Geosmin Events Associated with Dolichospermum circinale Abundance Promoted by Nitrogen Supply in a Chinese Large Tropical Eutrophic Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling Time of the Dataset
2.2. Determination of Environmental Variables
2.3. Cyanobacteria Counting
2.4. Measurement of Total Geosmin
2.5. Identification of Geosmin-Producing Species and Cells’ Geosmin Measurements
2.6. Statistical Analysis
3. Results
3.1. Environmental Conditions and Cyanobacteria Composition
3.2. The Dynamics of Geosmin Concentration
3.3. The Factors Affecting Geosmin Dynamics
3.4. The Driving Factors of the Seasonal Dynamics of D. circinalis Abundance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Watson, S.B.; Ridal, J.; Boyer, G.L. Taste and odour and cyanobacterial toxins: Impairment, prediction, and management in the Great Lakes. Can. J. Fish. Aquat. Sci. 2008, 65, 1779–1796. [Google Scholar] [CrossRef]
- Howgate, P. Tainting of farmed fish by geosmin and 2-methyl-iso-borneol: A review of sensory aspects and of uptake/depuration. Aquaculture 2004, 234, 155–181. [Google Scholar] [CrossRef]
- Jung, S.W.; Baek, K.H.; Yu, M.J. Treatment of taste and odor material by oxidation and adsorption. Water Sci. Technol. 2004, 49, 289–295. [Google Scholar] [CrossRef]
- Parinet, J.; Rodriguez, M.J.; Sérodes, J. Influence of water quality on the presence of off-flavour compounds (geosmin and 2-methylisoborneol). Water Res. 2010, 44, 5847–5856. [Google Scholar] [CrossRef]
- Dong, Z.Y.; Lin, Y.L.; Zhang, T.Y.; Hu, C.Y.; Pan, Y.; Zheng, Z.X.; Tang, Y.L.; Gao, N.Y. The formation, analysis, and control of chlor (am) ination-derived odor problems: A review. Water Res. 2021, 203, 117549. [Google Scholar] [CrossRef]
- Mustapha, S.; Tijani, J.O.; Ndamitso, M.M.; Abdulkareem, A.S.; Shuaib, D.T.; Mohammed, A.K. A critical review on geosmin and 2-methylisoborneol in water: Sources, effects, detection, and removal techniques. Environ. Monit. Assess. 2021, 193, 204. [Google Scholar] [CrossRef] [PubMed]
- Jüttner, F.; Watson, S.B. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl. Environ. Microbiol. 2007, 73, 4395–4406. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.; Chiu, Y.T.; Hsueh, H.T.; Lin, T.F. Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Water Res. 2021, 188, 116478. [Google Scholar] [CrossRef]
- Garbeva, P.; Avalos, M.; Ulanova, D.; van Wezel, G.P.; Dickschat, J.S. Volatile sensation: The chemical ecology of the earthy odorant geosmin. Environ. Microbiol. 2023, 25, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Gaget, V.; Giglio, S.; Burch, M.; An, W.; Yang, M. Establishment of quantitative PCR methods for the quantification of geosmin-producing potential and Anabaena sp. in freshwater systems. Water Res. 2013, 47, 3444–3454. [Google Scholar] [CrossRef]
- Wu, A.; Wang, Y.; Friese, K.; Zhang, L.; Han, C.; Kang, D.; Shen, Q. Spatial and Seasonal Distribution of 2-Methylisoborneol in a Large Eutrophic Shallow Lake, China. Water Air Soil Pollut. 2021, 232, 387–400. [Google Scholar] [CrossRef]
- Qiu, P.; Zhang, Y.; Mi, W.; Song, G.; Bi, Y. Producers and drivers of odor compounds in a large drinking-water source. Front. Ecol. Evol. 2023, 11, 1216567. [Google Scholar] [CrossRef]
