Methods for Obtaining One Single Larmor Frequency, Either v1 or v2, in the Coherent Spin Dynamics of Colloidal Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Setup for the Measurements of Coherent Electron Spin Dynamics
3. Results
3.1. Spin Dynamics of As-Grown CdSe and CdS Colloidal QDs with Native Ligands
3.2. Methods to Individually Obtain the v1 Component
3.3. Methods to Individually Obtain the v2 Component
3.4. Influence of Laser Repetition Rates on Spin Signals
- (1)
- Addition of an appropriate molar ratio of hole acceptors, Li[Et3BH] or OT, in a N2 atmosphere is beneficial to obtain the pure spin signal of the v1 component.
- (2)
- Modifying colloidal QDs with an OT hole acceptor prepared in an air atmosphere provides advantages on the selection of the v2 spin component.
- (3)
- Low laser repetition rates are convenient for the appearance of merely the v2 component, whereas the spin signals of the v1 component rise effectively when applying high laser repetition rates.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Loss, D.; DiVincenzo, D.P. Quantum Computation with Quantum Dots. Phys. Rev. A At. Mol. Opt. Phys. 1998, 57, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Awschalom, D.D.; Bassett, L.C.; Dzurak, A.S.; Hu, E.L.; Petta, J.R. Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors. Science 2013, 339, 1174–1179. [Google Scholar] [CrossRef] [Green Version]
- Hanson, R.; Awschalom, D.D. Coherent Manipulation of Single Spins in Semiconductors. Nature 2008, 453, 1043–1049. [Google Scholar] [CrossRef]
- Khaetskii, A.V.; Nazarov, Y.V. Spin Relaxation in Semiconductor Quantum Dots. Phys. Rev. B Condens. Matter Mater. Phys. 2000, 61, 12639–12642. [Google Scholar] [CrossRef] [Green Version]
- Gupta, J.A.; Awschalom, D.D.; Efros, A.L.; Rodina, A.V. Spin Dynamics in Semiconductor Nanocrystals. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 66, 125307. [Google Scholar] [CrossRef] [Green Version]
- Janßen, N.; Whitaker, K.M.; Gamelin, D.R.; Bratschitsch, R. Ultrafast Spin Dynamics in Colloidal ZnO Quantum Dots. Nano Lett. 2008, 8, 1991–1994. [Google Scholar]
- Feng, D.H.; Li, X.; Jia, T.Q.; Pan, X.Q.; Sun, Z.R.; Xu, Z.Z. Long-Lived, Room-Temperature Electron Spin Coherence in Colloidal CdS Quantum Dots. Appl. Phys. Lett. 2012, 100, 122406. [Google Scholar] [CrossRef]
- Biadala, L.; Shornikova, E.V.; Rodina, A.V.; Yakovlev, D.R.; Siebers, B.; Aubert, T.; Nasilowski, M.; Hens, Z.; Dubertret, B.; Efros, A.L.; et al. Magnetic Polaron on Dangling-Bond Spins in CdSe Colloidal Nanocrystals. Nat. Nanotechnol. 2017, 12, 569–574. [Google Scholar] [CrossRef]
- Hu, R.R.; Wu, Z.; Zhang, Y.Y.; Yakovlev, D.R.; Liang, P.; Qiang, G.; Guo, J.X.; Jia, T.Q.; Sun, Z.R.; Bayer, M.; et al. Long-Lived Negative Photocharging in Colloidal CdSe Quantum Dots Revealed by Coherent Electron Spin Precession. J. Phys. Chem. Lett. 2019, 10, 4994–4999. [Google Scholar] [CrossRef]
- Feng, D.H.; Yakovlev, D.R.; Pavlov, V.V.; Rodina, A.V.; Shornikova, E.V.; Mund, J.; Bayer, M. Dynamic Evolution from Negative to Positive Photocharging in Colloidal CdS Quantum Dots. Nano Lett. 2017, 17, 2844–2851. [Google Scholar] [CrossRef]
- Hu, R.R.; Yakovlev, D.R.; Liang, P.; Qiang, G.; Chen, C.; Jia, T.Q.; Sun, Z.R.; Bayer, M.; Feng, D.H. Origin of Two Larmor Frequencies in the Coherent Spin Dynamics of Colloidal CdSe Quantum Dots Revealed by Controlled Charging. J. Phys. Chem. Lett. 2019, 10, 3681–3687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Feng, D.H.; Tong, H.F.; Jia, T.Q.; Deng, L.; Sun, Z.R.; Xu, Z.Z. Hole Surface Trapping Dynamics Directly Monitored by Electron Spin Manipulation in CdS Nanocrystals. J. Phys. Chem. Lett. 2014, 5, 4310–4316. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.A.; Awschalom, D.D.; Peng, X.; Alivisatos, A.P. Spin Coherence in Semiconductor Quantum Dots. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, R10421–R10424. [Google Scholar] [CrossRef]
- Huxter, V.M.; Kovalevskij, V.; Scholes, G.D. Dynamics within the Exciton Fine Structure of Colloidal CdSe Quantum Dots. J. Phys. Chem. B 2005, 109, 20060–20063. [Google Scholar] [CrossRef] [PubMed]
