Crystallization of Copper Films on Sapphire Substrate for Large-Area Single-Crystal Graphene Growth
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Zhang, Z.; Dong, J.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J.; et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, B.-R.; Hung, S.-C.; Ho, Y.-S.; Chen, Y.-S.; Yang, W.-D. The Efficiency Study of Graphene Synthesis on Copper Substrate via Chemical Vapor Deposition Method with Methanol Precursor. Nanomaterials 2023, 13, 1136. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Liu, J.; Jiang, R.; Gong, Y.; Zeng, B.; Yi, Z.; Gao, Q.; Yang, J.; Chi, F.; Liu, L. Synthesis of Single-Crystal Graphene on Copper Foils Using a Low-Nucleation-Density Region in a Quartz Boat. Micromachines 2021, 12, 1236. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Chiang, W.Y.; Su, Y.H.; Hofmann, M.; Hsieh, Y.P. Solid-diffusion-facilitated cleaning of copper foil improves the quality of CVD graphene. Sci. Rep. 2019, 9, 257. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kondrashov, I.; Komlenok, M.; Pivovarov, P.; Savin, S.; Obraztsova, E.; Rybin, M. Preparation of Copper Surface for the Synthesis of Single-Layer Graphene. Nanomaterials 2021, 11, 1071. [Google Scholar] [CrossRef]
- Yang, K.; Liu, J.; Jiang, R.; Gong, Y.; Zeng, B.; Yi, Z.; Gao, Q.; Yang, J.; Chi, F.; Liu, L. Effect of the Pressure of Reaction Gases on the Growth of Single-Crystal Graphene on the Inner Surfaces of Copper Pockets. Micromachines 2020, 11, 1101. [Google Scholar] [CrossRef]
- Dhingra, S.; Hsu, J.-F.; Vlassiouk, I.; D’Urso, B. Chemical vapor deposition of graphene on large-domain ultra-flat copper. Carbon 2014, 69, 188–193. [Google Scholar] [CrossRef]
- Murdock, A.T.; van Engers, C.D.; Britton, J.; Babenko, V.; Meysami, S.S.; Bishop, H.; Crossley, A.; Koos, A.A.; Grobert, N. Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene. Carbon 2017, 122, 207–216. [Google Scholar] [CrossRef]
- Mun, J.H.; Cho, B.J. Synthesis of Monolayer Graphene Having a Negligible Amount of Wrinkles by Stress Relaxation. Nano Lett. 2013, 13, 2496–2499. [Google Scholar] [CrossRef]
- Bersch, B.C.; Ros, T.C.; Tollefsen, V.; Johannessen, E.A.; Johannessen, A. Improved Crystallinity of Annealed 0002 AlN Films on Sapphire Substrate. Materials 2023, 16, 2319. [Google Scholar] [CrossRef]
- Luo, Z.; Lu, Y.; Singer, D.W.; Berck, M.E.; Somers, L.A.; Goldsmith, B.R.; Johnson, A.T.C. Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure. Chem. Mater. 2011, 23, 1441–1447. [Google Scholar] [CrossRef]
- Mohsin, A.; Liu, L.; Liu, P.; Deng, W.; Ivanov, I.N.; Li, G.; Dyck, O.E.; Duscher, G.; Dunlap, J.R.; Xiao, K.; et al. Synthesis of Millimeter-Size Hexagon-Shaped Graphene Single Crystals on Resolidified Copper. ACS Nano 2013, 7, 8924–8931. [Google Scholar] [CrossRef] [PubMed]
- Kuten, D.; Dybowski, K.; Atraszkiewicz, R.; Kula, P. Quasi-Monocrystalline Graphene Crystallization on Liquid Copper Matrix. Materials 2020, 13, 2606. [Google Scholar] [CrossRef] [PubMed]
- Tsakonas, C.; Dimitropoulos, M.; Manikas, A.C.; Galiotis, C. Growth and in situ characterization of 2D materials by chemical vapour deposition on liquid metal catalysts: A review. Nanoscale 2021, 13, 3346–3373. [Google Scholar] [CrossRef]
