In Vitro Antimicrobial Activity of Contezolid Against Mycobacterium tuberculosis and Absence of Cross-Resistance with Linezolid
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Cultures
2.2. Susceptibility Testing
2.3. Induced Mutation Frequencies
2.4. Inhibition of Intracellular Mtb Replication
2.5. Selection of Highly Oxazolidinone-Resistant Strains
2.6. Cross-Resistance Analysis of Oxazolidinone-Resistant Strains
2.7. Whole-Genome Sequencing Analysis
2.8. Mouse Peritoneal Macrophage Isolation and Cytotoxicity Detection
2.9. Statistical Analysis
3. Results
3.1. Resistance Profiles of Mtb Isolates
3.2. MICs of Contezolid and Mutation Frequencies of Mtb
3.3. Inhibition of Intracellular Mtb Replication
3.4. Mutations Associated with Contezolid Resistance and Cross-Resistance with Linezolid
3.5. Cytotoxicity Induced by Contezolid
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Heyckendorf, J.; Georghiou, S.B.; Frahm, N.; Heinrich, N.; Kontsevaya, I.; Reimann, M.; Holtzman, D.; Imperial, M.; Cirillo, D.M.; Gillespie, S.H.; et al. Tuberculosis Treatment Monitoring and Outcome Measures: New Interest and New Strategies. Clin. Microbiol. Rev. 2022, 35, e0022721. [Google Scholar] [CrossRef]
- WHO. WHO Consolidated Guidelines on Tuberculosis Module 4: Treatment Drug-Resistant Tuberculosis Treatment; WHO: Geneva, Switzerland, 2020.
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N. Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef]
- Pratama, N.Y.I.; Zulkarnain, B.S.; Soedarsono; Fatmawati, U. Hematological side effect analysis of linezolid in MDR-TB patients with individual therapy. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 777–781. [Google Scholar] [CrossRef]
- Mase, A.; Lowenthal, P.; True, L.; Henry, L.; Barry, P.; Flood, J. Low-Dose Linezolid for Treatment of Patients With Multidrug-Resistant Tuberculosis. Open Forum Infect. Dis. 2022, 9, ofac500. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhan, S.; Fu, L.; Wang, Y.; Zhang, P.; Deng, G. Prospects of contezolid (MRX-I) against multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Drug Discov. Ther. 2022, 16, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Gordeev, M.F.; Yuan, Z.Y. New potent antibacterial oxazolidinone (MRX-I) with an improved class safety profile. J. Med. Chem. 2014, 57, 4487–4497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-X.; Liu, T.-T.; Ren, A.-X.; Liang, W.-X.; Yin, H.; Cai, Y. Advances in contezolid: Novel oxazolidinone antibacterial in Gram-positive treatment. Infection 2024, 52, 787–800. [Google Scholar] [CrossRef]
- Hoy, S.M. Contezolid: First Approval. Drugs 2021, 81, 1587–1591. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, H.; Yuan, H.; Yuan, Z.; Zhang, Y. A Phase III multicentre, randomized, double-blind trial to evaluate the efficacy and safety of oral contezolid versus linezolid in adults with complicated skin and soft tissue infections. J. Antimicrob. Chemother. 2022, 77, 1762–1769. [Google Scholar] [CrossRef]
- Shoen, C.; DeStefano, M.; Hafkin, B.; Cynamon, M. In Vitro and In Vivo Activities of Contezolid (MRX-I) against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2018, 62, e00493-18. [Google Scholar] [CrossRef]