- Hooper, A.S.; Kille, P.; Watson, S.E.; Christofides, S.R.; Perkins, R.G. The importance of nutrient ratios in determining elevations in geosmin synthase (geoA) and 2-MIB cyclase (mic) resulting in taste and odour events. Water Res. 2023, 232, 119693. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, L.; Kang, X.; Zhang, H.; Lü, F.; He, P. A critical review on odor measurement and prediction. J. Environ. Manag. 2023, 336, 117651. [Google Scholar] [CrossRef]
- Cao, J.; Wu, Y.; Li, Z.K.; Hou, Z.Y.; Wu, T.H.; Chu, Z.S.; Zheng, B.; Yang, P.; Yang, Y.; Li, C.; et al. Dependence of evolution of Cyanobacteria superiority on temperature and nutrient use efficiency in a meso-eutrophic plateau lake. Sci. Total Environ. 2024, 927, 172338. [Google Scholar] [CrossRef]
- Saadoun, I.M.K.; Schrader, K.K.; Blevins, W.T. Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp. Water Res. 2001, 35, 1209–1218. [Google Scholar] [CrossRef]
- Jähnichen, S.; Jäschke, K.; Wieland, F.; Packroff, G.; Benndorf, J. Spatio-temporal distribution of cell-bound and dissolved geosmin in Wahnbach Reservoir: Causes and potential odour nuisances in raw water. Water Res. 2011, 45, 4973–4982. [Google Scholar] [CrossRef]
- Olsen, B.K.; Chislock, M.F.; Rebelein, A.; Wilson, A.E. Nutrient enrichment and vertical mixing mediate 2-methylisoborneol and geosmin concentrations in a drinking water reservoir. Water Supply 2017, 17, 500–507. [Google Scholar] [CrossRef]
- Wang, Z.; Li, R. Effects of light and temperature on the odor production of 2-methylisoborneol-producing Pseudanabaena sp. and geosmin-producing Anabaena ucrainica (cyanobacteria). Biochem. Syst. Ecol. 2015, 58, 219–226. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Zheng, L.; Song, L. Effects of nutritional factors on the geosmin production of Lyngbya kuetzingii UTEX 1547 (Oscillatoriales, Cyanobacteria). Phycologia 2017, 56, 221–229. [Google Scholar] [CrossRef]
- Clercin, N.A.; Druschel, G.K. Influence of environmental factors on the production of MIB and geosmin metabolites by bacteria in a eutrophic reservoir. Water Resour. Res. 2019, 55, 5413–5430. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Song, L.R.; Chen, W. Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii (Cyanophyta). J. Appl. Phycol. 2009, 21, 279–285. [Google Scholar] [CrossRef]
- Hwan, J.B.; Kim, H.N.; Kang, T.G.; Kim, B.H.; Byeon, M.S. Study of the cause of the generation of odor compounds (geosmin and 2-methylisoborneol) in the Han River system, the drinking water source, Republic of Korea. Water Supply 2023, 23, 1081–1093. [Google Scholar] [CrossRef]
- Taranu, Z.E.; Gregory-Eaves, I.; Leavitt, P.R.; Bunting, L.; Buchaca, T.; Catalan, J.; Domaizon, I.; Guilizzoni, P.; Lami, A.; McGowan, S.; et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 2015, 18, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Kakouei, K.; Kraemer, B.M.; Anneville, O.; Carvalho, L.; Feuchtmayr, H.; Graham, J.L.; Higgins, S.; Pomati, F.; Rudstam, L.G.; Stockwell, J.D.; et al. Phytoplankton and cyanobacteria abundances in mid-21st century lakes depend strongly on future land use and climate projections. Glob. Change Biol. 2021, 27, 6409–6422. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Wang, Q.; Miao, H.; Shimada, M.; Utsumi, M.; Lei, Z.; Zhang, Z.; Nishimura, O.; Asada, Y.; Fujimoto, N.; et al. Kazuya Shimizu Temperature affects growth, geosmin/2-methylisoborneol production, and gene expression in two cyanobacterial species. Environ. Sci. Pollut. Res. 2022, 29, 12017–12026. [Google Scholar] [CrossRef]
