Graphene/Ge Photoconductive Position-Sensitive Detectors Based on the Charge Injection Effect
Abstract
1. Introduction
2. Device Structure and Working Mechanism
3. Experiments Section
3.1. Device Fabrication
3.2. Device Measurement
4. Results and Discussion
4.1. Device Characterization
4.2. Position-Sensitive Characteristics
4.3. Photoresponse Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.H.; Liu, J.P.; Ni, Z.H. Position-sensitive Detectors Based on Two-dimensional Materials. Nano Res. 2021, 14, 1889–1900. [Google Scholar] [CrossRef]
 - Cao, B.H.; Hoang, P.L.; Ahn, S.; Kang, H.; Kim, J.; Noh, J. High-Speed Focus Inspection System Using a Position-Sensitive Detector. Sensors 2017, 17, 2842. [Google Scholar] [CrossRef]
 - Liu, K.; Wan, D.; Wang, W.; Fei, C.; Zhou, T.; Guo, D.; Bai, L.; Li, Y.; Ni, Z.; Lu, J. A Time-Division Position-Sensitive Detector Image System for High-Speed Multitarget Trajectory Tracking. Adv. Mater. 2022, 34, e2206638. [Google Scholar] [CrossRef]
 - Lin, S.; Wang, W.; Wang, H.; Song, Y.; Pan, Y.; Qiao, J.; Xue, Y.; Chen, Q.; Liu, M.; Shen, Y.; et al. A High-Precision Dynamic Six Degree-of-Freedom Pose Measurement of the Subreflectors of Large Antennas Based on a Position Sensitive Detector and Laser Array. Adv. Astron. 2022, 2022, 3255088. [Google Scholar] [CrossRef]
 - Long, D. Photovoltaic and Photoconductive Infrared Detectors Optical and Infrared Detectors. Top. Appl. Phys. 1974, 19, 101–147. [Google Scholar] [CrossRef]
 - Fortunato, E.; Lavareda, G.; Vieira, M.; Martins, R. Thin Film Position Sensitive Detector Based on Amorphous Silicon p–i–n Diode. Rev. Sci. Instrum. 1994, 65, 3487. [Google Scholar] [CrossRef]
 - Jiang, H.; Fu, J.T.; Nie, C.B.; Sun, F.Y.; Tang, L.; Sun, J.; Zhu, M.; Shen, J.; Feng, S.; Shi, H.; et al. Gate Modulation Enhanced Position-Sensitive Detectors Using Graphene/Silicon-on-Insulator Structure. Carbon 2021, 184, 445–451. [Google Scholar] [CrossRef]
 - Kaniewski, J.; Muszaiski, J.; Piotriwski, J. Recent Advances in InGaAs Detector Technology. Phys. Status Solidi A 2004, 201, 2281–2287. [Google Scholar] [CrossRef]
 - Protic, D.; Riepe, G. Position-Sensitive Germanium Detectors. IEEE Trans. Nucl. Sci. 1985, 32, 553–555. [Google Scholar] [CrossRef]
 - Zeng, L.H.; Wang, M.Z.; Hu, H.; Nie, B.; Yu, Y.Q.; Wu, C.Y.; Wang, L.; Hu, J.-G.; Xie, C.; Liang, F.-X.; et al. Monolayer Graphene/Germanium Schottky Junction as High-performance Self-driven Infrared Light Photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366. [Google Scholar] [CrossRef]
 - Hu, W.; Cong, H.; Huang, W.; Huang, Y.; Chen, L.J.; Pan, A.; Xue, C.L. Germanium/Perovskite Heterostructure for High-performance and Broadband Photodetector from Visible to Infrared Telecommunication Band. Light Sci. Appl. 2019, 8, 106. [Google Scholar] [CrossRef] [PubMed]
 - Colace, L.; Ferrara, P.; Assanto, G.; Fulgoni, D.; Nash, L. Low Dark-Current Germanium-on-Silicon Near-Infrared Detectors. IEEE Photonics Technol. Lett. 2007, 19, 1813–1815. [Google Scholar] [CrossRef]
