Uteri and Infertility. Obstet. Gynecol. Clin. N. Am. 1995, 22, 791–799. [Google Scholar] [CrossRef]
- Szamatowicz, J.; Laudanski, T.; Bulkszas, B.; Akerlund, M. Fibromyomas and Uterine Contractions. Acta Obstet. Gynecol. Scand. 1997, 76, 973–976. [Google Scholar] [CrossRef]
- de Lau, H.; Yang, K.T.; Rabotti, C.; Vlemminx, M.; Bajlekov, G.; Mischi, M.; Oei, S.G. Toward a New Modality for Detecting a Uterine Rupture: Electrohysterogram Propagation Analysis during Trial of Labor after Cesarean. J. Matern.-Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 2017, 30, 574–579. [Google Scholar] [CrossRef] [Green Version]
- Euliano, T.Y.; Nguyen, M.T.; Darmanjian, S.; McGorray, S.P.; Euliano, N.; Onkala, A.; Gregg, A.R. Monitoring Uterine Activity during Labor: A Comparison of 3 Methods. Am. J. Obstet. Gynecol. 2013, 208, 66.e1–66.e6. [Google Scholar] [CrossRef] [Green Version]
- Vlemminx, M.W.C.; Rabotti, C.; van der Hout-van der Jagt, M.B.; Oei, S.G. Clinical Use of Electrohysterography During Term Labor: A Systematic Review on Diagnostic Value, Advantages, and Limitations. Obstet. Gynecol. Surv. 2018, 73, 303–324. [Google Scholar] [CrossRef]
Characteristics | Oxytocin (n = 30) | Carbetocin (n = 27) | p |
---|---|---|---|
Age (years) | 31.9 (4.5) | 33.5 (5.1) | 0.222 S |
Gestation (weeks) | 39.7 (0.74) | 39.8 (0.56) | 0.643 S |
Parity | 0.234 S | ||
1 | 19 (63.3%) | 21 (77.8%) | |
2 or more | 11 (36.7%) | 6 (22.2%) | |
Pregnancy | 0.792 P | ||
Second | 19 (63.3%) | 18 (66.7%) | |
Third or more | 11 (36.7%) | 9 (33.3%) | |
Previous miscarriage | 0.764 P | ||
None | 22 (66.7%) | 19 (70.4%) | |
1 | 6 (20%) | 7 (25.9%) | |
>1 | 2 (6.7%) | 1 (3.7%) | |
Body mass index (kg/m²) | |||
Before pregnancy | 24.74 (4.9) | 25 (4.92) | 0.842 S |
At birth | 29.8 (5.4) | 29.9 (4.56) | 0.937 S |
Weight (kg) | |||
Before pregnancy | 67.8 (13.7) | 69.5 (15.7) | 0.668 S |
At birth | 87.8 (14.6) | 83.2 (14.2) | 0.732 S |
Smoking | 4 (13.3%) | 0 (0%) | 0.977 F |
Previous gynaecological surgery (other than caesarean section) | 7 (23.4%) | 5 (18.5%) | 0.657 P |
Laparoscopy (endometriosis, adnexal surgery) | 4 (13.3%) | 1 (3.7%) | |
Hysteroscopy (uterine septum removal) | 6 (20%) | 0 | |
Dilation and curettage (D&C) | 2 (6.6%) | 3 (11.1%) | |
Myomectomy (subseros, submucosal myoma) | 2 (6.6%) | 0 | |
Large loop excision of the transformation zone (LLETZ) | 2 (6.6%) | 0 | |
None | 23 (76.6%) | 22 (81.2%) | |
Haemoglobin level at preoperative counseling (g/L) | 119.9 (9.6) | 118.4 (9.3) | 0.558 S |
Haematocrit level at preoperative counseling (%) | 35.35 (2.64) | 35.9 (2.68) | 0.713 S |
Iron supplementation during current pregnancy | 12 (40%) | 9 (33%) | 0.602 P |
Type of anaesthesia | 0.258 F | ||
Local | 24 (80%) | 25 (92.6%) | |
General | 6 (20%) | 2 (7.4%) | |
Duration of anaesthesia (min) | 55.6 (14.4) | 63.7 (15.2) | 0.045 *,S |