- Perkins, R.G.; Slavin, E.I.; Andrade, T.M.C.; Blenkinsopp, C.; Pearson, P.; Froggatt, T.; Godwin, G.; Parslow, J.; Hurley, S.; Luckwell, R.; et al. Managing taste and odour metabolite production in drinking water reservoirs: The importance of ammonium as a key nutrient trigger. J. Environ. Manag. 2019, 244, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Sommer, U.; Adrian, R.; De Senerpont Domis, L.; Elser, J.J.; Gaedke, U.; Ibelings, B.; Jeppesen, E.; Lürling, M.; Molinero, J.C.; Mooij, W.M.; et al. Beyond the Plankton Ecology Group (PEG) model: Mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 429–448. [Google Scholar] [CrossRef]
- Huo, D.; Gan, N.; Geng, R.; Cao, Q.; Song, L.; Yu, G.; Li, R. Cyanobacterial blooms in China: Diversity, distribution, and cyanotoxins. Harmful Algae 2021, 109, 102106. [Google Scholar] [CrossRef]
- Harris, T.D.; Reinl, K.L.; Azarderakhsh, M.; Berger, S.A.; Berman, M.C.; Bizic, M.; Bhattacharyaf, R.; Burnetg, S.H.; Cianci-Gaskillh, J.A.; De Senerpont Domis, L.; et al. What makes a cyanobacterial bloom disappear? A review of the abiotic and biotic cyanobacterial bloom loss factors. Harmful Algae 2024, 133, 102599. [Google Scholar] [CrossRef]
- Lei, L.M.; Peng, L.; Huang, X.H.; Han, B.P. Occurrence and dominance of Raphidiopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China. Environ. Monit. Assess. 2014, 86, 3079–3090. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.J.; Lei, L.M.; Peng, L.; Lin, Q.Q.; Naselli-Flores, L. Iron operates as an important factor promoting year-round diazotrophic cyanobacteria blooms in eutrophic reservoirs in the tropics. Ecol. Indic. 2021, 125, 107446. [Google Scholar] [CrossRef]
- Xiao, L.J.; Han, B.P.; Lin, Q.Q.; Lei, L.M. Usage of flocculation in emergent control of algal bloom in drinking water supplying reservoir. Environ. Sci. 2007, 28, 2192–2197. [Google Scholar]
- Xiao, L.J.; Xie, J.; Tan, L.; Lei, L.M.; Peng, L.; Wang, Z.; Naselli-Flores, L. Iron enrichment from hypoxic hypolimnion supports the blooming of Raphidiopsis raciborskii in a tropical reservoir. Water Res. 2022, 219, 118562. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Water Works Association and Water Pollution Control Federation: Washington, DC, USA, 1989. [Google Scholar]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication. University of Galway. 2024. Available online: https://www.algaebase.org (accessed on 17 February 2024).
- Hu, H.; Wei, Y. The Freshwater Algae of China: Systematics, Taxonomy and Ecology; Science Press: Beijing, China, 2006. [Google Scholar]
- Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Int. Ver. Theor. Und Angew. Limnol. 1958, 9, 1–38. [Google Scholar] [CrossRef]
- Hillebrand, H.; Dürselen, C.D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Springer: New York, NY, USA, 2011. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 17 October 2023).
