Schiff Base-Functionalized Melamine Sponge with Hierarchical Porous Architecture for High-Efficiency Removal of Organic Dyes in Wastewater
Abstract
1. Introduction
2. Experiment
2.1. Materials
2.2. Synthesis and Modification of Sponge Composite Materials
2.3. Characterization
2.4. CR Adsorption and Removal by BD-MS
3. Results and Discussion
3.1. Synthesis and Characterization of BD-MS
3.2. Adsorption Isotherms of Dye on BD-MS
3.3. Adsorption Kinetics Profiles
3.4. Adsorption Mechanism
3.5. Adsorption Performance and pH-Dependent Adsorption Efficiency
3.6. Repeatability and Adsorption of Other Dyes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, X.; Nie, H.; Qu, Y.; Jia, H.; Liu, Y.; Yin, B. Revisiting the Efficacy of COF Treatment for Dyes in Wastewater: A Comprehensive Review. J. Environ. Chem. Eng. 2025, 13, 115660. [Google Scholar] [CrossRef]
- Ji, D.; Gai, D.; Xu, Y.; Huang, Z.; Zhao, P. The Use of Pyrolytic Char Derived from Waste Tires in the Removal of Malachite Green from Dyeing Wastewater. Nanomaterials 2022, 12, 4325. [Google Scholar] [CrossRef]
- Al-Sakkaf, M.K.; Basfer, I.; Iddrisu, M.; Bahadi, S.A.; Nasser, M.S.; Abussaud, B.; Drmosh, Q.A.; Onaizi, S.A. An Up-to-Date Review on the Remediation of Dyes and Phenolic Compounds from Wastewaters Using Enzymes Immobilized on Emerging and Nanostructured Materials: Promises and Challenges. Nanomaterials 2023, 13, 2152. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Y.; Jia, H.; Xu, S.; Zhang, M.; Xiao, T.; Du, X. Preparation of Self-Standing Ultra-Thin Three-Dimensional Covalent Organic Frameworks by Interfacial Polymerization for Dye Separation. J. Environ. Chem. Eng. 2024, 12, 112711. [Google Scholar] [CrossRef]
- Qu, Y.; Zha, Y.; Du, X.; Xu, S.; Zhang, M.; Xu, L.; Jia, H. Interfacial Polymerization of Self-Standing Covalent Organic Framework Membranes at Alkane/Ionic Liquid Interfaces for Dye Separation. ACS Appl. Polym. Mater. 2022, 4, 7528–7536. [Google Scholar] [CrossRef]
- Makhoul, E.; Boulos, M.; Cretin, M.; Lesage, G.; Miele, P.; Cornu, D.; Bechelany, M. CaCu3Ti4O12 Perovskite Materials for Advanced Oxidation Processes for Water Treatment. Nanomaterials 2023, 13, 2119. [Google Scholar] [CrossRef]
- Hamd, A.; Dryaz, A.R.; Shaban, M.; AlMohamadi, H.; Abu Al-Ola, K.A.; Soliman, N.K.; Ahmed, S.A. Fabrication and Application of Zeolite/Acanthophora Spicifera Nanoporous Composite for Adsorption of Congo Red Dye from Wastewater. Nanomaterials 2021, 11, 2441. [Google Scholar] [CrossRef]
- Liu, J.; Wang, N.; Zhang, H.; Baeyens, J. Adsorption of Congo Red Dye on FexCo3-xO4 Nanoparticles. J. Environ. Manag. 2019, 238, 473–483. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Kannan, P.; Balasubramani, K.; Rajamohan, N.; Rajasimman, M. Sustainable Remediation of Toxic Congo Red Dye Pollution Using Bio Based Carbon Nanocomposite: Modelling and Performance Evaluation. Chemosphere 2023, 343, 140206. [Google Scholar] [CrossRef]
- Fang, L.; Wu, H.; Shi, Y.; Tao, Y.; Yong, Q. Preparation of Lignin-Based Magnetic Adsorbent from Kraft Lignin for Adsorbing the Congo Red. Front. Bioeng. Biotechnol. 2021, 9, 69152. [Google Scholar] [CrossRef]
- Patra, R.; Dash, P.; Panda, P.K.; Yang, P.-C. A Breakthrough in Photocatalytic Wastewater Treatment: The Incredible Potential of g-C3N4/Titanate Perovskite-Based Nanocomposites. Nanomaterials 2023, 13, 2173. [Google Scholar] [CrossRef]
