Analysis of the Monophyletic Lineage of Avian Influenza H5N1 Which Circulated in Venezuelan Birds During the 2022–2023 Outbreak
Abstract
:1. Introduction
2. Materials and Methods
2.1. Real-Time PCR Detection of Influenza H5N1 Samples
2.2. Genome Amplification and Sequencing
2.3. Phylogenetic Analysis
2.4. Mutation Analysis
2.5. Docking Analysis
3. Results
3.1. H5N1 Venezuelan Samples
- (1)
- Tracheal or cloacal swabs of the dead birds collected along the coast (in a few cases, also organs after autopsy: collection was performed in the best-preserved birds);
- (2)
- Active surveillance in poultry, where no case of influenza H5N1 was detected.
3.2. Phylogenetic Analysis
- (1)
- The Chocó-Colombia sequences, in green, share a lineage with North American sequences from Michigan, Minnesota, Massachusetts, Wisconsin, New York (United States), and Ontario (Canada); these sequences correspond to the Atlantic/Mississippi bird flyway genotype B1.2-like [29].
- (2)
- The Venezuelan sequences, in blue, share a lineage with North American sequences from North Carolina, Kansas, and Alabama (United States), derived from the Atlantic flyway. This genotype is composed of PB2, NP, and NS genes from an American lineage and PB1, PA, HA, NA, and MP from the Eurasian one. These isolates were previously described and named Min-Ven by Ospina-Jimenez et al. [29], also associating Venezuelan isolates with viruses from Kansas, New York, Florida, and Canada. This genotype has been reported as a minor group in North America, tracing the American genes to three strains: A/Mallard/Alberta/175/2021(H4N6) with 98.8% identity in PB2, A/Mallard/Alberta/357/2022(H3N8) with 98.9% identity in NP, and A/blue-winged teal/Guatemala/CIP049-H189-19/2019(H14N4) with 99% identity in NS [29].
- (3)
- The rest of the South American sequences include sequences from Ecuador, Peru, Colombia, Brazil, Uruguay, Argentina, and Chile, which share a lineage with the North American sequences from Idaho, Washington, Iowa, Louisiana, Arkansas (United States), and Manitoba (Canada), which correspond to the Pacific flyway, genotype B1.1-like [29].
3.3. Analysis of Mutations Involved in Pathogenesis and Mammal Adaptation
3.4. Docking Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Meade, P.S.; Bandawane, P.; Bushfield, K.; Hoxie, I.; Azcona, K.R.; Burgos, D.; Choudhury, S.; Diaby, A.; Diallo, M.; Gaynor, K.; et al. Detection of clade 2.3.4.4b highly pathogenic H5N1 influenza virus in New York City. J. Virol. 2024, 98, e0062624. [Google Scholar] [CrossRef] [PubMed]
- Bui, C.H.T.; Kuok, D.I.T.; Yeung, H.W.; Ng, K.C.; Chu, D.K.W.; Webby, R.J.; Nicholls, J.M.; Peiris, J.S.M.; Hui, K.P.Y.; Chan, M.C.W. Risk Assessment for Highly Pathogenic Avian Influenza A(H5N6/H5N8) Clade 2.3.4.4 Viruses. Emerg. Infect. Dis. 2021, 27, 2619–2627. [Google Scholar] [CrossRef]
- Dhingra, M.S.; Artois, J.; Robinson, T.P.; Linard, C.; Chaiban, C.; Xenarios, I.; Engler, R.; Liechti, R.; Kuznetsov, D.; Xiao, X.; et al. Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation. Elife 2016, 5, e19571. [Google Scholar] [CrossRef]
- WHO. Cumulative Number of Confirmed Human Cases for Avian Influenza A(H5N1) Reported to WHO, 2003–2024, 27 September 2024. Available online: https://cdn.who.int/media/docs/default-source/influenza/h5n1-human-case-cumulative-table/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who--2003-20240d3080c9-5705-434e-98d4-76bbcb45fc90.pdf?sfvrsn=a8e6826b_1&download=true (accessed on 16 November 2024).
