Highly Conductive Ionohydrogels for Humidity Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ionohydrogel Preparation
2.3. Performance Characterization
3. Results and Discussion
3.1. Structure and Characterization of PAA-Fe3+-IL Ionohydrogel
3.2. Mechanical Properties of PAA-Fe3+-IL Ionohydrogel
3.2.1. Experiment
3.2.2. Stress-Strain Curve Simulation Model
3.2.3. Sensitivity and Cyclic Stretching
3.3. Conductivity of PAA-Fe3+-IL Ionohydrogels
3.4. Degradation of PAA-Fe3+-IL Ionohydrogels
3.5. Humidity Sensing of PAA-Fe3+-IL Ionohydrogels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Wu, T.; Zhang, L.; Tang, C.; Song, H.; Huang, F.; Zuo, C. Flexible ionic-gel strain sensor with double network, high conductivity and high frost-resistance using electrohydro-dynamic printing method. Addit. Manuf. 2022, 58, 103021. [Google Scholar]
- Chen, T.; Kong, W.; Zhang, Z.; Wang, L.; Hu, Y.; Zhu, G.; Chen, R.; Ma, L.; Yan, W.; Wang, Y.; et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 2018, 54, 17–25. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, J.; Chang, L.; Zhang, X.; Liu, H.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 2017, 29, 1704253. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Lee, D.; Song, Y.; Choi, U.H.; Kim, J. High-Ionic-Conductivity Sodium-Based Ionic Gel Polymer Electrolyte for High-Performance and Ultrastable Microsupercapacitors. ACS Appl. Mater. Interfaces 2023, 15, 3054–3068. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Z.; Ji, T.; Bai, R.; Zhu, H. Highly Ionic Conductive, Stretchable, and Tough Ionogel for Flexible Solid-State Supercapacitor. Small 2024, 20, 2307019. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, K.H.; Frisbie, C.D.; Lodge, T.P. Ionic conductivity, capacitance, and viscoelastic properties of block copolymer-based ion gels. Macromolecules 2011, 44, 940–949. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, L.; Han, Z.; Li, Q.; He, J.; Wang, Q. Self-Healing Polymers for Electronics and Energy Devices. Chem. Rev. 2022, 123, 558–612. [Google Scholar] [CrossRef]
- Yu, J.; Feng, Y.; Sun, D.; Ren, W.; Shao, C.; Sun, R. Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors. ACS Appl. Mater. Interfaces 2022, 14, 10886–10897. [Google Scholar] [CrossRef]
- Chaudhary, P.; Maurya, D.K.; Pandey, A.; Verma, A.; Tripathi, R.K.; Kumar, S.; Yadav, B. Design and development of flexible humidity sensor for baby diaper alarm: Experimental and theoretical study. Sens. Actuators B Chem. 2022, 350, 130818. [Google Scholar] [CrossRef]
- Jang, J.; Kang, K.; Raeis-Hosseini, N.; Ismukhanova, A.; Park, I.; Rho, J. Self-powered humidity sensor using chitosan-based plasmonic metal-hydrogel-metal filters. Adv. Opt. Mater. 2020, 8, 1901932. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Zhao, L.; Wang, D.; Xu, H.; Wang, K.; Han, W. A Flexible Humidity Sensor Based on Natural Biocompatible Silk Fibroin Films. Adv. Mater. Technol. 2020, 6, 2001053. [Google Scholar] [CrossRef]
- Liang, Y.; Ding, Q.; Wang, H.; Wu, Z.; Li, J.; Li, Z.; Tao, K.; Gui, X.; Wu, J. Humidity Sensing of Stretchable and Transparent Hydrogel Films for Wireless Respiration Monitoring. Nano-Micro Lett. 2022, 14, 183. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Cheng, Q.; Liu, Y.; Rong, Q.; Liu, M. Intrinsically anti-freezing and anti-dehydration hydrogel for multifunctional wearable sensors. Sci. China Mater. 2022, 65, 1980–1986. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, C.; Chen, S.; Meng, L.; Zhao, H.; Xu, F.; Yang, J. Adhesive Ionohydrogels Based on Ionic Liquid/Water Binary Solvents with Freezing Tolerance for Flexible Ionotronic Devices. Chem. Mater. 2022, 34, 1065–1077. [Google Scholar] [CrossRef]
