Constitutive Analysis of the Deformation Behavior of Al-Mg-Si Alloy Under Various Forming Conditions Using Several Modeling Approaches
Abstract
:1. Introduction
2. Experimental Section
3. Physically Based Models
3.1. CP Modeling
3.2. Modified ZA (MZA) Constitutive Model
4. Phenomenological Models
4.1. Shokry’s MJC-1 (S1-MJC)
4.2. Shokry’s MJC-2 (S2-MJC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Abbreviations |
Temperature | |
Strain rate | |
Deformation gradient | |
Elastic component of deformation gradient | |
Plastic component of deformation gradient | |
Velocity gradient tensor | |
Elastic component of velocity gradient tensor | |
Plastic component of velocity gradient tensor | |
locally stress-free intermediate configuration | |
shearing rate on the α-slip system | |
potential slip system’s number | |
Schmid tensor , and are orthogonal to each other | |
Slip plane direction | |
Slip plane normal | |
Slipping direction | |
Equivalent slip plane normal | |
The second Paola-Kirchhoff stress tensor | |
Cauchy stress tensor | |
The elastic Green-Lagrange strain tensor | |
The elastic right Cauchy-Green deformation tensor | |
Identity tensor | |
The absolute temperature (K) | |
The resolved shear stress tensor | |
The magnitude of the Burgers vector | |
The mobile dislocations density on the slip system. | |
The average velocity of mobile dislocations on the slip system. | |
The average dislocation velocity | |
The average distance between each obstacle on the slip plane. | |
The waiting time for a dislocation to surpass the local obstacles. | |
The Debye frequency | |
The Boltzmann constant | |
The difference in the activation-free enthalpy when the dislocation segment moves from the stable configuration to the unstable configuration | |
The reference slip rate | |
The fraction of the shearing rate by the total dislocation | |
The mean free path | |
The critical annihilation distance for canceling out the two dislocations with opposite polarities | |
The total dislocation density | |
Edge dislocation component | |
Screw dislocation component | |
The dislocation density evaluation, where: | |
The reference critical annihilation distance | |
Constant = 0.001 | |
Constant = 8.617E-5 | |
The total athermal slip resistance parameters | |
b | The Burgers vector’s magnitude |
The shear modulus, | |
λ | For identifying the deviations from the regular spatial arrangements of dislocation density |
The matrix of dislocation interaction | |
The Kronecker delta | |
, | The interaction coefficients |
correlation coefficient | |
average absolute relative error | |
root mean square error | |
The total number of points included in the analysis | |
The experimental stress values | |
The predicted stress values | |
The mean values of experimental stress | |
The mean values of predicted stress | |
The athermal activation flow stress | |
The thermal activation flow stress. | |
Body-centered cubic | |
face-centered cubic | |
, , , , | material constants |
The testing temperature | |
Von-Mises flow stress | |
equivalent plastic strain | |
reference strain rates | |
the ratio between the testing and () | |
Reference temperatures | |
The difference between testing and ( | |
, | material constants |
The melting temperature of AA6082 Al-Mg-Si | |