- Asquith, E.; Evans, C.; Dunstan, R.H.; Geary, P.; Cole, B. Distribution, abundance and activity of geosmin and 2-methylisoborneol-producing Streptomyces in drinking water reservoirs. Water Res. 2018, 145, 30–38. [Google Scholar] [CrossRef]
- Smith, J.L.; Boyer, G.L.; Zimba, P.V. A review of cyanobactarial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaclture 2008, 280, 5–20. [Google Scholar] [CrossRef]
- Cao, T.; Fang, J.; Jia, Z.; Zhu, Y.; Su, M.; Zhang, Q.; Song, Y.; Yu, J.; Yang, M. Early warning of MIB episode based on gene abundance and expression in drinking water reservoirs. Water Res. 2023, 231, 119667. [Google Scholar] [CrossRef]
- Bowmer, K.H.; Padovan, A.; Oliver, R.L.; Korth, W.; Ganf, G.G. Physiology of geosmin production by Anabaena circinalis isolated from the Murrumbidgee River, Australia. Water Sci. Technol. 1992, 25, 259–267. [Google Scholar] [CrossRef]
- Jones, G.J.; Korth, W. In situ production of volatile odour compounds by river and reservoir phytoplankton populations in Australia. Water Sci. Technol. 1995, 31, 145–151. [Google Scholar] [CrossRef]
- Smith, V.H.; Sieber-Denlinger, J.; deNoyelles, F.; Campell, S.; Pan, S.; Randtke, S.J.; Blain, G.; Strasser, V.A. Managing taste and odor problems in a eutrophic drinking water reservoir. Lake Reserv. Manag. 2002, 18, 319–323. [Google Scholar] [CrossRef]
- Uwins, H.K.; Teasdale, P.; Stratton, H. A case study investigating the occurrence of geosmin and 2-methylisoborneol (MIB) in the surface waters of the Hinze Dam, Gold Coast, Australia. Water Sci. Technol. 2007, 55, 231–238. [Google Scholar] [CrossRef]
- Byun, J.H.; Hwang, S.J.; Kim, B.H.; Park, J.R.; Lee, J.K.; Lim, B.J. Relationship between a dense population of cyanobacteria and odorous compounds in the North Han River system in 2014 and 2015. Korean J. Ecol. Environ. 2015, 48, 263–271. [Google Scholar] [CrossRef]
- Li, X.; Dreher, T.W.; Li, R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 2016, 54, 54–68. [Google Scholar] [CrossRef]
- Li, L.; Wan, N.; Gan, N.Q.; Xia, B.D.; Song, L.R. Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi, China. Water Sci. Technol. 2007, 55, 43–50. [Google Scholar] [CrossRef]
- Li, Z.; Hobson, P.; An, W.; Burch, M.D.; House, J.; Yang, M. Earthy odor compounds production and loss in three cyanobacterial cultures. Water Res. 2012, 46, 5165–5173. [Google Scholar] [CrossRef] [PubMed]
- Smucker, N.J.; Beaulieu, J.J.; Nietch, C.T.; Young, J.L. Increasingly severe cyanobacterial blooms and deep water hypoxia coincide with warming water temperatures in reservoirs. Glob. Change Biol. 2021, 27, 2507–2519. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Chen, X.; Deng, Q.; Yang, L.; Li, X.; Zhang, J.; Song, C.; Zhou, Y.; Cao, X. Phosphorus strategy in bloom-forming cyanobacteria (Dolichospermum and Microcystis) and its role in their succession. Harmful Algae 2019, 84, 46–55. [Google Scholar] [CrossRef]
- Nielsen, A.; Trolle, D.; Me, W.; Luo, L.; Han, B.P.; Liu, Z.; Olesen, J.E.; Jeppesen, E. Assessing ways to combat eutrophication in a Chinese drinking water reservoir using SWAT. Mar. Freshw. Res. 2013, 64, 475–492. [Google Scholar] [CrossRef]