- Kondee, S.; Arayawut, O.; Pon-On, W.; Wongchoosuk, C. Nitrogen-doped carbon oxide quantum dots for flexible humidity sensor: Experimental and SCC-DFTB study. Vacuum 2022, 195, 110648. [Google Scholar] [CrossRef]
- Guan, X.; Hou, Z.; Wu, K.; Zhao, H.; Liu, S.; Fei, T.; Zhang, T. Flexible humidity sensor based on modified cellulose paper. Sens. Actuators B Chem. 2021, 339, 129879. [Google Scholar] [CrossRef]
- Hardman, D.; Thuruthel, T.G.; Iida, F. Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications. NPG Asia Mater. 2022, 14, 11. [Google Scholar] [CrossRef]
- Tanan, W.; Panichpakdee, J.; Saengsuwan, S. Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. Eur. Polym. J. 2019, 112, 678–687. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Liang, X.; Wang, H.; Lu, H.; Zhu, M.; Wang, H.; Zhang, M.; Qiu, X.; Song, Y.; et al. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 2022, 13, 5416. [Google Scholar] [CrossRef]
- Yi, Y.; Yu, C.; Zhai, H.; Jin, L.; Cheng, D.; Lu, Y.; Chen, Z.; Xu, L.; Li, J.; Song, Q.; et al. A free-standing humidity sensor with high sensing reliability for environmental and wearable detection. Nano Energy 2022, 103, 107780. [Google Scholar] [CrossRef]
- Singh, T.; Sehgal, S. Structural Health Monitoring of Composite Materials. Arch. Comput. Methods Eng. 2021, 29, 1997–2017. [Google Scholar] [CrossRef]
- Shrestha, M.; Lu, Z.; Lau, G.-K. High humidity sensing by ‘hygromorphic’ dielectric elastomer actuator. Sens. Actuators B Chem. 2021, 329, 129268. [Google Scholar] [CrossRef]
- Qu, X.; Sun, H.; Kan, X.; Lei, B.; Shao, J.; Wang, Q.; Wang, W.; Ni, Z.; Dong, X. Temperature-sensitive and solvent-resistance hydrogel sensor for ambulatory signal acquisition in “moist/hot environment”. Nano Res. 2023, 16, 10348–10357. [Google Scholar] [CrossRef]
- Liaw, C.; Pereyra, J.; Abaci, A.; Ji, S.; Guvendiren, M. 4D Printing of Surface Morphing Hydrogels. Adv. Mater. Technol. 2021, 7, 2101118. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Zhang, Z.; Sun, P.; Chen, H. High-Sensitivity Wearable and Flexible Humidity Sensor Based on Graphene Oxide/Non-Woven Fabric for Respiration Monitoring. Langmuir 2020, 36, 9443–9448. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, X.; Tang, N.; Fang, Y.; Zhang, H.; Duan, X. Rapid response flexible humidity sensor for respiration monitoring using nano-confined strategy. Nanotechnology 2020, 31, 125302. [Google Scholar] [CrossRef]
- Mishra, R.B.; El-Atab, N.; Hussain, A.M.; Hussain, M.M. Recent Progress on Flexible Capacitive Pressure Sensors: From Design and Materials to Applications. Adv. Mater. Technol. 2021, 6, 2001023. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, G.; Shen, Y.; Yang, H.; Xu, K. Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics. Nano-Micro Lett. 2022, 14, 150. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, J.; Wang, T.; Sun, W.; Tong, Z. Multiple Shape Memory, Self-Healable, and Supertough PAA-GO-Fe3+ Hydrogel. Macromol. Mater. Eng. 2017, 302, 1600359. [Google Scholar] [CrossRef]
- Kang, M.; Oderinde, O.; Liu, S.; Huang, Q.; Ma, W.; Yao, F.; Fu, G. Characterization of Xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion. Carbohydr. Polym. 2019, 203, 139–147. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, Y.; Luo, K.; Wu, Y.; Gao, H.; Cheng, J.; Liu, C.; Tao, G.; Guan, Q.; Zhang, L. Preparation and properties of polyacrylamide/sodium alginate hydrogel and the effect of Fe3+ adsorption on its mechanical performance. J. Renew. Mater. 2021, 9, 1447–1462. [Google Scholar] [CrossRef]
- Wang, J.; Dai, T.; Wu, H.; Ye, M.; Yuan, G.; Jia, H. Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors. Composites. Sci. Technol. 2022, 221, 109345. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Liu, W.; Li, R.; Wang, D.; Zhang, N.; Chen, D.; Lee, S. Polyvinyl alcohol/chitosan-Fe3+/gelatin/tri-network composite hydrogel wound dressing with effective hemostasis and self-healing properties. Polymer 2024, 307, 127304. [Google Scholar] [CrossRef]