constants correlate with the | |
representing the strain-hardening component | |
constants associate with the | |
constants related to the softening parameter |
References
- Abd El-Aty, A.; Xu, Y.; Guo, X.; Zhang, S.; Ma, Y.; Chen, D. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review. J. Adv. Res. 2018, 10, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Alami, A.H.; Olabi, A.G.; Alashkar, A.; Alasad, S.; Aljaghoub, H.; Rezk, H.; Abdelkareem, M.A. Additive manufacturing in the aerospace and automotive industries: Recent trends and role in achieving sustainable development goals. Ain Shams Eng. J. 2023, 14, 102516. [Google Scholar] [CrossRef]
- Sun, Y. The use of aluminum alloys in structures: Review and outlook. Structures 2023, 57, 105290. [Google Scholar] [CrossRef]
- Blanco, D.; Rubio, E.M.; Lorente-Pedreille, R.M.; Sáenz-Nuño, M.A. Sustainable Processes in Aluminium, Magnesium, and Titanium Alloys Applied to the Transport Sector: A Review. Metals 2022, 12, 9. [Google Scholar] [CrossRef]
- Emadi, P.; Andilab, B.; Ravindran, C. Engineering Lightweight Aluminum and Magnesium Alloys for a Sustainable Future. J. Indian Inst. Sci. 2022, 102, 405–420. [Google Scholar] [CrossRef]
- Hou, Y.; Myung, D.; Park, J.K.; Min, J.; Lee, H.-R.; El-Aty, A.A.; Lee, M.-G. A Review of Characterization and Modelling Approaches for Sheet Metal Forming of Lightweight Metallic Materials. Materials 2023, 16, 836. [Google Scholar] [CrossRef]
- Heidarzadeh, A.; Khorshidi, M.; Mohammadzadeh, R.; Khajeh, R.; Mofarrehi, M.; Javidani, M.; Chen, X.G. Multipass friction stir processing of laser-powder bed fusion AlSi10Mg: Microstructure and mechanical properties. Materials 2023, 16, 1559. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, S.-H.; Xu, Y.; Chen, S.; El-Aty, A.A.; Pokrovsky, A.I.; Bakinovskaya, A.A. Study of the ductility enhancement of 5A90 Al–Mg–Li alloy sheets with stress relaxation. Philos. Mag. 2021, 101, 2449–2472. [Google Scholar] [CrossRef]
- Cao, L.; Liao, B.; Wu, X.; Li, C.; Huang, G.; Cheng, N. Hot Deformation Behavior and Microstructure Characterization of an Al-Cu-Li-Mg-Ag Alloy. Crystals 2020, 10, 416. [Google Scholar] [CrossRef]
- Zheng, K.; Politis, D.; Wang, L.; Lin, J. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components. Int. J. Light. Mater. Manuf. 2018, 1, 55–80. [Google Scholar] [CrossRef]
- Hu, M.; Sun, Y.; He, J.; Li, C.; Li, H.; Yu, L.; Liu, Y. Hot deformation behaviour and microstructure evolution of Al-3%Mg2Si alloy. Mater. Charact. 2022, 183, 111623. [Google Scholar] [CrossRef]
- Liang, H.; Nan, Y.; Ning, Y.; Li, H.; Zhang, L.; Shi, Z.; Guo, H. Correlation between strain-rate sensitivity and dynamic softening behavior during hot processing. J. Alloys Compd. 2013, 632, 478–485. [Google Scholar] [CrossRef]
- Lin, Y.C.; Li, L.T.; Xia, Y.C.; Jiang, Y.Q. Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy. J. Alloys Compd. 2013, 550, 438–445. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, Q.; Niu, L.; Luo, W. Hot deformation behavior and processing maps of as-cast hypoeutectic Al-Si-Mg alloy. J. Mater. Eng. Perform. 2019, 28, 4871–4881. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, L.; Xiao, Z.; Wang, S. Hot deformation behavior of 6063 aluminum alloy studied using processing maps and microstructural analysis. Phys. Met. Metallogr. 2019, 120, 1115–1125. [Google Scholar] [CrossRef]
