Acinetobacter baumannii Bloodstream Infections in the COVID-19 Era: A Comparative Analysis between COVID-19 and Non-COVID-19 Critically Ill Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection and Patient Groups
2.3. Study Outcomes
2.4. Definitions
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of COVID-19 and Non-COVID-19 Patients with A. baumannii Bloodstream Infection
3.2. Clinical Characteristics of A. baumannii Bloodstream Infections BSI in COVID-19 and Non-COVID-19 Patients
3.3. Outcome of COVID-19 and Non-COVID-19 Patients with Bloodstream Infection from A. baumannii
3.4. Outcome of COVID-19 and Non-COVID-19 Patients with Septic Shock from A. baumannii Bloodstream Infection
4. Discussion
Limitations-Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilcox, M.E.; Rowan, K.M.; Harrison, D.A.; Doidge, J.C. Does Unprecedented ICU Capacity Strain, As Experienced During the COVID-19 Pandemic, Impact Patient Outcome? Crit. Care Med. 2022, 50, e548–e556. [Google Scholar] [CrossRef]
- Langford, B.J.; Soucy, J.-P.R.; Leung, V.; So, M.; Kwan, A.T.H.; Portnoff, J.S.; Bertagnolio, S.; Raybardhan, S.; MacFadden, D.R.; Daneman, N. Antibiotic Resistance Associated with the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2023, 29, 302–309. [Google Scholar] [CrossRef]
- Che Yusof, R.; Norhayati, M.N.; Mohd Azman, Y. Bacterial Coinfection and Antibiotic Resistance in Hospitalized COVID-19 Patients: A Systematic Review and Meta-Analysis. PeerJ 2023, 11, e15265. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Papathanakos, G.; Andrianopoulos, I.; Papathanasiou, A.; Priavali, E.; Koulenti, D.; Koulouras, V. Colistin-Resistant Acinetobacter Baumannii Bacteremia: A Serious Threat for Critically Ill Patients. Microorganisms 2020, 8, 287. [Google Scholar] [CrossRef] [PubMed]
- Rangel, K.; Chagas, T.P.G.; De-Simone, S.G. Acinetobacter Baumannii Infections in Times of COVID-19 Pandemic. Pathogens 2021, 10, 1006. [Google Scholar] [CrossRef] [PubMed]
- Protonotariou, E.; Mantzana, P.; Meletis, G.; Tychala, A.; Kassomenaki, A.; Vasilaki, O.; Kagkalou, G.; Gkeka, I.; Archonti, M.; Kati, S.; et al. Microbiological Characteristics of Bacteremias among COVID-19 Hospitalized Patients in a Tertiary Referral Hospital in Northern Greece during the Second Epidemic Wave. FEMS Microbes 2022, 2, xtab021. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801. [Google Scholar] [CrossRef]
- Ranieri, V.I.T.O.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; for the KDIGO AKI Guideline Work Group. Diagnosis, Evaluation, and Management of Acute Kidney Injury: A KDIGO Summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef]
- Perez Ruiz de Garibay, A.; Kortgen, A.; Leonhardt, J.; Zipprich, A.; Bauer, M. Critical Care Hepatology: Definitions, Incidence, Prognosis and Role of Liver Failure in Critically Ill Patients. Crit. Care 2022, 26, 289. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; Klompas, M.; Balk, R.; Burns, S.M.; Deutschman, C.S.; Diekema, D.; Fridkin, S.; Greene, L.; Guh, A.; Gutterman, D.; et al. Developing a New, National Approach to Surveillance for Ventilator-Associated Events. Crit. Care Med. 2013, 41, 2467–2475. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of Cefiderocol- vs. Colistin-Containing Regimen for Treatment of Bacteraemic Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter Baumannii in Patients with COVID-19. Int. J. Antimicrob. Agents 2023, 62, 106825. [Google Scholar] [CrossRef]