- Xie, R.; Edwards, K.M.; Wille, M.; Wei, X.; Wong, S.S.; Zanin, M.; El-Shesheny, R.; Ducatez, M.; Poon, L.L.M.; Kayali, G.; et al. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature 2023, 622, 810–817. [Google Scholar] [CrossRef]
- Webby, R.J.; Uyeki, T.M. An Update on Highly Pathogenic Avian Influenza A(H5N1) Virus, Clade 2.3.4.4b. J. Infect. Dis. 2024, 230, 533–542. [Google Scholar] [CrossRef]
- Burrough, E.R.; Magstadt, D.R.; Petersen, B.; Timmermans, S.J.; Gauger, P.C.; Zhang, J.; Siepker, C.; Mainenti, M.; Li, G.; Thompson, A.C.; et al. Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus Infection in Domestic Dairy Cattle and Cats, United States, 2024. Emerg. Infect. Dis. 2024, 30, 1335–1343. [Google Scholar] [CrossRef]
- Ellis, J.S.; Curran, M.D. Simultaneous molecular detection and confirmation of influenza AH5, with internal control. Methods Mol. Biol. 2011, 665, 161–181. [Google Scholar] [CrossRef]
- WHO. WHO Information for the Molecular Detection of Influenza Viruses. 2021. Available online: https://cdn.who.int/media/docs/default-source/influenza/molecular-detention-of-influenza-viruses/protocols_influenza_virus_detection_feb_2021.pdf (accessed on 30 June 2024).
- Zhou, B.; Donnelly, M.E.; Scholes, D.T.; St George, K.; Hatta, M.; Kawaoka, Y.; Wentworth, D.E. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J. Virol. 2009, 83, 10309–10313. [Google Scholar] [CrossRef]
- Borges, V.; Pinheiro, M.; Pechirra, P.; Guiomar, R.; Gomes, J.P. INSaFLU: An automated open web-based bioinformatics suite “from-reads” for influenza whole-genome-sequencing-based surveillance. Genome Med. 2018, 10, 46. [Google Scholar] [CrossRef]
- WHO/OIE/FAO. Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza Other Respir. Viruses 2014, 8, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- GISAID. Available online: https://gisaid.org/ (accessed on 1 March 2024).
- NIH. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 1 March 2024).
- IQ-TREE. Available online: http://iqtree.cibiv.univie.ac.at/ (accessed on 5 March 2024).
- iTOL. Available online: https://itol.embl.de/ (accessed on 6 March 2024).
- Lu, C.; Cai, Z.; Zou, Y.; Zhang, Z.; Chen, W.; Deng, L.; Du, X.; Wu, A.; Yang, L.; Wang, D.; et al. FluPhenotype—A one-stop platform for early warnings of the influenza A virus. Bioinformatics 2020, 36, 3251–3253. [Google Scholar] [CrossRef] [PubMed]
- Noisumdaeng, P.; Phadungsombat, J.; Weerated, S.; Wiriyarat, W.; Puthavathana, P. Genetic evolution of hemagglutinin and neuraminidase genes of H5N1 highly pathogenic avian influenza viruses in Thailand. PeerJ 2022, 10, e14419. [Google Scholar] [CrossRef]
- Molini, U.; Yabe, J.; Meki, I.K.; Ouled Ahmed Ben Ali, H.; Settypalli, T.B.K.; Datta, S.; Coetzee, L.M.; Hamunyela, E.; Khaiseb, S.; Cattoli, G.; et al. Highly pathogenic avian influenza H5N1 virus outbreak among Cape cormorants (Phalacrocorax capensis) in Namibia, 2022. Emerg. Microbes Infect. 2023, 12, 2167610. [Google Scholar] [CrossRef]
- Mosaad, Z.; Elhusseiny, M.H.; Zanaty, A.; Fathy, M.M.; Hagag, N.M.; Mady, W.H.; Said, D.; Elsayed, M.M.; Erfan, A.M.; Rabie, N.; et al. Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3.4.4b in Egypt, 2021–2022. Pathogens 2023, 12, 90. [Google Scholar] [CrossRef]
- Expasy-ScanPROSITE. Available online: https://prosite.expasy.org/scanprosite/ (accessed on 15 March 2024).
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef]
- SWIS/MODEL. Available online: https://swissmodel.expasy.org/ (accessed on 15 March 2024).
- Shi, Y.; Wu, Y.; Zhang, W.; Qi, J.; Gao, G.F. Enabling the ‘host jump’: Structural determinants of receptor-binding specificity in influenza A viruses. Nat. Rev. Microbiol. 2014, 12, 822–831. [Google Scholar] [CrossRef]
- AutoDock. Available online: https://autodock.scripps.edu/ (accessed on 15 March 2024).