- El-Aty, A.A.; Xu, Y.; Zhang, S.-H.; Ha, S.; Ma, Y.; Chen, D. Impact of high strain rate deformation on the mechanical behavior, fracture mechanisms, and anisotropic response of 2060 Al-Cu-Li alloy. J. Adv. Res. 2019, 18, 19–37. [Google Scholar] [CrossRef]
- Lei, C.; Wang, Q.; Tang, H.; Liu, T.; Li, Z.; Jiang, H.; Wang, K.; Ebrahimi, M.; Ding, W. Hot deformation constitutive model and processing maps of homogenized Al–5Mg–3Zn–1Cu alloy. J. Mater. Res. Technol. 2021, 14, 324–339. [Google Scholar] [CrossRef]
- Lei, C.; Wang, Q.; Ebrahimi, M.; Li, D.; Tang, H.; Zhang, N.; Cai, H. Hot Deformation Behavior and Processing Maps of an As-Cast Al-5Mg-3Zn-1Cu (wt%) Alloy. Materials 2023, 16, 4093. [Google Scholar] [CrossRef]
- Wu, H.; Wen, S.P.; Huang, H.; Gao, K.Y.; Wu, X.L.; Wang, W.; Nie, Z.R. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy. J. Alloys Compd. 2016, 685, 869–880. [Google Scholar] [CrossRef]
- Wei, T.; Wang, Y.; Tang, Z.; Xiao, S. The constitutive modeling and processing map of homogenized Al-Mg-Si-Cu-Zn alloy. Mater. Today Commun. 2021, 27, 102471. [Google Scholar] [CrossRef]
- Heidarzadeh, A.; Mohammadzadeh, R.; Jafarian, H.R.; Pruncu, C.I.; Simar, A. Role of geometrically necessary dislocations on mechanical properties of friction stir welded single-phase copper with medium stacking fault energy. J. Mater. Res. Technol. 2022, 16, 194–200. [Google Scholar] [CrossRef]
- Liu, S.; Pan, Q.; Li, H.; Huang, Z.; Li, K.; He, X.; Li, X. Characterization of hot deformation behavior and constitutive modeling of Al–Mg–Si–Mn–Cr alloy. J. Mater. Sci. 2019, 54, 4366–4383. [Google Scholar] [CrossRef]
- Abedrabbo, N.; Pourboghrat, F.; Carsley, J. Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models. Int. J. Plast. 2007, 23, 841–875. [Google Scholar] [CrossRef]
- Clayton, D. Dynamic plasticity and fracture in high density polycrystals: Constitutive modeling and numerical simulation. J. Mech. Phys. Solids 2005, 53, 261–301. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 2011, 32, 1733–1759. [Google Scholar] [CrossRef]
- Ou, L.; Zheng, Z.; Nie, Y.; Jian, H. Hot deformation behavior of 2060 alloy. J. Alloys Compd. 2015, 648, 681–689. [Google Scholar] [CrossRef]
- Yaich, M.; Gavrus, A. New phenomenological material constitutive models for the description of the Ti6Al4V titanium alloy behavior under static and dynamic loadings. Proc. Manuf. 2020, 47, 1496–1503. [Google Scholar] [CrossRef]
- Ma, L.; Wan, M.; Li, W.; Shao, J.; Bai, X.; Zhang, J. Superplastic deformation mechanical behavior and constitutive modelling of a near-a titanium alloy TNW700 sheet. Mater. Sci. Eng. A 2021, 817, 141419. [Google Scholar] [CrossRef]
- Shrot, A.; Beaker, M. Determination of Johnson-Cook parameters from machining simulations. Comput. Mater. Sci. 2012, 52, 298–304. [Google Scholar] [CrossRef]
- Qiao, L.; Zhu, J. Constitutive modeling of hot deformation behavior of AlCrFeNi multi-component alloy. Vacuum 2022, 201, 111059. [Google Scholar] [CrossRef]
- Wang, H.; Qin, G.; Li, C. A modified Arrhenius constitutive model of 2219-O aluminum alloy based on hot compression with simulation verification. J. Mater. Res. Technol. 2022, 19, 3302–3320. [Google Scholar] [CrossRef]