- Guo, Q.; Xu, L.; Tan, F.; Zhang, Y.; Fan, J.; Wang, X.; Zhang, Z.; Li, B.; Chu, H. A Novel Oxazolidinone, Contezolid (MRX-I), Expresses Anti-Mycobacterium abscessus Activity In Vitro. Antimicrob. Agents Chemother. 2021, 65, e0088921. [Google Scholar] [CrossRef]
- Yuan, H.; Wu, H.; Zhang, Y.; Huang, H.; Li, Y.; Wu, J.; Cao, G.; Yu, J.; Guo, B.; Wu, J.; et al. Clinical Pharmacology and Utility of Contezolid in Chinese Patients with Complicated Skin and Soft-Tissue Infections. Antimicrob. Agents Chemother. 2022, 66, e0243021. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Ge, Y.; Hafkin, B. Single- and Multiple-Dose Study To Determine the Safety, Tolerability, Pharmacokinetics, and Food Effect of Oral MRX-I versus Linezolid in Healthy Adult Subjects. Antimicrob. Agents Chemother. 2017, 61, e02181-16. [Google Scholar] [CrossRef] [PubMed]
- Almeida, D.; Li, S.-Y.; Lee, J.; Hafkin, B.; Mdluli, K.; Fotouhi, N.; Nuermberger, E.L.; Arias, C.A. Contezolid can replace linezolid in a novel combination with bedaquiline and pretomanid in a murine model of tuberculosis. Antimicrob. Agents Chemother. 2023, 67, e0078923. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, Z.; Jiang, Y.; Lao, S.; Li, D. Rare tuberculosis in recipients of allogeneic hematopoietic stem cell transplantation successfully treated with contezolid–a typical case report and literature review. Front. Cell. Infect. Microbiol. 2023, 13, 1258561. [Google Scholar] [CrossRef]
- Qin, L.; Wang, J.; Lu, J.; Yang, H.; Zheng, R.; Liu, Z.; Huang, X.; Feng, Y.; Hu, Z.; Ge, B. A deletion in the RD105 region confers resistance to multiple drugs in Mycobacterium tuberculosis. BMC Biol. 2019, 17, 7. [Google Scholar] [CrossRef]
- Bemer, P.; Palicova, F.; RusCh-Gerdes, S.; Drugeon, H.B.; Pfyffer, G.E. Multicenter evaluation of fully automated BACTEC Mycobacteria Growth Indicator Tube 960 system for susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2002, 40, 150–154. [Google Scholar] [CrossRef]
- RusCh-Gerdes, S.; Pfyffer, G.E.; Casal, M.; Chadwick, M.; Siddiqi, S. Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials. J. Clin. Microbiol. 2006, 44, 688–692. [Google Scholar] [CrossRef]
- Kumar, M.; Khan, I.A.; Verma, V.; Kalyan, N.; Qazi, G.N. Rapid, inexpensive MIC determination of Mycobacterium tuberculosis isolates by using microplate nitrate reductase assay. Diagn. Microbiol. Infect. Dis. 2005, 53, 121–124. [Google Scholar] [CrossRef]
- Kong, L.; Ge, B.-X. MyD88-independent activation of a novel actin-Cdc42/Rac pathway is required for Toll-like receptor-stimulated phagocytosis. Cell Res. 2008, 18, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, J.; Chen, L.; Wang, W.; Yu, F.; Xiong, H. Whole-genome sequencing of Mycobacterium tuberculosis for prediction of drug resistance. Epidemiol. Infect. 2022, 150, e22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yu, Y.; Wang, S.; Zhang, Q.; Wu, H.; Wei, J.; Yang, W.; Li, S.; Yang, H. Cardiotoxicity evaluation of nine alkaloids from Rhizoma Coptis. Hum. Exp. Toxicol. 2018, 37, 185–195. [Google Scholar] [CrossRef]
- Carvalhaes, C.G.; Duncan, L.R.; Wang, W.; Sader, H.S. In Vitro Activity and Potency of the Novel Oxazolidinone Contezolid (MRX-I) Tested against Gram-Positive Clinical Isolates from the United States and Europe. Antimicrob. Agents Chemother. 2020, 64, e01195-20. [Google Scholar] [CrossRef]