- Jankowski, M.; Saedi, M.; La Porta, F.; Manikas, A.C.; Tsakonas, C.; Cingolani, J.S.; Andersen, M.; Voogd, M.; Baarle, G.J.C.; Reuter, K.; et al. Real-time multiscale monitoring and tailoring of graphene growth on liquid copper. Acs Nano 2021, 15, 9638–9648. [Google Scholar] [CrossRef]
- Shin, H.-J.; Yoon, S.-M.; Choi, W.M.; Park, S.; Lee, D.; Song, I.Y.; Woo, Y.S.; Choi, J.-Y. Influence of Cu crystallographic orientation on electron transport in graphene. Appl. Phys. Lett. 2013, 102, 163102. [Google Scholar] [CrossRef]
- Hu, J.; Xu, J.; Zhao, Y.; Shi, L.; Li, Q.; Liu, F.; Ullah, Z.; Li, W.; Guo, Y.; Liu, L. Roles of Oxygen and Hydrogen in Crystal Orientation Transition of Copper Foils for High-Quality Graphene Growth. Sci. Rep. 2017, 7, 45358. [Google Scholar] [CrossRef][Green Version]
- Zhao, H.; Chen, W.; Wu, M.; Li, R.; Dong, X. Influence of low oxygen content on the recrystallization behavior of rolled copper foil. Oxid. Met. 2018, 90, 203–215. [Google Scholar] [CrossRef]
- Nam, J.; Lee, I.; Lee, D.Y.; Kim, M.; Kim, K.S. Abnormal grain growth for single-crystal Cu substrate and chemical vapor deposition of graphene on it. J. Korean Phys. Soc. 2020, 76, 923–927. [Google Scholar] [CrossRef]
- Jo, I.; Park, S.; Kim, D.; San Moon, J.; Park, W.B.; Kim, T.H.; Hong, B.H. Tension-controlled single-crystallization of copper foils for roll-to-roll synthesis of high-quality graphene films. 2D Mater. 2018, 5, 024002. [Google Scholar] [CrossRef]
- Jin, S.; Huang, M.; Kwon, Y.; Zhang, L.; Li, B.W.; Oh, S.; Ruoff, R.S. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 2018, 362, 1021–1025. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, M.; Huang, M.; Luo, D.; Li, Y.; Choe, M.; Seong, W.K.; Ruoff, R.S. Single-crystal; large-area; fold-free monolayer graphene. Nature 2021, 596, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, L.; Wang, B.; Ruoff, R.S. Chemical vapor deposition of graphene on thin-metal films. Cell Rep. Phys. Sci. 2021, 2, 100372. [Google Scholar] [CrossRef]
- Reddy, K.M.; Gledhill, A.D.; Chen, C.-H.; Drexler, J.M.; Padture, N.P. High quality; transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire. Appl. Phys. Lett. 2011, 98, 113117. [Google Scholar] [CrossRef][Green Version]
- Hu, B.; Ago, H.; Ito, Y.; Kawahara, K.; Tsuji, M.; Magome, E.; Sumitani, K.; Mizuta, N.; Ikeda, K.-I.; Mizuno, S. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 2012, 50, 57–65. [Google Scholar] [CrossRef]
- Jacobberger, R.M.; Arnold, M.S. Graphene Growth Dynamics on Epitaxial Copper Thin Films. Chem. Mater. 2013, 25, 871–877. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.Y.; Lee, T.-W.; Kim, W.-K.; Kim, B.-S.; Park, J.H.; Bae, J.-S.; Cho, Y.C.; Kim, J.; Oh, M.-W.; et al. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering. Sci. Rep. 2014, 4, 6230. [Google Scholar] [CrossRef][Green Version]
- Ma, T.; Ariga, H.; Takakusagi, S.; Asakura, K. Smooth epitaxial copper film on sapphire surface suitable for high quality graphene growth. Thin Solid Film. 2018, 646, 12–16. [Google Scholar] [CrossRef][Green Version]
- Komlenok, M.S.; Pivovarov, P.A.; Dezhkina, M.A.; Rybin, M.G.; Savin, S.S.; Obraztsova, E.D.; Konov, V.I. Printing of Crumpled CVD Graphene via Blister-Based Laser-Induced Forward Transfer. Nanomaterials 2020, 10, 1103. [Google Scholar] [CrossRef]