- Jia, W.; Xu, S.; Le, Q.; Fu, L.; Ma, L.; Tang, Y. Modified Fields- Backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation. Mater. Des. 2016, 106, 120–132. [Google Scholar] [CrossRef]
- Shen, J.; Hu, L.; Sun, Y.; Wan, Z.; Feng, X.; Ning, Y. A comparative study on artificial neural network, phenomenological-based constitutive and modified fields-backofen models to predict flow stress in Ti-4Al-3V-2Mo-2Fe alloy. J. Mater. Eng. Perform. 2019, 28, 4302.e15. [Google Scholar] [CrossRef]
- Seshacharyulu, K.; Mahalle, G.; Kotkunde, N.; Singh, S.K.; Balu Naik, B. High temperatures deformation and formability behavior of DP590 steel: Mechanical characterization and modeling. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–23. [Google Scholar] [CrossRef]
- Mahalle, G.; Salunke, O.; Kotkunde, N.; Kumar Gupta, A.; Singh, S.K. Study of Khan-Huang-liang (KHL) anisotropic deformation model for deep drawing behaviour of inconel 718 alloy. IOP Conf. Ser. Mater. Sci. Eng. 2020, 967, 12054. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A constitutive model and data formetals subjected to large strains, high strain rates and hightemperatures. In Proceedings of the 7th International Symposium on Ballistics, Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Laasraoui, A.; Jonas, J.J. Prediction of Steel Flow Stresses at High Temperatures and Strain Rates. Metall. Trans. A 1991, 22, 1545–1558. [Google Scholar] [CrossRef]
- Zheng, X.; Luo, A.A.; Dong, J.; Sachdev, A.K.; Ding, W. Plastic flow behavior of a high-strength magnesium alloy NZ30K. Mater. Sci. Eng. A 2012, 532, 616–622. [Google Scholar] [CrossRef]
- Meng, Q.; Bai, C.; Xu, D. Flow behavior and processing map for hot deformation of ATI425 titanium alloy. J. Mater. Sci. Technol. 2018, 34, 679–688. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X.; Liu, G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel. Mater. Sci. Eng. A 2010, 527, 6980–6989. [Google Scholar] [CrossRef]
- Zener, C.; Hollomon, J.H. Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- Shi, H.M.; McLaren, A.J.; Sellars, C.M.; Shahani, R.; Bolingbroke, R. Constitutive equations for high temperature flow stress of aluminium alloys. Mater. Sci. Technol. 1997, 13, 210–216. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, M.; Zhong, J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput. Mater. Sci. 2008, 42, 470–477. [Google Scholar] [CrossRef]
- Samantaray, D.; Mandal, S.; Bhaduri, A.K.; Venugopal, S.; Sivaprasad, P.V. Analysis and mathematical modelling of elevated temperature flow behaviour of austenitic stainless steels. Mater. Sci. Eng. A 2011, 528, 1937–1943. [Google Scholar] [CrossRef]
- Samantaray, D.; Mandal, S.; Borah, U.; Bhaduri, A.K.; Sivaprasad, P.V. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel. Mater. Sci. Eng. A 2009, 526, 1–6. [Google Scholar] [CrossRef]
- Samantaray, D.; Mandal, S.; Bhaduri, A.K. Constitutive analysis to predict high-temperature flow stress in modified 9Cre1Mo (P91) steel. Mater. Des. 2010, 31, 981–984. [Google Scholar] [CrossRef]
- Kumar, S.; Karmakar, A.; Nath, S.K. Construction of hot deformation processing maps for 9Cr-1Mo steel through conventional and ANN approach. Mater. Today Commun. 2021, 26, 101903. [Google Scholar] [CrossRef]