- Russo, A.; Gavaruzzi, F.; Ceccarelli, G.; Borrazzo, C.; Oliva, A.; Alessandri, F.; Magnanimi, E.; Pugliese, F.; Venditti, M. Multidrug-Resistant Acinetobacter Baumannii Infections in COVID-19 Patients Hospitalized in Intensive Care Unit. Infection 2022, 50, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Alenazi, T.A.; Shaman, M.S.B.; Suliman, D.M.; Alanazi, T.A.; Altawalbeh, S.M.; Alshareef, H.; Lahreche, D.I.; Al-Azzam, S.; Araydah, M.; Karasneh, R.; et al. The Impact of Multidrug-Resistant Acinetobacter Baumannii Infection in Critically Ill Patients with or without COVID-19 Infection. Healthcare 2023, 11, 487. [Google Scholar] [CrossRef]
- Gajic, I.; Jovicevic, M.; Popadic, V.; Trudic, A.; Kabic, J.; Kekic, D.; Ilic, A.; Klasnja, S.; Hadnadjev, M.; Popadic, D.J.; et al. The Emergence of Multi-Drug-Resistant Bacteria Causing Healthcare-Associated Infections in COVID-19 Patients: A Retrospective Multi-Centre Study. J. Hosp. Infect. 2023, 137, 1–7. [Google Scholar] [CrossRef]
- Tabah, A.; Buetti, N.; Staiquly, Q.; Ruckly, S.; Akova, M.; Aslan, A.T.; Leone, M.; Conway Morris, A.; Bassetti, M.; Arvaniti, K.; et al. Epidemiology and Outcomes of Hospital-Acquired Bloodstream Infections in Intensive Care Unit Patients: The EUROBACT-2 International Cohort Study. Intensive Care Med. 2023, 49, 178–190. [Google Scholar] [CrossRef]
- Assimakopoulos, S.F.; Karamouzos, V.; Lefkaditi, A.; Sklavou, C.; Kolonitsiou, F.; Christofidou, M.; Fligou, F.; Gogos, C.; Marangos, M. Triple Combination Therapy with High-Dose Ampicillin/Sulbactam, High-Dose Tigecycline and Colistin in the Treatment of Ventilator-Associated Pneumonia Caused by Pan-Drug Resistant Acinetobacter Baumannii: A Case Series Study. Infez. Med. 2019, 27, 11–16. [Google Scholar]
- Papathanakos, G.; Andrianopoulos, I.; Papathanasiou, A.; Koulenti, D.; Gartzonika, K.; Koulouras, V. Pandrug-Resistant Acinetobacter Baumannii Treatment: Still a Debatable Topic with No Definite Solutions. J. Antimicrob. Chemother. 2020, 75, 3081. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Pandrug-Resistant Gram-Negative Bacteria: A Systematic Review of Current Epidemiology, Prognosis and Treatment Options. J. Antimicrob. Chemother. 2019, 75, 271–282. [Google Scholar] [CrossRef]
- Assimakopoulos, S.F.; Karamouzos, V.; Eleftheriotis, G.; Lagadinou, M.; Bartzavali, C.; Kolonitsiou, F.; Paliogianni, F.; Fligou, F.; Marangos, M. Efficacy of Fosfomycin-Containing Regimens for Treatment of Bacteremia Due to Pan-Drug Resistant Acinetobacter Baumannii in Critically Ill Patients: A Case Series Study. Pathogens 2023, 12, 286. [Google Scholar] [CrossRef] [PubMed]
- Karvouniaris, M.; Almyroudi, M.P.; Abdul-Aziz, M.H.; Blot, S.; Paramythiotou, E.; Tsigou, E.; Koulenti, D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics 2023, 12, 761. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yao, Y.; Zhu, B.; Ren, D.; Yang, Q.; Fu, Y.; Yu, Y.; Zhou, J. Risk Factors for Acquisition and Mortality of Multidrug-Resistant Acinetobacter Baumannii Bacteremia: A Retrospective Study from a Chinese Hospital. Medicine 2019, 98, e14937. [Google Scholar] [CrossRef] [PubMed]
- Alrahmany, D.; Omar, A.F.; Alreesi, A.; Harb, G.; Ghazi, I.M. Acinetobacter Baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions. Antibiotics 2022, 11, 1086. [Google Scholar] [CrossRef]
- Clancy, C.J.; Schwartz, I.S.; Kula, B.; Nguyen, M.H. Bacterial Superinfections Among Persons with Coronavirus Disease 2019: A Comprehensive Review of Data from Postmortem Studies. Open Forum Infect. Dis. 2021, 8, ofab065. [Google Scholar] [CrossRef]