Visual estimated blood loss during surgery (ml) | 0.843 P | ||
300–400 | 24 (80%) | 21 (77.8%) | |
400–500 | 6 (20%) | 6 (22.2%) | |
Performing surgeon | 0.843 P | ||
Specialist | 13 (43.3%) | 11 (40.7%) | |
Resident in training | 17 (56.7%) | 16 (59.3%) | |
Neonatal birth weight (g) | 3518 (377) | 3562 (356) | 0.651 S |
Neonatal birth length (cm) | 51.3 (2.2) | 51.1 (1.6) | 0.721 S |
Neonatal birth head circumference (cm) | 35.7 (1.2) | 35.1 (1.3) | 0.048 S |
APGAR score | |||
1 min after birth | 9 | 9 | |
5 min after birth | 9 | 9 |
EHG Parameters | Carbetocin | Oxytocin | ||||
---|---|---|---|---|---|---|
Median | IQR | Median | IQR | p | ||
At admission | PDS peak amplitude (Hz) | 101.3 | 304.5 | 34.6 | 311 | 0.378 |
Interval between pseudo-bursts (s) | 400 | 428.6 | 420 | 302.5 | 0.642 | |
Pseudo-burst duration (s) | 36.5 | 10.9 | 39.7 | 17 | 0.673 | |
Number of pseudo-bursts | 3 | 3 | 2 | 1.8 | 0.202 | |
PDS integral (μV) | 2.9 | 2.6 | 2.04 | 3.2 | 0.965 | |
After drug application | PDS peak amplitude (Hz) | 128.9 | 249.9 | 92.87 | 235 | 0.755 |
Interval between pseudo-bursts (s) | 415 | 375 | 450 | 540 | 0.061 | |
Pseudo-burst duration (s) | 38.7 | 16.2 | 38.7 | 23.6 | 0.761 | |
Number of pseudo-bursts | 5 | 6 | 4 | 3.3 | 0.304 | |
PDS integral (μV) | 1.72 | 2.7 | 1.72 | 2.9 | 0.718 | |
Two hours after drug application | PDS peak amplitude (Hz) | 179.33 | 271.5 | 130.1 | 214 | 0.371 |
Interval between pseudo-bursts (s) | 360 | 326.5 | 300 | 386.3 | 0.570 | |
Pseudo-burst duration (s) | 47.8 | 28.1 | 41.3 | 22.6 | 0.303 | |
Number of pseudo-bursts | 5 | 4.3 | 4 | 5 | 0.961 | |
PDS integral (μV) | 1.8 | 1.6 | 1.56 | 1.8 | 0.398 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paljk Likar, I.; Becic, E.; Pezdirc, N.; Gersak, K.; Lucovnik, M.; Trojner Bregar, A. Comparison of Oxytocin vs. Carbetocin Uterotonic Activity after Caesarean Delivery Assessed by Electrohysterography: A Randomised Trial. Sensors 2022, 22, 8994. https://doi.org/10.3390/s22228994
Paljk Likar I, Becic E, Pezdirc N, Gersak K, Lucovnik M, Trojner Bregar A. Comparison of Oxytocin vs. Carbetocin Uterotonic Activity after Caesarean Delivery Assessed by Electrohysterography: A Randomised Trial. Sensors. 2022; 22(22):8994. https://doi.org/10.3390/s22228994
Chicago/Turabian StylePaljk Likar, Ivana, Emra Becic, Neza Pezdirc, Ksenija Gersak, Miha Lucovnik, and Andreja Trojner Bregar. 2022. "Comparison of Oxytocin vs. Carbetocin Uterotonic Activity after Caesarean Delivery Assessed by Electrohysterography: A Randomised Trial" Sensors 22, no. 22: 8994. https://doi.org/10.3390/s22228994
APA StylePaljk Likar, I., Becic, E., Pezdirc, N., Gersak, K., Lucovnik, M., & Trojner Bregar, A. (2022). Comparison of Oxytocin vs. Carbetocin Uterotonic Activity after Caesarean Delivery Assessed by Electrohysterography: A Randomised Trial. Sensors, 22(22), 8994. https://doi.org/10.3390/s22228994