- Cheng, C.; Ji, Y.; Guo, X.; El-Aty, A.A. Coupling theoretical analysis and FE framework for revealing the size effect on the deformation characteristics of 304 stainless steel microtubes manufactured via free-bending forming technology. CIRP J. Manuf. Sci. Technol. 2024, 55, 1–15. [Google Scholar] [CrossRef]
- Zhao, P.; Cheng, C.; El-Aty, A.A.; Tao, J.; Guo, X.; Ji, Y. Multiscale framework-based crystal plasticity modeling and texture evolution of the deformation behavior of AISI 304 stainless steel microtubes manufactured through 3D-FBF technology. Sustain. Mater. Technol. 2024, 42, e01125. [Google Scholar] [CrossRef]
- Zhao, P.; Cheng, C.; EI-Aty, A.A.; Tao, J.; Guo, X.; Ji, Y. Integrating crystal plasticity and experimentation for investigating the size effect on the deformation characteristics of AISI304 microtubes manufactured by free bending technology. Manuf. Lett. 2024, 42, 21–25. [Google Scholar] [CrossRef]
- Shokry, A.; Ståhle, P. A methodology for using Kalman filter to determine material parameters from uncertain measurements. Mater. Discov. 2016, 2, 1–15. [Google Scholar] [CrossRef]
- Shokry, A.; Gowid, S.; Youssef, S.S. Modeling the flow behavior of Haynes 214 superalloy during hot deformation using mathematical and artificial intelligence-based models. Mater. Today Commun. 2022, 33, 104326. [Google Scholar] [CrossRef]
- Ghosh, A.; Ali, E.; Parson, N.; Chen, X.-G. Hot deformation behavior and processing maps for an Al-Mg-Si-Zr-Mn alloy. J. Alloys Metall. Syst. 2004, 6, 100077. [Google Scholar] [CrossRef]
- Li, T.; Lu, Y.; Li, Z.; Wang, T.; Li, T. Hot deformation behavior and microstructure evolution of non-equimolar Ti2ZrHfV0.5Ta0.2 refractory high-entropy alloy. Intermetallics 2022, 146, 107586. [Google Scholar] [CrossRef]
- Li, X.; Le, Q.; Li, D.; Wang, P.; Jin, P.; Cheng, C.; Cheng, X.; Ren, L. Hot tensile deformation behavior of extruded LAZ532 alloy with heterostructure. Mater. Sci. Eng. A 2021, 801, 140412. [Google Scholar] [CrossRef]
- Che, B.; Lu, L.; Kang, W.; Luo, J.; Ma, M.; Liu, L. Hot deformation behavior and processing map of a new type Mg-6Zn-1Gd-1Er alloy. J. Alloys Compd. 2021, 862, 158700. [Google Scholar] [CrossRef]
- Cheong, K.S.; Busso, E.P. Discrete dislocation density modelling of single phase F.C.C. polycrystal aggregates. Acta Mater. 2004, 52, 5665–5675. [Google Scholar] [CrossRef]
- Peirce, D.; Asaro, R.J.; Needleman, A. An analysis of non-uniform and localized deformation in ductile single crystals. Acta Metall. 1982, 30, 1087–1119. [Google Scholar] [CrossRef]
- Essman, U.; Mughrabi, H. Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philos. Mag. A 1979, 40, 731–756. [Google Scholar] [CrossRef]
- Nix, W.; Gibeling, J.; Hughes, D. Time-dependent deformation of metals. Metall. Trans. A 1985, 16, 2215–2226. [Google Scholar] [CrossRef]
- Chen, B.; Tian, X.; Li, X.; Lu, C. Hot deformation behavior and processing maps of 2099 Al-Li alloy. J. Mater. Eng. Perform. 2014, 23, 1929–1935. [Google Scholar] [CrossRef]
- Arsenlis, A.; Parks, D. Modeling the evolution of crystallographic dislocation density in crystal plasticity. J. Mech. Phys. Solids 2002, 50, 1979–2009. [Google Scholar] [CrossRef]
- Asaro, R.; Needleman, A. Texture development and strain hardening in rate dependent polycrystals. Acta Metall. 1985, 33, 923–953. [Google Scholar] [CrossRef]