 - Wang, Y.; Gu, Y.; Cui, A.L.; Li, Q.; He, T.; Zhang, K.; Wang, Z.; Li, Z.; Zhang, Z.; Wu, P.; et al. Fast Uncooled Mid-Wavelength Infrared Photodetectors with Heterostructures of Van Der Waals on Epitaxial HgCdTe. Adv. Mater. 2022, 34, 6. [Google Scholar] [CrossRef] [PubMed]
 - Leng, X.N.Y.; Chen, S.Y.; Yang, K.; Chen, M.S.; Shaker, M.; Vdovin, E.E.; Ge, Q.; Novoselov, K.S.; Andreeva, D.V. Introduction to Two-Dimensional Materials. Surf. Rev. Lett. 2021, 28, 2140005. [Google Scholar] [CrossRef]
 - Pelella, A.; Capista, D.; Passacantando, M.; Faella, E.; Grillo, A.; Giubileo, F.; Martucciello, N.; Di Bartolomeo, A. A Self-Powered CNT–Si Photodetector with Tuneable Photocurrent. Adv. Electron. Mater. 2022, 9, 2200919. [Google Scholar] [CrossRef]
 - Pelella, A.; Capista, D.; Fealla, E.; Luongo, G.; Askari, M.B.; Di Bartolomeo, A. Graphene–Silicon Device for Visible and Infrared Photodetection. ACS Appl. Mater. Interfaces 2021, 13, 47895–47903. [Google Scholar] [CrossRef]
 - Ma, J.; Chen, M.; Qiao, S.; Chang, J.; Fu, G.; Wang, S. Photovoltaic–Pyroelectric Coupled Effect in Ag2Se/Si Heterojunction for Broad-Band, Ultrafast, Self-Powered, Position-Sensitive Detectors. ACS Photonics 2022, 9, 2160–2169. [Google Scholar] [CrossRef]
 - Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
 - Chen, Y.F.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X.; Ye, J.; Chen, Y.; Xie, R.; Zhou, Y.; et al. Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructures. Nat. Electron. 2021, 4, 357–363. [Google Scholar] [CrossRef]
 - Liu, B.; Baimova, J.A.; Reddy, C.D.; Law, A.W.-K.; Dmitriev, S.V.; Wu, H.; Zhou, K. Interfacial Thermal Conductance of a Silicene/Graphene Bilayer Heterostructure and The Effect of Hydrogenation. ACS Appl. Mater. Interfaces 2014, 6, 18180–18188. [Google Scholar] [CrossRef]
 - Xia, F.N.; Mueller, T.; Lin, Y.M.; Valdes-Garcia, A.; Avouris, P. Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed]
 - Yao, H.Y.; Guo, X.; Bao, A.D.; Mao, H.Y.; Ma, Y.C.; Li, X.C. Graphene-Based Heterojunction for Enhanced Photodetectors. Chin. Phys. B 2022, 31, 038501. [Google Scholar] [CrossRef]
 - Behura, S.K.; Wang, C.; Wen, Y.; Berry, V. Graphene–Semiconductor Heterojunction Sheds Light on Emerging Photovoltaics. Nat. Photonics 2019, 13, 312–318. [Google Scholar] [CrossRef]
 - Liu, K.Y.; Wang, W.H.; Yu, Y.F.; Hou, X.Y.; Liu, Y.P.; Chen, W.; Wang, X.M.; Lu, J.P.; Ni, Z.H. Graphene-Based Infrared Position-Sensitive Detector for Precise Measurements and High-Speed Trajectory Tracking. Nano Lett. 2019, 19, 8131–8137. [Google Scholar] [CrossRef] [PubMed]
 - Wang, W.H.; Du, R.X.; Guo, X.T.; Jiang, J.; Zhao, W.W.; Ni, Z.H.; Wang, X.R.; You, Y.M.; Ni, Z.H. Interfacial Amplification for Graphene-Based Position-Sensitive-Detectors. Light Sci. Appl. 2017, 6, e17113. [Google Scholar] [CrossRef] [PubMed]
 - Wang, W.H.; Liu, K.Y.; Jiang, J.; Du, R.X.; Sun, L.T.; Chen, W.; Lu, J.P.; Ni, Z.H. Ultrasensitive Graphene-Si Position-Sensitive Detector for Motion Tracking. InfoMat 2020, 2, 761–768. [Google Scholar] [CrossRef]