- Losier, A.; Gupta, G.; Caldararo, M.; Dela Cruz, C.S. The Impact of Coronavirus Disease 2019 on Viral, Bacterial, and Fungal Respiratory Infections. Clin. Chest Med. 2023, 44, 407–423. [Google Scholar] [CrossRef]
- Vacheron, C.-H.; Lepape, A.; Savey, A.; Machut, A.; Timsit, J.F.; Comparot, S.; Courno, G.; Vanhems, P.; Landel, V.; Lavigne, T.; et al. Attributable Mortality of Ventilator-Associated Pneumonia Among Patients with COVID-19. Am. J. Respir. Crit. Care Med. 2022, 206, 161–169. [Google Scholar] [CrossRef]
Parameter | Group A COVID-19 Patients (n = 102) | Group B Non-COVID-19 Patients (n = 31) | p-Value |
---|---|---|---|
Age (mean ± SD) | 66.2 ± 14.8 | 67.3 ± 11.6 | NS * |
Gender (female n, %) | 32 (31.4%) | 8 (25.8%) | 0.658 |
CCI * [median (min–max)] | 3 (0–11) | 4 (0–10) | 0.326 |
APACHE II (mean ± SD) | 20.72 ± 5.4 | 23.8 ± 9.5 | 0.01 |
SOFA * on admission [median (min–max)] | 5 (1–13) | 8 (3–17) | 0.001 |
Patients on mechanical ventilation at day of ICU admission, No. (%) | 90 (88.2%) | 24 (77.4%) | 0.185 |
Co-morbidities | |||
Diabetes mellitus, No. (%) | 29 (28.4%) | 8 (25.8%) | 0.824 |
Immunosuppressive treatment, No. (%) | 7 (6.9%) | 1 (3.2%) | 0.680 |
Chronic corticosteroid therapy, No. (%) | 1 (1%) | 4 (12.1%) | 0.011 |
Heart failure, No. (%) | 7 (6.9%) | 2 (6.5%) | NS |
Ischemic Heart Disease, No. (%) | 13 (12.7%) | 6 (19.4%) | 0.384 |
Chronic Kidney Disease, No. (%) | 7 (6.9%) | 2 (6.5%) | NS |
Liver Cirrhosis, No. (%) | 2 (2%) | 0 | NS |
COPD *, No. (%) | 9 (8.8%) | 4 (12.1%) | 0.5 |
Malignancy, No. (%) | 8 (7.8%) | 4 (12.1%) | 0.473 |
Parameter | Group A COVID-19 Patients (n = 102) | Group B Non-COVID-19 Patients (n = 31) | p-Value |
---|---|---|---|
Site of infection | |||
Primary, No. (%) | 27 (26.5%) | 6 (19.4%) | 0.0001 ∫ |
Pneumonia, No. (%) | 57 (55.8%) | 7 (22.5%) | |
Urinary tract, No. (%) | 0 | 0 | |
Unspecified, No. (%) | 15 (14.8%)) | 13 (41.9%) | |
Other, No. (%) | 3 (2.9%) | 5 (16.1%) | |
SOFA * score on day 1 of sepsis, median (min–max) | 9 (2–16) | 9 (2–17) | NS * |
Patients receiving appropriate empiric therapy on day 1 of sepsis, No. (%) | 73 (71.6%) | 17 (54.8%) | 0.124 |
Pharmacological therapy other than antibiotics | |||
Tocilizumab, No. (%) | 65 (63.7%) | 0 | 0.0001 |
Steroids, No. (%) | 100 (98%) | 15 (48.4%) | 0.0001 |
Dose of corticosteroids > 12 mg dexamethasone per day or equivalent, No. (%) | 4 (3.9%) | 7 (22.6%) | 0.003 |
Receiving corticosteroids for more than 14 days, No. (%) | 49 (48%) | 9 (29%) | 0.067 |
Characteristics of A. baumannii strain, No. (%) | |||
PDR * | 24 (23.5%) | 3 (9.7%) | 0.126 |
Colistin Sensitive | 36 (35.3%) | 10 (32.3%) | 0.832 |
Tigecycline Sensitive | 67 (65.7%) | 26 (83.9%) | 0.073 |
Only sensitive to Tigecycline | 30 (29.4%) | 14 (45.2%) | 0.128 |
Complication(s) related to A. baumannii infection, No. (%) | |||
Sepsis | 88 (86.3%) | 21 (67.7%) | 0.03 |
Shock | 85 (88.3%) | 18 (58.1%) | 0.007 |
ARDS * | 80 (78.4%) | 15 (48.4%) | 0.001 |
AKI * | 42 (41.2%) | 17 (54.8%) | 0.203 |
KDIGO * worst stage, No. (% among all patients in the group, % among patients with AKI * in the group) | |||
Stage 1 | 9 (8.8%, 21.4%) | 2 (6.5%, 11.8%) | 0.047 |
Stage 2 | 7 (6.9%, 16.7%) | 5 (16.1%, 29.4%) | |
Stage 3 | 26 (25.5%, 83.8%) | 10 (32.2%, 58.8%) | |
Patients receiving CRRT *, No. (%) | 11 (10.8%) | 4 (12.9%) | 0.746 |
Cardiomyopathy ∞, No. (%) | 9 (8.8%) | 2 (6.5%) | 0.727 |