- Ismail, A.F.; Goh, P.S.; Yusof, N. Recent Development of Nanocomposite Membranes for Water and Wastewater Treatment. Nanomaterials 2023, 13, 1686. [Google Scholar] [CrossRef]
- Deng, X.; Wu, W.; Tian, S.; He, Y.; Wang, S.; Zheng, B.; Xin, K.; Zhou, Z.; Tang, L. Composite Adsorbents of Aminated Chitosan @ZIF-8 MOF for Simultaneous Efficient Removal of Cu(II) and Congo Red: Batch Experiments and DFT Calculations. Chem. Eng. J. 2024, 479, 147634. [Google Scholar] [CrossRef]
- Niu, Y.; Zheng, C.; Xie, Y.; Kang, K.; Song, H.; Bai, S.; Han, H.; Li, S. Efficient Adsorption of Ammonia by Surface-Modified Activated Carbon Fiber Mesh. Nanomaterials 2023, 13, 2857. [Google Scholar] [CrossRef]
- Pan, Z.; Kang, X.; Zeng, Y.; Zhang, W.; Peng, H.; Wang, J.; Huang, W.; Wang, H.; Shen, Y.; Huang, Y. A Mannosylated PEI–CPP Hybrid for TRAIL Gene Targeting Delivery for Colorectal Cancer Therapy. Polym. Chem. 2017, 8, 5275–5285. [Google Scholar] [CrossRef]
- Yang, L.; Zhan, Y.; Gong, Y.; Ren, E.; Lan, J.; Guo, R.; Yan, B.; Chen, S.; Lin, S. Development of Eco-Friendly CO2-Responsive Cellulose Nanofibril Aerogels as “Green” Adsorbents for Anionic Dyes Removal. J. Hazard. Mater. 2021, 405, 124194. [Google Scholar] [CrossRef]
- Asayesh-Ardakani, E.; Rahmani, M.; Hosseinian, A.; Ghaffari, S.-B.; Sarrafzadeh, M.-H. Improvement Strategies on Application of Covalent Organic Frameworks in Adsorption, Photocatalytic, and Membrane Processes for Organic Pollution Removal from Water. Coord. Chem. Rev. 2024, 518, 216087. [Google Scholar] [CrossRef]
- Mo, Z.; Tai, D.; Zhang, H.; Shahab, A. A Comprehensive Review on the Adsorption of Heavy Metals by Zeolite Imidazole Framework (ZIF-8) Based Nanocomposite in Water. Chem. Eng. J. 2022, 443, 136320. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Lu, Y.; Yang, L.; Xu, T.; Wu, H.; Zhang, J.; He, L. A Review of Application, Modification, and Prospect of Melamine Foam. Nanotechnol. Rev. 2023, 12, 20230137. [Google Scholar] [CrossRef]
- Wang, S.; Vakili, M.; Guan, T.; Zhu, X.; Zhou, S.; Wang, W.; Gong, W. Adsorption of Typical Dyes in Water by Sponge Based Organic Frameworks: Pore Size and Mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133312. [Google Scholar] [CrossRef]
- Du, Q.; Zhou, Y.; Pan, X.; Zhang, J.; Zhuo, Q.; Chen, S.; Chen, G.; Liu, T.; Xu, F.; Yan, C. A Graphene-Melamine-Sponge for Efficient and Recyclable Dye Adsorption. RSC Adv. 2016, 6, 54589–54596. [Google Scholar] [CrossRef]
- Sharma, R.; Sürmeli, D.; Van Assche, T.R.C.; Tiriana, S.; Delplancke, M.-P.; Baron, G.V.; Denayer, J.F.M. An Ultra-Permeable Hybrid Mg-MOF-74-Melamine Sponge Composite for Fast Dynamic Gas Separation. Microporous Mesoporous Mater. 2022, 343, 112146. [Google Scholar] [CrossRef]
- Zhou, X.; Li, D.; Wang, L.; Wang, Q.; Wang, Z.; Jing, Q.; Marisol, R.; Li, L. Recent Advances in the Modification of Melamine Sponge for Oil-Water Separation. J. Mater. Sci. Technol. 2025, 207, 209–224. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Wang, Y.; Zhang, X.-F.; Yao, J. In-Situ Gelation of Sodium Alginate Supported on Melamine Sponge for Efficient Removal of Copper Ions. J. Colloid Interface Sci. 2017, 512, 7–13. [Google Scholar] [CrossRef]
- Li, R.; Lan, G.; Liu, Y.; Qiu, H.; Ding, X.; Xu, B.; Deng, C. Melamine Sponge Loading Improves the Separation Performance of Magnetic Hydroxyapatite for Pb(Ⅱ) Adsorption. Sep. Purif. Technol. 2022, 291, 120851. [Google Scholar] [CrossRef]