- Gumbo, T. Biological variability and the emergence of multidrug-resistant tuberculosis. Nat. Genet. 2013, 45, 720–721. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.F.; Schraufnagel, D.E.; Hopewell, P.C. Treatment of Tuberculosis. A Historical Perspective. Ann. Am. Thorac. Soc. 2015, 12, 1749–1759. [Google Scholar] [CrossRef]
- Sirakova, T.D.; Fitzmaurice, A.M.; Kolattukudy, P. Regulation of expression of mas and fadD28, two genes involved in production of dimycocerosyl phthiocerol, a virulence factor of Mycobacterium tuberculosis. J. Bacteriol. 2002, 184, 6796–6802. [Google Scholar] [CrossRef]
- Cox, J.S.; Chen, B.; McNeil, M.; Jr, W.R.J. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999, 402, 79–83. [Google Scholar] [CrossRef]
- Saelens, J.W.; Sweeney, M.I.; Viswanathan, G.; Xet-Mull, A.M.; Smith, K.L.J.; Sisk, D.M.; Hu, D.D.; Cronin, R.M.; Hughes, E.J.; Brewer, W.J.; et al. An ancestral mycobacterial effector promotes dissemination of infection. Cell 2022, 185, 4507–4525.e18. [Google Scholar] [CrossRef]
- Pi, R.; Chen, X.; Meng, J.; Liu, Q.; Chen, Y.; Bei, C.; Wang, C.; Gao, Q. Drug Degradation Caused by mce3R Mutations Confers Contezolid (MRX-I) Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2022, 66, e0103422. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Zhang, J.; Zhang, Y.; Yu, J.; Cao, G.; Chen, Y.; Guo, B.; Shi, Y.; Huang, J.; et al. Short-term Safety, Tolerability, and Pharmacokinetics of MRX-I, an Oxazolidinone Antibacterial Agent, in Healthy Chinese Subjects. Clin. Ther. 2018, 40, 322–332.e5. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Ge, C.; Zhang, H.; Liu, S.; Guo, H.; Cui, J. Compassionate Use of Contezolid for the Treatment of Tuberculous Pleurisy in a Patient with a Leadless Pacemaker. Infect. Drug Resist. 2022, 15, 4467–4470. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Hu, M.; Xu, N.; Shangguan, Y.; Xia, J.; Hu, W.; Li, X.; Zhao, Q.; Xu, K. Concentration of contezolid in cerebrospinal fluid and serum in a patient with tuberculous meningoencephalitis: A case report. Int. J. Antimicrob. Agents 2023, 62, 106875. [Google Scholar] [CrossRef] [PubMed]
Mtb (n = 31) | Minimum Inhibitory Concentration (mg/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|
INH | RIF | ETB | STM | LFX | MOX | AMK | LZD | CZD | |
Susceptible (n = 5) | |||||||||
Y23 | ≤0.06 | ≤0.25 | 0.5 | ≤0.25 | ≤0.125 | ≤0.06 | 0.5 | 0.5 | 0.5 |
Y26 | ≤0.06 | 0.25 | 0.25 | ≤0.25 | ≤0.125 | ≤0.06 | 0.5 | 0.5 | 0.5 |
Y82 | ≤0.06 | ≤0.25 | 0.5 | ≤0.25 | ≤0.125 | ≤0.06 | 0.5 | 1 | 2 |
Y100 | ≤0.06 | ≤0.25 | ≤0.25 | ≤0.25 | ≤0.125 | ≤0.06 | 0.5 | 1 | 2 |
Y161 | ≤0.06 | ≤0.25 | 0.5 | ≤0.25 | ≤0.125 | ≤0.06 | 0.5 | 0.5 | 1 |
MDR (n = 8) | |||||||||
Y2 | 4 * | 4 * | 2 * | 8 * | ≤0.125 | ≤0.06 | 0.5 | 1 | 1 |
Y17 | 2 * | >32 * | 2 * | 0.5 * | 0.25 | 0.25 * | 2 * | 0.5 | 1 |
Y48 | 2 * | >32 * | 4 * | >32 * | ≤0.125 | ≤0.06 | 0.5 | 1 | 1 |
Y111 | 4 * | 4 * | 2 * | >32 * | ≤0.125 | ≤0.06 | >32 * | 2 * | 2 |
Y114 | 4 * | >32 * | 1 * | 8 * | ≤0.125 | ≤0.06 | 0.5 | 1 | 1 |
Y144 | 8 * | >32 * | 1 * | ≤0.25 | ≤0.125 | ≤0.06 | 1 * | 1 | 4 * |
Y182 | >8 * | 4 * | 2 * | >32 * | ≤0.125 | 0.125 | 0.5 | 1 | 1 |
Y218 | 4 * | >32 * | 1 * | >32 * | ≤0.125 | ≤0.06 | 1 * | 1 | 2 |
pre-XDR (n = 18) | |||||||||
Y11 | 2 * | >32 * | 1 * | >32 * | 2 * | 0.25 * | 4 * | 0.5 | 0.5 |
Y61 | >8 * | 1 * | 8 * | >32 * | 8 * | 2 * | 0.5 | 4 * | 4 * |