Coagulopathy ∞, No. (%) | 62 (60.8%) | 16 (51.6%) | 0.294 |
Liver Dysfunction ∞, No. (%) | 45 (44.2%) | 11 (35.5%) | 0.406 |
Parameter | Group A COVID-19 Patients (n = 102) | Group B Non-COVID-19 Patients (n = 31) | p-Value |
---|---|---|---|
Mortality outcomes | |||
All-cause hospital mortality ∫, (%) | 76 (74.5%) | 23 (74.2%) | NS * |
Deaths related to A. baumannii BSI *€, No. (%) | 56 (54.9%) | 14 (45.2%) | 0.787 |
28-day all-cause hospital mortality ∫, No. (%) | 71 (69.6%) | 19 (61.3%) | 0.275 |
7-day all-cause hospital mortality ∫, No. (%) | 42 (41.6%) | 10 (32.3%) | 0.405 |
Secondary outcomes | |||
Free of vasopressors by day 7 ∞ | 10 (9.8%) | 10 (32.3%) | 0.007 |
Microbiological cure by day 7 ∞ | 24 (23.5%) | 11 (35.5%) | 0.244 |
Resolution of sepsis by day 7 ∞ | 13 (12.7%) | 10 (32.3%) | 0.027 |
Days from septic shock onset to death, median (min–max) | 4 (0–122) | 4 (0–19) | NS |
Days in ICU, median (min–max) | 20 (2–154) | 24 (1–233) | NS |
Days in hospital, median (min–max) | 31 (7–263) | 42 (0–279) | NS |
Days on mechanical ventilation, median (min–max) | 20 (1–115) | 20 (0–115) | NS |
Parameter | Group A COVID-19 Patients (n = 102) | Group B Non-COVID-19 Patients (n = 31) | p-Value |
---|---|---|---|
28-day all-cause hospital mortality ∞, No. (%) | 71 (69.6%) | 19 (61.3%) | 0.275 |
28-day mortality for patients with or without septic shock | 0.0001 * | ||
Patients with septic shock, No. (%) € | 69 out of 85 (81.2%) | 16 out of 18 (88.9%) | |
Patients without septic shock, No. (%) € | 2 out of 17 (11.8%) | 3 out of 13 (23.1%) | |
7-day all-cause hospital mortality ∞, No. (%) | 42 (41.6%) | 10 (32.3%) | 0.405 |
7-day mortality for patients with or without septic shock | 0.0001 * | ||
Patients with septic shock, No. (%) € | 42 out of 85 (49.5%) | 9 out of 18 (50%) | |
Patients without septic shock, No. (%) € | 0 out of 17 (0%) | 1 out of 13 (7.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrianopoulos, I.; Maniatopoulou, T.; Lagos, N.; Kazakos, N.; Papathanasiou, A.; Papathanakos, G.; Koulenti, D.; Kittas, C.; Koulouras, V. Acinetobacter baumannii Bloodstream Infections in the COVID-19 Era: A Comparative Analysis between COVID-19 and Non-COVID-19 Critically Ill Patients. Microorganisms 2023, 11, 1811. https://doi.org/10.3390/microorganisms11071811
Andrianopoulos I, Maniatopoulou T, Lagos N, Kazakos N, Papathanasiou A, Papathanakos G, Koulenti D, Kittas C, Koulouras V. Acinetobacter baumannii Bloodstream Infections in the COVID-19 Era: A Comparative Analysis between COVID-19 and Non-COVID-19 Critically Ill Patients. Microorganisms. 2023; 11(7):1811. https://doi.org/10.3390/microorganisms11071811
Chicago/Turabian StyleAndrianopoulos, Ioannis, Theodora Maniatopoulou, Nikolaos Lagos, Nikolaos Kazakos, Athanasios Papathanasiou, Georgios Papathanakos, Despoina Koulenti, Christos Kittas, and Vasilios Koulouras. 2023. "Acinetobacter baumannii Bloodstream Infections in the COVID-19 Era: A Comparative Analysis between COVID-19 and Non-COVID-19 Critically Ill Patients" Microorganisms 11, no. 7: 1811. https://doi.org/10.3390/microorganisms11071811
APA StyleAndrianopoulos, I., Maniatopoulou, T., Lagos, N., Kazakos, N., Papathanasiou, A., Papathanakos, G., Koulenti, D., Kittas, C., & Koulouras, V. (2023). Acinetobacter baumannii Bloodstream Infections in the COVID-19 Era: A Comparative Analysis between COVID-19 and Non-COVID-19 Critically Ill Patients. Microorganisms, 11(7), 1811. https://doi.org/10.3390/microorganisms11071811