- Cane, J.; Sanderson, N.; Barnett, S.; Vaughan, A.; Pott, M.; Kapel, N.; Morgan, M.; Jesuthasan, G.; Samuel, R.; Ehsaan, M.; et al. Nanopore sequencing of influenza A and B in Oxfordshire and the United Kingdom, 2022–2023. J Infect. 2024, 88, 106164. [Google Scholar] [CrossRef]
- Ospina-Jimenez, A.F.; Gomez, A.P.; Osorio-Zambrano, W.F.; Alvarez-Munoz, S.; Ramirez-Nieto, G.C. Sequence-based epitope mapping of high pathogenicity avian influenza H5 clade 2.3.4.4b in Latin America. Front. Vet. Sci. 2024, 11, 1347509. [Google Scholar] [CrossRef]
- Guo, H.; De Vries, E.; McBride, R.; Dekkers, J.; Peng, W.; Bouwman, K.M.; Nycholat, C.; Verheije, M.H.; Paulson, J.C.; Van Kuppeveld, F.J.M.; et al. Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity. Emerg. Infect. Dis. 2017, 23, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Dadonaite, B.; Ahn, J.J.; Ort, J.T.; Yu, J.; Furey, C.; Dosey, A.; Hannon, W.W.; Vincent Baker, A.L.; Webby, R.J.; King, N.P.; et al. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. PLoS Biol. 2024, 11, e3002916. [Google Scholar] [CrossRef] [PubMed]
- Wille, M.; Waldenström, J. Weathering the Storm of High Pathogenicity Avian Influenza in Waterbirds. Waterbirds 2023, 46, 100–109. [Google Scholar] [CrossRef]
- Gamarra-Toledo, V.; Plaza, P.I.; Gutiérrez, R.; Luyo, P.; Hernani, L.; Angulo, F.; Lambertucci, S.A. Avian flu threatens Neotropical birds. Science 2023, 379, 246. [Google Scholar] [CrossRef]
- Pardo-Roa, C.; Nelson, M.I.; Ariyama, N.; Aguayo, C.; Almonacid, L.I.; Munoz, G.; Navarro, C.; Avila, C.; Ulloa, M.; Reyes, R.; et al. Cross-species transmission and PB2 mammalian adaptations of highly pathogenic avian influenza A/H5N1 viruses in Chile. bioRxiv 2023. [Google Scholar] [CrossRef]
- Bruno, A.; Alfaro-Núñez, A.; de Mora, D.; Armas, R.; Olmedo, M.; Garcés, J.; Garcia-Bereguiain, M.A. First case of human infection with highly pathogenic H5 avian Influenza A virus in South America: A new zoonotic pandemic threat for 2023. J. Travel Med. 2023, 30, taad032. [Google Scholar] [CrossRef]
- Pulit-Penaloza, J.A.; Brock, N.; Belser, J.A.; Sun, X.; Pappas, C.; Kieran, T.J.; Basu Thakur, P.; Zeng, H.; Cui, D.; Frederick, J.; et al. Highly pathogenic avian influenza A(H5N1) virus of clade 2.3.4.4b isolated from a human case in Chile causes fatal disease and transmits between co-housed ferrets. Emerg. Microbes Infect. 2024, 13, 2332667. [Google Scholar] [CrossRef]
- Caliendo, V.; Lewis, N.S.; Pohlmann, A.; Baillie, S.R.; Banyard, A.C.; Beer, M.; Brown, I.H.; Fouchier, R.A.M.; Hansen, R.D.E.; Lameris, T.K.; et al. Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021. Sci. Rep. 2022, 12, 11729. [Google Scholar] [CrossRef]
- Günther, A.; Krone, O.; Svansson, V.; Pohlmann, A.; King, J.; Hallgrimsson, G.T.; Skarphéðinsson, K.H.; Sigurðardóttir, H.; Jónsson, S.R.; Beer, M.; et al. Iceland as Stepping Stone for Spread of Highly Pathogenic Avian Influenza Virus between Europe and North America. Emerg. Infect. Dis. 2022, 28, 2383–2388. [Google Scholar] [CrossRef]
- PAHO. Available online: https://www.paho.org/sites/default/files/2023-03/2023-marzo-13-phe-alerta-influenza-aviar-sp_0.pdf (accessed on 15 March 2024).
- Leguia, M.; Garcia-Glaessner, A.; Muñoz-Saavedra, B.; Juarez, D.; Barrera, P.; Calvo-Mac, C.; Jara, J.; Silva, W.; Ploog, K.; Amaro, L.; et al. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat. Commun. 2023, 14, 5489. [Google Scholar] [CrossRef]
- Ruiz-Saenz, J.; Martinez-Gutierrez, M.; Pujol, F.H. Multiple introductions of highly pathogenic avian influenza H5N1 clade 2.3.4.4b into South America. Travel. Med. Infect. Dis. 2023, 53, 102591. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.A.; (Asociación Civil Fundación Esfera, Universidad Central de Venezuela, Ciudad Bolívar, Venezuela). Personal communication, 2024.