- Amaly, N.; El-Moghazy, A.Y.; Sun, G.; Pandey, P.K. A Novel Scalable Polycationic Melamine Sponge-Based Filtration Matrix for Continuous Ultrafast Adsorption of Anionic Pollutants. Chemosphere 2023, 350, 140977. [Google Scholar] [CrossRef]
- Li, W.; Jin, W.-L.; Jiang, H.-X.; Wang, R.; Jia, H.; Liu, J.-Q.; Tang, A.-N.; Zhu, L.-N.; Kong, D.-M. Facile Fabrication of Hierarchically Porous Melamine foam@COF Composite for Sample Treatment of Non-Targeted Food Safety Analysis and Oil/Water Separation. Chem. Eng. J. 2023, 455, 140900. [Google Scholar] [CrossRef]
- Li, J. One-Pot Room-Temperature Synthesis of Covalent Organic Framework-Coated Superhydrophobic Sponges for Highly Efficient Oil-Water Separation. J. Hazard. Mater. 2021, 411, 125190. [Google Scholar] [CrossRef]
- Li, R.; Xu, Y.; Li, Y.; Qiao, Y.; Tian, D. A Graft-Modified Sponge with COFs for Wastewater Treatment and Iodine Adsorption. J. Solid State Chem. 2024, 333, 124627. [Google Scholar] [CrossRef]
- Li, R.; Tang, X.; Wu, J.; Zhang, K.; Zhang, Q.; Wang, J.; Zheng, J.; Zheng, S.; Fan, J.; Zhang, W.; et al. A Sulfonate-Functionalized Covalent Organic Framework for Record-High Adsorption and Effective Separation of Organic Dyes. Chem. Eng. J. 2023, 464, 142706. [Google Scholar] [CrossRef]
- Zhang, Z.; Abidi, N.; Lucia, L. Smart Superabsorbent Alginate/Carboxymethyl Chitosan Composite Hydrogel Beads as Efficient Biosorbents for Methylene Blue Dye Removal. J. Mater. Sci. Technol. 2023, 159, 81–90. [Google Scholar] [CrossRef]
- Wang, X.; Meng, R.; Zhao, S.; Jing, Z.; Jin, Y.; Zhang, J.; Pi, X.; Du, Q.; Chen, L.; Li, Y. Efficient Adsorption of Radioactive Iodine by Covalent Organic Framework/Chitosan Aerogel. Int. J. Biol. Macromol. 2024, 260, 129690. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Yang, Y.; Liu, L.; Lin, Y.; Xie, L.; Chai, X.; Xu, K.; Du, G.; Zhang, L. Biomass Polyamine-Functionalized Nanocellulose-Loaded Covalent Organic Framework to Construct Composite Aerogels for Highly Efficient Removal of Cr (VI) and Methyl Orange. Chem. Eng. J. 2024, 486, 150282. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Zhu, X.; Zhu, D.; Wang, W.; Wang, B.; Deng, S.; Yu, G. Efficient Removal of per/Polyfluoroalkyl Substances from Water Using Recyclable Chitosan-Coated Covalent Organic Frameworks: Experimental and Theoretical Methods. Chemosphere 2024, 356, 141942. [Google Scholar] [CrossRef]
- Liu, S.; Qing, Q.; Foster, R.I.; Wang, Z.; Chae, N.; Shin, D.; Choi, S.; Lu, Y. Imine-Linkage Covalent Organic Framework Synthesis in Deep Eutectic Solvent at Ambient Conditions. J. Clean. Prod. 2024, 434, 139970. [Google Scholar] [CrossRef]
- Hong, Z.; Dong, Y.; Wang, R.; Wang, G. Evaluation of a Porous Imine-Based Covalent Organic Framework for Solid-Phase Extraction of Nitroimidazoles. Anal. Methods 2022, 14, 627–634. [Google Scholar] [CrossRef]
- Patil, Y.A.; Mehta, V.R.; Boraste, D.R.; Shankarling, G.S. Facile Preparation of Cucurbit [6]Uril Modified Melamine Sponge for Efficient Oil Spill Cleanup. J. Environ. Chem. Eng. 2021, 9, 106603. [Google Scholar] [CrossRef]
- Rastegari, F.; Asghari, S.; Mohammadpoor-Baltork, I.; Sabzyan, H.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V. A pH-Dependent and Charge Selective Covalent Organic Framework for Removal of Dyes from Aqueous Solutions. J. Hazard. Mater. 2024, 476, 135075. [Google Scholar] [CrossRef]
- Singh, I.; Birajdar, B. Effective La-Na Co-Doped TiO2 Nano-Particles for Dye Adsorption: Synthesis, Characterization and Study on Adsorption Kinetics. Nanomaterials 2019, 9, 400. [Google Scholar] [CrossRef]