Y16 | 2 * | >32 * | 4 * | >32 * | 4 * | 1 * | >32 * | 0.5 | 1 |
Y62 | 8 * | 2 * | 8 * | >32 * | 4 * | 0.25 * | 0.5 | 16 * | 16 * |
Y88 | 4 * | >32 * | 4 * | >32 * | 4 * | 1 * | 0.5 | 8 * | 0.5 |
Y89 | >8 * | >32 * | 2 * | >32 * | 8 * | 0.5 * | 4 * | 2 * | 2 |
Y105 | 4 * | >32 * | 4 * | >32 * | 2 * | 0.5 * | 4 * | 1 | 1 |
Y109 | >8 * | >32 * | 2 * | >32 * | 2 * | 0.5 * | 4 * | 1 | 1 |
Y117 | 8 * | >32 * | 1 * | 0.5 * | 2 * | 0.5 * | 1 * | 0.5 | 1 |
Y125 | >8 * | >32 * | 4 * | 32 * | 4 * | 2 * | 4 * | 16 * | >16 * |
Drug | Susceptible | MDR | Pre-XDR | |||
---|---|---|---|---|---|---|
MIC50 | MIC90 | MIC50 | MIC90 | MIC50 | MIC90 | |
Contezolid | 1 | 2 | 1 | 2 | 1 | 16 |
Linezolid | 0.5 | 1 | 1 | 1 | 1 | 16 |
Isolates | Phenotype | MIC (mg/L) | Mutation Frequency Induced by (2×) | ||
---|---|---|---|---|---|
CZD | LZD | CZD | LZD | ||
H37Rv | Wild type | 1 | 0.5 | 4.9 × 10−8 | 1 × 10−9 |
Y23 | Susceptible | 0.5 | 0.5 | 5.64 × 10−8 | 5 × 10−10 |
Y26 | Susceptible | 0.5 | 0.5 | 4.32 × 10−8 | 5 × 10−10 |
Y2 | MDR | 1 | 1 | 2.44 × 10−8 | 2 × 10−10 |
Y48 | MDR | 1 | 1 | 5.3 × 10−8 | 1.1 × 10−10 |
Y117 | pre-MDR | 1 | 0.5 | 7.6 × 10−8 | 1.1 × 10−10 |
Y16 | pre-XDR | 1 | 0.5 | 2.94 × 10−8 | 6.3 × 10−9 |
Mutants | MIC of CZD (mg/L) | Fold Change in CZD MIC | MIC of LZD (mg/L) | Fold Change in LZD MIC | Gene Mutations Referenced Original Strain (Reported) | Mutations in mce3R | |
---|---|---|---|---|---|---|---|
Mutation | Deduced Amino Acid | ||||||
L43-Y23 | 16 | 32 | 8 | 16 | Rv0197 a, rplC, ceoB, integrated mobile genetic element | ||
C39-Y23 | 32 | 64 | 0.5 | 1 | dsbF, integrated mobile genetic element | G838A | E280K |
C41-Y23 | 32 | 64 | 0.5 | 1 | aroG, ceoB, integrated mobile genetic element | c.2206797_2206798 ins GCCATCG | frameshift |
L4-Y26 | 16 | 32 | 16 | 32 | rplC | ||
C12-Y26 | 16 | 32 | 1 | 2 | mas | G506A | G169D |
C14-Y26 | 8 | 16 | 1 | 2 | pks5, mas, Rv2971 | c.2206456_2206462delGCCTCGC | frameshift |
L28-Y117 | 32 | 32 | 4 | 8 | rrl, Rv2082 | ||
C31-Y117 | 32 | 32 | 0.5 | 1 | esxM b, Rv2082 | G734A | G245D |
C33-Y117 | 32 | 32 | 0.5 | 1 | esxM b, Rv2082 | G815A | R272H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Chen, J.; He, Y.; Zheng, R.; Wang, J.; Huang, X.; Sha, W.; Qin, L. In Vitro Antimicrobial Activity of Contezolid Against Mycobacterium tuberculosis and Absence of Cross-Resistance with Linezolid. Microorganisms 2025, 13, 2216. https://doi.org/10.3390/microorganisms13092216
Wang L, Chen J, He Y, Zheng R, Wang J, Huang X, Sha W, Qin L. In Vitro Antimicrobial Activity of Contezolid Against Mycobacterium tuberculosis and Absence of Cross-Resistance with Linezolid. Microorganisms. 2025; 13(9):2216. https://doi.org/10.3390/microorganisms13092216
Chicago/Turabian StyleWang, Li, Jianxia Chen, Yifan He, Ruijuan Zheng, Jie Wang, Xiaochen Huang, Wei Sha, and Lianhua Qin. 2025. "In Vitro Antimicrobial Activity of Contezolid Against Mycobacterium tuberculosis and Absence of Cross-Resistance with Linezolid" Microorganisms 13, no. 9: 2216. https://doi.org/10.3390/microorganisms13092216
APA StyleWang, L., Chen, J., He, Y., Zheng, R., Wang, J., Huang, X., Sha, W., & Qin, L. (2025). In Vitro Antimicrobial Activity of Contezolid Against Mycobacterium tuberculosis and Absence of Cross-Resistance with Linezolid. Microorganisms, 13(9), 2216. https://doi.org/10.3390/microorganisms13092216