- King, D.T.; Goatcher, B.L.; Fischer, J.W.; Stanton, J.; Lacour, J.M.; Lemmons, S.C.; Wang, W. Home Ranges and Habitat Use of Brown Pelicans (Pelecanus occidentalis) in the Northern Gulf of Mexico. Waterbird 2013, 36, 494–500. [Google Scholar] [CrossRef]
- Gonzalez-Reicheabc, A.S.; Perez, D.R. Where do avian influenza viruses meet in the Americas? Avian Dis. 2012, 56, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Prosser, D.J.; Chen, J.; Ahlstrom, C.A.; Reeves, A.B.; Poulson, R.L.; Sullivan, J.D.; McAuley, D.; Callahan, C.R.; McGowan, P.C.; Bahl, J.; et al. Maintenance and dissemination of avian-origin influenza A virus within the northern Atlantic Flyway of North America. PLoS Pathog. 2022, 18, e1010605. [Google Scholar] [CrossRef]
- Lowen, A.C. Constraints, Drivers, and Implications of Influenza A Virus Reassortment. Annu. Rev. Virol. 2017, 4, 105–121. [Google Scholar] [CrossRef]
- Petrova, V.N.; Russell, C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 2018, 16, 47–60. [Google Scholar] [CrossRef]
- Kandeil, A.; Patton, C.; Jones, J.C.; Jeevan, T.; Harrington, W.N.; Trifkovic, S.; Seiler, J.P.; Fabrizio, T.; Woodard, K.; Turner, J.C.; et al. Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America. Nat. Commun. 2023, 14, 3082. [Google Scholar] [CrossRef]
- Youk, S.; Torchetti, M.K.; Lantz, K.; Lenoch, J.B.; Killian, M.L.; Leyson, C.; Bevins, S.N.; Dilione, K.; Ip, H.S.; Stallknecht, D.E.; et al. H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021–April 2022. Virology 2023, 587, 109860. [Google Scholar] [CrossRef]
- Marandino, A.; Tomás, G.; Panzera, Y.; Leizagoyen, C.; Pérez, R.; Bassetti, L.; Negro, R.; Rodríguez, S.; Pérez, R. Spreading of the High-Pathogenicity Avian Influenza (H5N1) Virus of Clade 2.3.4.4b into Uruguay. Viruses 2023, 15, 1906. [Google Scholar] [CrossRef]
- Luczo, J.M.; Tachedjian, M.; Harper, J.A.; Payne, J.S.; Butler, J.M.; Sapats, S.I.; Lowther, S.L.; Michalski, W.P.; Stambas, J.; Bingham, J. Evolution of high pathogenicity of H5 avian influenza virus: Haemagglutinin cleavage site selection of reverse-genetics mutants during passage in chickens. Sci. Rep. 2018, 8, 11518. [Google Scholar] [CrossRef]
- Guo, X.L.; Li, L.; Wei, D.Q.; Zhu, Y.S.; Chou, K.C. Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin. Amino Acids 2008, 35, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Lee, Y.J.; Senne, D.A.; Suarez, D.L. Pathogenic potential of North American H7N2 avian influenza virus: A mutagenesis study using reverse genetics. Virology 2006, 353, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Luczo, J.M.; Stambas, J.; Durr, P.A.; Michalski, W.P.; Bingham, J. Molecular pathogenesis of H5 highly pathogenic avian influenza: The role of the haemagglutinin cleavage site motif. Rev. Med. Virol. 2015, 25, 406–430. [Google Scholar] [CrossRef] [PubMed]
- Tambunan, U.S.; Ramdhan. Identification of sequence mutations affecting hemagglutinin specificity to sialic acid receptor in influenza A virus subtypes. Bioinformation 2010, 5, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Lazniewski, M.; Dawson, W.K.; Szczepińska, T.; Plewczynski, D. The structural variability of the influenza A hemagglutinin receptor-binding site. Brief. Funct. Genomics 2018, 17, 415–427. [Google Scholar] [CrossRef]