- Sun, X.; Wang, H.; Ding, Y.; Yao, Y.; Liu, Y.; Tang, J. Fe3+-Coordination mediated synergistic dual-network conductive hydrogel as a sensitive and highly-stretchable strain sensor with adjustable mechanical properties. J. Mater. Chem. B 2022, 10, 1442–1452. [Google Scholar] [CrossRef]
- Xie, J.; Liu, X.; Liang, J. Absorbency and adsorption of poly (acrylic acid-co-acrylamide) hydrogel. J. Appl. Polym. Sci. 2007, 106, 1606–1613. [Google Scholar] [CrossRef]
- Li, G.; Ji, X.; Sun, J.; Yuan, Z.; Wang, Y. Mechanical and self-healing properties of poly acrylic acid/laponite/Fe3+ nanocomposite hydrogel. Sci. Adv. Mater. 2018, 10, 1813–1822. [Google Scholar] [CrossRef]
- Li, Y.; Xie, X.-M. One-step synthesis of intelligent ionohydrogels toughened with carboxyl-Al3+ coordination facilitated by ionic liquids. Polymer 2023, 283, 126223. [Google Scholar] [CrossRef]
- Gao, R.-Z.; Li, Y.-X.; Yan, J.-H.; Ma, X.-R.; Xie, X.-M. Super Tough Hydrogels with Self-adaptive Network Facilitated by Liquid Metal. Chin. J. Polym. Sci. 2022, 41, 866–873. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Xu, H.; Zhang, L.-Q.; Zhong, M.; Xie, X.-M. Homogeneous and Real Super Tough Multi-Bond Network Hydrogels Created through a Controllable Metal Ion Permeation Strategy. ACS Appl. Mater. Interfaces 2019, 11, 42856–42864. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Xie, X.-M. One-Step in Situ Synthesis of Tough and Highly Conductive Ionohydrogels with Water-Retentive and Antifreezing Properties. ACS Appl. Mater. Interfaces 2023, 15, 30859–30869. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Xu, H.; Wu, Q.; Liu, C.; Yang, B.-R.; Gui, X.; Xie, X.; Tao, K.; Shen, Y.; et al. An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 2019, 6, 595–603. [Google Scholar] [CrossRef]
- Tseghai, G.B.; Mengistie, D.A.; Malengier, B.; Fante, K.A.; Van Langenhove, L. PEDOT:PSS-Based Conductive Textiles and Their Applications. Sensors 2020, 20, 1881. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Peng, D.; Zhang, S.; Zhu, X.; He, C.; Qi, X.; Zhao, K.; Xiu, D.; Ju, N. Successful implementations of a real-time and intelligent early warning system for loess landslides on the Heifangtai terrace, China. Eng. Geol. 2020, 278, 105817. [Google Scholar] [CrossRef]
- Moshizi, S.A.; Azadi, S.; Belford, A.; Razmjou, A.; Wu, S.; Han, Z.J.; Asadnia, M. Development of an Ultra-Sensitive and Flexible Piezoresistive Flow Sensor Using Vertical Graphene Nanosheets. Nano-Micro Lett. 2020, 12, 109. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, K.; Yang, M.-Q.; Tang, S.-Y.; Yang, T.-Y.; Fujita, Y.; Honda, S.; Arie, T.; Akita, S.; Chueh, Y.-L.; et al. Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horiz. 2021, 6, 260–270. [Google Scholar] [CrossRef]
- Tsai, M.-S.; Su, P.-G.; Lu, C.-J. Fabrication of a highly sensitive flexible humidity sensor based on Pt/polythiophene/reduced graphene oxide ternary nanocomposite films using a simple one-pot method. Sens. Actuators B Chem. 2020, 324, 128728. [Google Scholar] [CrossRef]
- Sobhanimatin, M.; Pourmahdian, S.; Tehranchi, M. Fast inverse opal humidity sensor based on acrylamide/AMPS hydrogel. Mater. Today Commun. 2021, 26, 101997. [Google Scholar] [CrossRef]
- Wu, S.; Hua, M.; Alsaid, Y.; Du, Y.; Ma, Y.; Zhao, Y.; Lo, C.; Wang, C.; Wu, D.; Yao, B.; et al. Poly(vinyl alcohol) Hydrogels with Broad-Range Tunable Mechanical Properties via the Hofmeister Effect. Adv. Mater. 2021, 33, 2007829. [Google Scholar] [CrossRef]