- Komlenok, M.; Kurochitsky, N.; Pivovarov, P.; Rybin, M.; Obraztsova, E. Field Electron Emission from Crumpled CVD Graphene Patterns Printed via Laser-Induced Forward Transfer. Nanomaterials 2022, 12, 1934. [Google Scholar] [CrossRef]
- Wu, Y.; Jenkins, K.A.; Valdes-Garcia, A.; Farmer, D.B.; Zhu, Y.; Bol, A.A.; Dimitrakopoulos, C.; Zhu, W.; Xia, F.; Avouris, P.; et al. State-of-the-Art Graphene High-Frequency Electronics. Nano Lett. 2012, 12, 3062–3067. [Google Scholar] [CrossRef] [PubMed]
- Pivovarov, P.A.; Rybin, M.G.; Popovich, A.F.; Orekhov, A.S.; Orekhov, A.S.; Obraztsova, E.D.; Komlenok, M.S. Crystallization of Thin Copper Films on Silica Substrate for Graphene Growth. Phys. Status Solidi B 2019, 256, 1800685. [Google Scholar] [CrossRef]
- Barin, G.B.; Song, Y.; Gimenez, I.; Filho, L.G.S.; Barreto, L.S.; Kong, J. Optimized graphene transfer: Influence of polymethylmethacrylate(PMMA) layer concentration and baking time on graphene final performance. Carbon 2015, 84, 82–90. [Google Scholar] [CrossRef]
- Aylward, G.H.; Findlay, T. SI Chemical Data, 4th ed.; John Wiley and Sons: Brisbane, QLD, Australia, 1996. [Google Scholar]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P.C. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006, 6, 2667–2673. [Google Scholar] [CrossRef][Green Version]
- Dresselhaus, M.S.; Jorio, A.; Souza Filho, A.G.; Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 5355–5377. [Google Scholar] [CrossRef][Green Version]
- Cançado, L.G.; Jorio, A.; Ferreira, E.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef][Green Version]
- Duong, D.L.; Han, G.H.; Lee, S.M.; Gunes, F.; Kim, E.S.; Kim, S.T.; Kim, H.; Ta, Q.H.; So, K.P.; Yoon, S.J.; et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239. [Google Scholar] [CrossRef]
- Yang, M.; Sasaki, S.; Ohnishi, M.; Suzuki, K.; Miura, H. Electronic properties and strain sensitivity of CVD-grown graphene with acetylene. Jpn. J. Appl. Phys. 2016, 55, 04EP05. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komlenok, M.; Pivovarov, P.; Popovich, A.; Cheverikin, V.; Romshin, A.; Rybin, M.; Obraztsova, E. Crystallization of Copper Films on Sapphire Substrate for Large-Area Single-Crystal Graphene Growth. Nanomaterials 2023, 13, 1694. https://doi.org/10.3390/nano13101694
Komlenok M, Pivovarov P, Popovich A, Cheverikin V, Romshin A, Rybin M, Obraztsova E. Crystallization of Copper Films on Sapphire Substrate for Large-Area Single-Crystal Graphene Growth. Nanomaterials. 2023; 13(10):1694. https://doi.org/10.3390/nano13101694
Chicago/Turabian StyleKomlenok, Maxim, Pavel Pivovarov, Alexey Popovich, Vladimir Cheverikin, Alexey Romshin, Maxim Rybin, and Elena Obraztsova. 2023. "Crystallization of Copper Films on Sapphire Substrate for Large-Area Single-Crystal Graphene Growth" Nanomaterials 13, no. 10: 1694. https://doi.org/10.3390/nano13101694
APA StyleKomlenok, M., Pivovarov, P., Popovich, A., Cheverikin, V., Romshin, A., Rybin, M., & Obraztsova, E. (2023). Crystallization of Copper Films on Sapphire Substrate for Large-Area Single-Crystal Graphene Growth. Nanomaterials, 13(10), 1694. https://doi.org/10.3390/nano13101694