- Russell, R.J.; Stevens, D.J.; Haire, L.F.; Gamblin, S.J.; Skehel, J.J. Avian and human receptor binding by hemagglutinins of influenza A viruses. Glycoconj. J. 2006, 23, 85–92. [Google Scholar] [CrossRef]
ID | State | Locality | Date | Animal | Segments Sequenced | GISAID |
---|---|---|---|---|---|---|
Pel3 | Anzoátegui | Puerto Píritu | 25/11/2022 | Pelican | 1–8 | EPI_ISL_16013752 |
PelHN4 | Anzoátegui | Puerto Píritu | 25/11/2022 | Pelican | 1–8 | EPI_ISL_16013753 |
Inf1 | Miranda | Tacarigua | 7/12/2022 | Pelican | 1–8 | EPI_ISL_18909019 |
Inf3 | Miranda | Higuerote | 7/12/2022 | Pelican | 4–8 | EPI_ISL_16631939 |
Inf9 | La Guaira | Chuspa | 12/12/2022 | Pelican | 1–8 | EPI_ISL_16631973 |
Inf10 | La Guaira | Río Chuspa | 12/12/2022 | Pelican | 1,3–8 | EPI_ISL_18931240 |
Inf11 | La Guaira | Río Chuspa | 12/12/2022 | Pelican | 2,4–8 | EPI_ISL_18931241 |
Inf12 | La Guaira | Río Chuspa | 12/12/2022 | Pelican | - | NA |
Inf13 | Nueva Esparta | Macanao | 16/12/2022 | Pelican | 1–8 | EPI_ISL_16701840 |
Inf14 | Nueva Esparta | Macanao | 16/12/2022 | Pelican | 1–8 | EPI_ISL_18931268 |
Inf15 | La Guaira | Guaira beach | 20/12/2022 | Pelican | 3–8 | EPI_ISL_18931269 |
Inf16 | La Guaira | Guaira beach | 20/12/2022 | Pelican | - | NA |
Inf17 | La Guaira | Catia La Mar | 20/12/2022 | Pelican | 2,4–8 | EPI_ISL_18931270 |
Inf 18 | La Guaira | Naiguata | 20/12/2022 | Pelican | - | NA |
Inf19 | Sucre | Cumaná | 20/12/2022 | Pelican | 1–8 | EPI_ISL_18931271 |
Inf20 | La Guaira | Caruao | 23/12/2022 | Pelican | 1–8 | EPI_ISL_18931272 |
Inf21 | La Guaira | Caruao | 23/12/2022 | Vulture | 1,3–8 | EPI_ISL_18931273 |
Inf41 | La Guaira | Chichiriviche | 11/1/2023 | Pelican | 1–8 | EPI_ISL_18931274 |
Inf43 | La Guaira | Arrecife | 11/1/2023 | Pelican | 2–8 | EPI_ISL_18931275 |
Inf44 | Sucre | Golfo | 27/1/2023 | Pelican | 1–8 | EPI_ISL_18931276 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loureiro, C.L.; Bonetti, V.; Jaspe, R.C.; Sulbaran, Y.; Alcazar, W.; Hernández, C.; Rodríguez, N.; Rangel, H.R.; Zambrano, J.L.; Pujol, F.H. Analysis of the Monophyletic Lineage of Avian Influenza H5N1 Which Circulated in Venezuelan Birds During the 2022–2023 Outbreak. Microorganisms 2024, 12, 2519. https://doi.org/10.3390/microorganisms12122519
Loureiro CL, Bonetti V, Jaspe RC, Sulbaran Y, Alcazar W, Hernández C, Rodríguez N, Rangel HR, Zambrano JL, Pujol FH. Analysis of the Monophyletic Lineage of Avian Influenza H5N1 Which Circulated in Venezuelan Birds During the 2022–2023 Outbreak. Microorganisms. 2024; 12(12):2519. https://doi.org/10.3390/microorganisms12122519
Chicago/Turabian StyleLoureiro, Carmen Luisa, Valeria Bonetti, Rossana C. Jaspe, Yoneira Sulbaran, Wilmer Alcazar, Carlos Hernández, Nardraka Rodríguez, Hector R. Rangel, Jose Luis Zambrano, and Flor H. Pujol. 2024. "Analysis of the Monophyletic Lineage of Avian Influenza H5N1 Which Circulated in Venezuelan Birds During the 2022–2023 Outbreak" Microorganisms 12, no. 12: 2519. https://doi.org/10.3390/microorganisms12122519
APA StyleLoureiro, C. L., Bonetti, V., Jaspe, R. C., Sulbaran, Y., Alcazar, W., Hernández, C., Rodríguez, N., Rangel, H. R., Zambrano, J. L., & Pujol, F. H. (2024). Analysis of the Monophyletic Lineage of Avian Influenza H5N1 Which Circulated in Venezuelan Birds During the 2022–2023 Outbreak. Microorganisms, 12(12), 2519. https://doi.org/10.3390/microorganisms12122519