- Jiang, C.; Lai, X.; Wu, Z.; Li, H.; Zeng, X.; Zhao, Y.; Zeng, Q.; Gao, J.; Zhu, Y. A high-thermopower ionic hydrogel for intelligent fire protection. J. Mater. Chem. A 2022, 10, 21368–21378. [Google Scholar] [CrossRef]
- Yang, J.; Feng, L.; Chen, Y.; Feng, L.; Lu, J.; Du, L.; Guo, J.; Cheng, Z.; Shi, Z.; Zhao, L. High-Sensitivity and Environmentally Friendly Humidity Sensors Deposited with Recyclable Green Microspheres for Wireless Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 15608–15622. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Chen, X.; Jiang, P.; Cheung, Y.K.; Yu, H. An ultrafast-response and flexible humidity sensor for human respiration monitoring and noncontact safety warning. Microsyst. Nanoeng. 2021, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- Ummartyotin, S.; Manuspiya, H. A critical review on cellulose: From fundamental to an approach on sensor technology. Renew. Sustain. Energy Rev. 2015, 41, 402–412. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Zong, L.; Wu, X.; You, J.; Du, P.; Li, C. Liquid Metal Droplets Wrapped with Polysaccharide Microgel as Biocompatible Aqueous Ink for Flexible Conductive Devices. Adv. Funct. Mater. 2018, 28, 1804197. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, D. Self-healable polyacrylic acid-polyacrylamide-ferric ion dual-crosslinked hydrogel with good biotribological performance as a load-bearing surface. J. Appl. Polym. Sci. 2019, 137, 48499. [Google Scholar] [CrossRef]
- Luo, F.; Sun, T.L.; Nakajima, T.; Kurokawa, T.; Li, X.; Guo, H.; Huang, Y.; Zhang, H.; Gong, J.P. Tough polyion-complex hydrogels from soft to stiff controlled by monomer structure. Polymer 2017, 116, 487–497. [Google Scholar] [CrossRef]
- Du, C.; Zhang, X.N.; Sun, T.L.; Du, M.; Zheng, Q.; Wu, Z.L. Hydrogen-Bond Association-Mediated Dynamics and Viscoelastic Properties of Tough Supramolecular Hydrogels. Macromolecules 2021, 54, 4313–4325. [Google Scholar] [CrossRef]
- Zhang, H.J.; Wang, X.; Yang, Y.; Sun, T.L.; Zhang, A.; You, X. Effect of Hydrophobic Side Group on Structural Heterogeneities and Mechanical Performance of Gelatin-Based Hydrogen-Bonded Hydrogel. Macromolecules 2022, 55, 7401–7410. [Google Scholar] [CrossRef]
- Luo, F.; Sun, T.L.; Nakajima, T.; King, D.R.; Kurokawa, T.; Zhao, Y.; Bin Ihsan, A.; Li, X.; Guo, H.; Gong, J.P. Strong and Tough Polyion-Complex Hydrogels from Oppositely Charged Polyelectrolytes: A Comparative Study with Polyampholyte Hydrogels. Macromolecules 2016, 49, 2750–2760. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Sun, Z.; Liu, C.; Ma, R.; Chen, Z.; Han, L.; Liu, R.; Liu, Y.; Zhou, Y. Strong flexible conductive hydrogel based on adaptive temperature and humidity characteristics. Surf. Interfaces 2024, 51, 104794. [Google Scholar] [CrossRef]
- Bian, Z.; Li, Y.; Sun, H.; Shi, M.; Zheng, Y.; Liu, H.; Liu, C.; Shen, C. Transparent, intrinsically stretchable cellulose nanofiber-mediated conductive hydrogel for strain and humidity sensing. Carbohydr. Polym. 2023, 301, 120300. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.-N.; Chen, W.-Y.; Wang, L.; Wang, Z.-G.; Qin, L.; Xie, X.-M. Highly Conductive Ionohydrogels for Humidity Sensing. Polymers 2025, 17, 327. https://doi.org/10.3390/polym17030327
Sun M-N, Chen W-Y, Wang L, Wang Z-G, Qin L, Xie X-M. Highly Conductive Ionohydrogels for Humidity Sensing. Polymers. 2025; 17(3):327. https://doi.org/10.3390/polym17030327
Chicago/Turabian StyleSun, Min-Na, Wen-Yu Chen, Li Wang, Zhi-Gang Wang, Lei Qin, and Xu-Ming Xie. 2025. "Highly Conductive Ionohydrogels for Humidity Sensing" Polymers 17, no. 3: 327. https://doi.org/10.3390/polym17030327
APA StyleSun, M.-N., Chen, W.-Y., Wang, L., Wang, Z.-G., Qin, L., & Xie, X.-M. (2025). Highly Conductive Ionohydrogels for Humidity Sensing. Polymers, 17(3), 327. https://doi.org/10.3390/polym17030327