- Espinosa, C.; Abril, M.; Guasch, H.; Pou, N.; Proia, L.; Ricart, M.; Ordeix, M.; Llenas, L. Water flow and light availability influence on intracellular geosmin production in river biofilms. Front. Microbiol. 2020, 10, 3002. [Google Scholar] [CrossRef]
- Howard, C.S. Taste and Odor Event Dynamics of a Midwestern Freshwater Reservoir. Ph.D. Thesis, Indiana University, Bloomington, IN, USA, 2020. [Google Scholar]
- Alghanmi, H.A.; Alkam, F.A.M.; Al-Taee, M.M. Effect of light and temperature on new cyanobacteria producers for geosmin and 2-methylisoborneol. J. Appl. Phycol. 2018, 30, 319–328. [Google Scholar] [CrossRef]
- Watson, S.B.; Ridal, J. Periphyton: A primary source of widespread and severe taste and odour. Water Sci. Technol. 2004, 49, 33–39. [Google Scholar] [CrossRef]
- Zhou, B.; Yuan, R.; Shi, C.; Yu, L.; Gu, J.; Zhang, C. Biodegradation of geosmin in drinking water by novel bacteria isolated from biologically active carbon. J. Environ. Sci. 2011, 23, 816–823. [Google Scholar] [CrossRef]
- Hoefel, D.; Ho, L.; Monis, P.T.; Newcombe, G.; Saint, C.P. Biodegradation of geosmin by a novel Gram-negative bacterium; isolation, phylogenetic characterisation and degradation rate determination. Water Res. 2009, 43, 2927–2935. [Google Scholar] [CrossRef]
- Durrer, M.; Zimmermann, U.; Jüttner, F. Dissolved and particle-bound geosmin in a mesotrophic lake (Lake Zurich): Spatial and seasonal distribution and the effect of grazers. Water Res. 1999, 33, 3628–3636. [Google Scholar] [CrossRef]
Instruments | Conditions |
---|---|
GC-MS: 6890N-5975c (Agilent, Santa Clara, CA, USA) | Volume vial/volume liquid: 20 mL/10 mL |
Detector: 5975c (Agilent, USA) | Extraction time: 25 min |
Column: HP5-MS (30 m × 0.25 mm) (Agilent, USA) | Extraction temperature: 60 °C |
Fiber HSPME: Stable Flex 50/30 μm DVB/CAR/PDMS (Supelco, USA) | Desorption time: 2 min |
Carrier gas: He 30 mL min−1 | |
Injection temperature: 250 °C | |
Oven temperature: 40 °C (2 min); 40–250 °C (15 °C/min) | |
Ionizer temperature: 230 °C | |
Ionization voltage: 70 eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.-J.; Jiang, Y.; Chen, Z.; Peng, L.; Tang, Y.; Lei, L. Geosmin Events Associated with Dolichospermum circinale Abundance Promoted by Nitrogen Supply in a Chinese Large Tropical Eutrophic Reservoir. Microorganisms 2024, 12, 2610. https://doi.org/10.3390/microorganisms12122610
Xiao L-J, Jiang Y, Chen Z, Peng L, Tang Y, Lei L. Geosmin Events Associated with Dolichospermum circinale Abundance Promoted by Nitrogen Supply in a Chinese Large Tropical Eutrophic Reservoir. Microorganisms. 2024; 12(12):2610. https://doi.org/10.3390/microorganisms12122610
Chicago/Turabian StyleXiao, Li-Juan, Yanru Jiang, Zihan Chen, Liang Peng, Yali Tang, and Lamei Lei. 2024. "Geosmin Events Associated with Dolichospermum circinale Abundance Promoted by Nitrogen Supply in a Chinese Large Tropical Eutrophic Reservoir" Microorganisms 12, no. 12: 2610. https://doi.org/10.3390/microorganisms12122610
APA StyleXiao, L.-J., Jiang, Y., Chen, Z., Peng, L., Tang, Y., & Lei, L. (2024). Geosmin Events Associated with Dolichospermum circinale Abundance Promoted by Nitrogen Supply in a Chinese Large Tropical Eutrophic Reservoir. Microorganisms, 12(12), 2610. https://doi.org/10.3390/microorganisms12122610