- Saini, K.; Sahoo, A.; Biswas, B.; Kumar, A.; Bhaskar, T. Preparation and Characterization of Lignin-Derived Hard Templated Carbon(s): Statistical Optimization and Methyl Orange Adsorption Isotherm Studies. Bioresour. Technol. 2021, 342, 125924. [Google Scholar] [CrossRef]
- Ceroni, L.; Benazzato, S.; Pressi, S.; Calvillo, L.; Marotta, E.; Menna, E. Enhanced Adsorption of Methylene Blue Dye on Functionalized Multi-Walled Carbon Nanotubes. Nanomaterials 2024, 14, 522. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J.; Muhammad, Y.; Tang, R.; Liu, K.; Zhu, Y.; Tong, Z. Citric Acid Modified Bentonite for Congo Red Adsorption. Front. Mater. 2019, 6, 5. [Google Scholar] [CrossRef]
- Cui, M.; Li, Y.; Sun, Y.; Wang, H.; Li, M.; Li, L.; Xu, W. Study on Adsorption Performance of MgO/Calcium Alginate Composite for Congo Red in Wastewater. J. Polym. Environ. 2021, 29, 3977–3987. [Google Scholar] [CrossRef]
- Al-Omari, M.H.; Abu-Rayyan, A.; H. Ragab, A.; A. Taher, M.; M. El-Sayed, E.-S.; Elfiky, A.; Taha, A.; Mubarak, M.F. Optimized Congo Red Dye Adsorption Using ZnCuCr-Based MOF for Sustainable Wastewater Treatment. Langmuir 2025, 41, 5947–5961. [Google Scholar] [CrossRef]
- Isik, B. Adsorptive Removal of Congo Red and Methylene Blue Dyes from Aqueous Solutions by Rumex Obtusifolius Roots. Korean J. Chem. Eng. 2023, 40, 3003–3016. [Google Scholar] [CrossRef]
- Kulkarni, K.; Kurhade, S.; Chendake, Y.; Kulkarni, A.; Satpute, S. Utilization of Low Cost Biofertilizers for Adsorptive Removal of Congo Red Dye. Bull. Environ. Contam. Toxicol. 2023, 111, 33. [Google Scholar] [CrossRef]
- He, J.; Zhu, L.; Guo, S.; Yang, B. An Effective Strategy for Coal-Series Kaolin Utilization: Preparation of Magnetic Adsorbent for Congo Red Adsorption. Chem. Eng. Sci. 2025, 304, 120958. [Google Scholar] [CrossRef]
- Pulikkal, A.K.; Laskar, N.; Anjudikkal, J. Effective Adsorption of Polycyclic Aromatic Congo Red Dye by Modified Garlic Peel. J. Dispers. Sci. Technol. 2023, 25, 799–809. [Google Scholar] [CrossRef]
- Li, Y.; Meas, A.; Shan, S.; Yang, R.; Gai, X. Production and Optimization of Bamboo Hydrochars for Adsorption of Congo Red and 2-Naphthol. Bioresour. Technol. 2016, 207, 379–386. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Nie, H.; Qu, Y.; Xu, J.; Jia, H.; Zhang, Y.; Ma, W.; Du, B. Schiff Base-Functionalized Melamine Sponge with Hierarchical Porous Architecture for High-Efficiency Removal of Organic Dyes in Wastewater. Nanomaterials 2025, 15, 1157. https://doi.org/10.3390/nano15151157
Du X, Nie H, Qu Y, Xu J, Jia H, Zhang Y, Ma W, Du B. Schiff Base-Functionalized Melamine Sponge with Hierarchical Porous Architecture for High-Efficiency Removal of Organic Dyes in Wastewater. Nanomaterials. 2025; 15(15):1157. https://doi.org/10.3390/nano15151157
Chicago/Turabian StyleDu, Xiaoyu, Hailiang Nie, Yanqing Qu, Jingyu Xu, Hongge Jia, Yong Zhang, Wenhui Ma, and Boyu Du. 2025. "Schiff Base-Functionalized Melamine Sponge with Hierarchical Porous Architecture for High-Efficiency Removal of Organic Dyes in Wastewater" Nanomaterials 15, no. 15: 1157. https://doi.org/10.3390/nano15151157
APA StyleDu, X., Nie, H., Qu, Y., Xu, J., Jia, H., Zhang, Y., Ma, W., & Du, B. (2025). Schiff Base-Functionalized Melamine Sponge with Hierarchical Porous Architecture for High-Efficiency Removal of Organic Dyes in Wastewater. Nanomaterials, 15(15), 1157. https://doi.org/10.3390/nano15151157