 - Wang, W.; Yan, Z.; Zhang, J.; Lu, J.; Qin, H.; Ni, Z. High-Performance Position-Sensitive Detector Based on Graphene-Silicon Heterojunction. Optica 2018, 5, 27–31. [Google Scholar] [CrossRef]
 - Kim, C.; Yoo, T.; Kwon, M.; Chang, K.; Hwang, H.; Lee, B. High-Performance Near-Infrared Photodetectors Based on Gate-Controlled Graphene–Germanium Schottky Junction with Split Active Junction. Nanophotonics 2022, 11, 1041–1049. [Google Scholar] [CrossRef]
 - Fu, J.T.; Que, L.C.; Jiang, H.; Luo, W.; Nie, C.B.; Leng, Q.Z.; Luo, Y.; Zhou, Y.; Lv, J.; Zhou, D.H. Effects of Doping Graphene on The Performance of Graphene–Silicon Hybrid Photoconductive Detectors. Nanotechnology 2020, 31, 485201. [Google Scholar] [CrossRef]
 - Zahir, S.A.D.M.; Omar, A.F.; Jamlos, M.F.; Azmi, M.A.M.; Muncan, J. A Review of Visible and Near-Infrared (Vis-NIR) Spectroscopy Application in Plant Stress Detection. Sens. Actuator A Phys. 2022, 338, 113468. [Google Scholar] [CrossRef]
 - Tang, Y.C.; Wu, F.; Chen, F.S.; Zhou, Y.; Wang, P.; Long, M.; Zhou, W.; Ning, Z.; He, J.; Gong, F.; et al. A Colloidal-Quantum-Dot Infrared Photodiode with High Photoconductive Gain. Small 2018, 14, e1803158. [Google Scholar] [CrossRef] [PubMed]
 - Jiang, H.; Wang, M.; Fu, J.T.; Li, Z.C.; Shaikh, M.S.; Li, Y.; Nie, C.; Sun, F.; Tang, L.; Yang, J.; et al. Ultrahigh Photogain Short-Wave Infrared Detectors Enabled by Integrating Graphene and Hyperdoped Silicon. ACS Nano 2022, 16, 12777–12785. [Google Scholar] [CrossRef] [PubMed]
 - Jiang, H.; Wei, J.; Sun, F.; Nie, C.; Fu, J.; Shi, H.; Sun, J.; Wei, X.; Qiu, C.W. Enhanced Photogating Effect in Graphene Photodetectors via Potential Fluctuation Engineering. ACS Nano 2022, 16, 4458–4466. [Google Scholar] [CrossRef]
 - Khurelbaatar, Z.; Choi, C.J. Graphene/Ge Schottky Junction Based IR Photodetectors. Solid State Phenom. 2018, 271, 133–137. [Google Scholar] [CrossRef]
 - Kwon, M.G.; Kim, C.; Chang, K.E.; Yoo, T.J.; Kim, S.Y.; Hwang, H.J.; Lee, S.; Lee, B. Performance Enhancement of Graphene/Ge Near-Infrared Photodetector by Modulating the Doping Level of Graphene. APL Photonics 2022, 7, 026101. [Google Scholar] [CrossRef]
 




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Fu, J.; Sun, F.; Nie, C.; Wu, J. Graphene/Ge Photoconductive Position-Sensitive Detectors Based on the Charge Injection Effect. Nanomaterials 2023, 13, 322. https://doi.org/10.3390/nano13020322
Li G, Fu J, Sun F, Nie C, Wu J. Graphene/Ge Photoconductive Position-Sensitive Detectors Based on the Charge Injection Effect. Nanomaterials. 2023; 13(2):322. https://doi.org/10.3390/nano13020322
Chicago/Turabian StyleLi, Genglin, Jintao Fu, Feiying Sun, Changbin Nie, and Jun Wu. 2023. "Graphene/Ge Photoconductive Position-Sensitive Detectors Based on the Charge Injection Effect" Nanomaterials 13, no. 2: 322. https://doi.org/10.3390/nano13020322
APA StyleLi, G., Fu, J., Sun, F., Nie, C., & Wu, J. (2023). Graphene/Ge Photoconductive Position-Sensitive Detectors Based on the Charge Injection Effect. Nanomaterials, 13(2), 322. https://doi.org/10.3390/nano13020322
        