- Qiang, G.; Zhukov, E.A.; Evers, E.; Yakovlev, D.R.; Golovatenko, A.A.; Rodina, A.V.; Onushchenko, A.A.; Bayer, M. Electron Spin Coherence in CdSe Nanocrystals in a Glass Matrix. ACS Nano 2022, 16, 18838–18848. [Google Scholar] [CrossRef]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
- McArthur, E.A.; Morris-Cohen, A.J.; Knowles, K.E.; Weiss, E.A. Charge Carrier Resolved Relaxation of the First Excitonic State in CdSe Quantum Dots Probed with Near-Infrared Transient Absorption Spectroscopy. J. Phys. Chem. B 2010, 114, 14514–14520. [Google Scholar] [CrossRef]
- Rinehart, J.D.; Schimpf, A.M.; Weaver, A.L.; Cohn, A.W.; Gamelin, D.R. Photochemical Electronic Doping of Colloidal CdSe Nanocrystals. J. Am. Chem. Soc. 2013, 135, 18782–18785. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jiang, M.Z.; Wu, Z.; Yang, Q.; Men, Y.M.; Cheng, L.; Liang, P.; Hu, R.R.; Jia, T.Q.; Sun, Z.R.; et al. Hyperfine-Induced Electron-Spin Dephasing in Negatively Charged Colloidal Quantum Dots: A Survey of Size Dependence. J. Phys. Chem. Lett. 2021, 12, 9481–9487. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.Y.; Hu, R.R.; Jiang, M.Z.; Liang, P.; Yang, Q.; Deng, L.; Jia, T.Q.; Sun, Z.R.; Feng, D.H. Hole-Acceptor-Manipulated Electron Spin Dynamics in CdSe Colloidal Quantum Dots. J. Phys. Chem. Lett. 2021, 12, 2126–2132. [Google Scholar] [CrossRef]
- Stern, N.P.; Poggio, M.; Bartl, M.H.; Hu, E.L.; Stucky, G.D.; Awschalom, D.D. Spin Dynamics in Electrochemically Charged CdSe Quantum Dots. Phys. Rev. B 2005, 72, 161303(R). [Google Scholar] [CrossRef] [Green Version]
- Fumani, A.K.; Berezovsky, J. Magnetic-Field-Dependent Spin Decoherence and Dephasing in Room-Temperature CdSe Nanocrystal Quantum Dots. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 155316. [Google Scholar] [CrossRef]
- Schimpf, A.M.; Gunthardt, C.E.; Rinehart, J.D.; Mayer, J.M.; Gamelin, D.R. Controlling Carrier Densities in Photochemically Reduced Colloidal ZnO Nanocrystals: Size Dependence and Role of the Hole Quencher. J. Am. Chem. Soc. 2013, 135, 16569–16577. [Google Scholar] [CrossRef] [PubMed]
- van Dijken, A.; Meulenkamp, E.A.; Vanmaekelbergh, D.; Meijerink, A. Influence of Adsorbed Oxygen on the Emission Properties of Nanocrystalline ZnO Particles. J. Phys. Chem. B 2000, 104, 4355–4360. [Google Scholar] [CrossRef]
- Feng, D.H.; Shan, L.F.; Jia, T.Q.; Pan, X.Q.; Tong, H.F.; Deng, L.; Sun, Z.R.; Xu, Z.Z. Optical Manipulation of Electron Spin Coherence in Colloidal CdS Quantum Dots. Appl. Phys. Lett. 2013, 102, 062408. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Jin, Z.M.; Ma, H.; Xu, Y.; Lin, X.; Ma, G.H.; Sun, X.L. Room-Temperature Spin Coherence in Zinc Blende CdSe Quantum Dots Studied by Time-Resolved Faraday Ellipticity. Phys. E Low-Dimens. Syst. Nanostructures 2014, 56, 85–89. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Zhang, Y.; Hu, R.; Men, Y.; Cheng, L.; Liang, P.; Jia, T.; Sun, Z.; Feng, D. Methods for Obtaining One Single Larmor Frequency, Either v1 or v2, in the Coherent Spin Dynamics of Colloidal Quantum Dots. Nanomaterials 2023, 13, 2006. https://doi.org/10.3390/nano13132006
Jiang M, Zhang Y, Hu R, Men Y, Cheng L, Liang P, Jia T, Sun Z, Feng D. Methods for Obtaining One Single Larmor Frequency, Either v1 or v2, in the Coherent Spin Dynamics of Colloidal Quantum Dots. Nanomaterials. 2023; 13(13):2006. https://doi.org/10.3390/nano13132006
Chicago/Turabian StyleJiang, Meizhen, Yuanyuan Zhang, Rongrong Hu, Yumeng Men, Lin Cheng, Pan Liang, Tianqing Jia, Zhenrong Sun, and Donghai Feng. 2023. "Methods for Obtaining One Single Larmor Frequency, Either v1 or v2, in the Coherent Spin Dynamics of Colloidal Quantum Dots" Nanomaterials 13, no. 13: 2006. https://doi.org/10.3390/nano13132006
APA StyleJiang, M., Zhang, Y., Hu, R., Men, Y., Cheng, L., Liang, P., Jia, T., Sun, Z., & Feng, D. (2023). Methods for Obtaining One Single Larmor Frequency, Either v1 or v2, in the Coherent Spin Dynamics of Colloidal Quantum Dots. Nanomaterials, 13(13), 2006. https://doi.org/10.3390/nano13132006