- Deng, L.; Zhao, T.; Jin, J.; Wang, X. Flow behavior of 2024 aluminium alloy sheet during hot tensile and compressive processes. Procedia Eng. 2014, 81, 1049–1054. [Google Scholar] [CrossRef]
- Humphreys, F.; Hatherly, M. Hot Deformation and Dynamic Restoration. In Recrystallization and Related Annealing Phenomena, 2nd ed.; Humphreys, F., Hatherly, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 415–450. [Google Scholar] [CrossRef]
- Alankar, A.; Mastorakos, I.; Field, D. A dislocation-density-based 3D crystal plasticity model for pure aluminum. Acta Mater. 2009, 57, 5936–5946. [Google Scholar] [CrossRef]
- Alzahrani, B.; Abd El-Aty, A.; Elatriby, S.A.; Sobh, A.S.; Bhlol, M.A.; Elfar, A.A.; Siddiqui, M.A.; Shokry, A. A Modified Johnson Cook Model-Based Kalman Filter Method to Determine the Hot Flow Behavior of Sustainable AA6082 Al Alloy. Materials 2024, 17, 5169. [Google Scholar] [CrossRef]
- Samantaray, D.; Mandal, S.; Bhaduri, A.K. A comparative study on Johnson Cook, modified Zerillie Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cre1Mo steel. Comput. Mater. Sci. 2009, 47, 568–576. [Google Scholar] [CrossRef]
- Shokry, A. A modified Johnson–Cook model for flow behavior of alloy 800H at intermediate strain rates and high temperatures. J. Mater. Eng. Perform. 2017, 26, 5723–5730. [Google Scholar] [CrossRef]
- Shokry, A.; Gowid, S.; Kharmanda, G. An improved generic Johnson-Cook model for the flow prediction of different categories of alloys at elevated temperatures and dynamic loading conditions. Mater. Today Commun. 2021, 27, 102296. [Google Scholar] [CrossRef]
(%) | (MPa) | |
---|---|---|
0.999 | 1.1% | 0.55 |
58 | −12.738 | 0.847 | −0.0049 | −0.0041 | 0.0923 | −0.00005 |
(%) | (MPa) | |
---|---|---|
0.951 | 11.67% | 7.23 |
58.071 | −11.065 | −22.881 | 27.824 | 0.0616 | 0.0641 | 1.4884 | −0.3467 |
(%) | (MPa) | |
---|---|---|
0.983 | 7.09% | 3.56 |
58.071 | −11.065 | −22.881 | 27.824 | 0.0550 | 0.0828 | −0.0888 | 0.1637 |
−1.2841 | 1.2652 | −0.1126 | 1.0707 | −1.0288 | −0.6668 | 2.7593 | −2.4307 |
m010 | m011 | m012 | m020 | m021 | m022 | m100 | m101 |
−0.2755 | −5.5232 | 5.0762 | −0.1888 | −2.1973 | −1.5661 | −0.0198 | 10.3673 |
−9.3805 | 2.597 | −56.627 | 53.125 | −2.2348 | 35.0907 | 32.2649 | −1.6642 |
16.4578 | 14.7332 | −3.5334 | 73.087 | 68.9637 | −2.7157 | 52.349 | −49.0335 |
(%) | (MPa) | |
---|---|---|
0.99 | 1.87% | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, B.; Abd El-Aty, A.; Xu, Y.; Hou, Y.; Zhang, S.-H.; Ali, A.; Ahmed, M.M.Z.; Shokry, A. Constitutive Analysis of the Deformation Behavior of Al-Mg-Si Alloy Under Various Forming Conditions Using Several Modeling Approaches. Materials 2025, 18, 1121. https://doi.org/10.3390/ma18051121
Alzahrani B, Abd El-Aty A, Xu Y, Hou Y, Zhang S-H, Ali A, Ahmed MMZ, Shokry A. Constitutive Analysis of the Deformation Behavior of Al-Mg-Si Alloy Under Various Forming Conditions Using Several Modeling Approaches. Materials. 2025; 18(5):1121. https://doi.org/10.3390/ma18051121
Chicago/Turabian StyleAlzahrani, Bandar, Ali Abd El-Aty, Yong Xu, Yong Hou, Shi-Hong Zhang, Alamry Ali, Mohamed M. Z. Ahmed, and Abdallah Shokry. 2025. "Constitutive Analysis of the Deformation Behavior of Al-Mg-Si Alloy Under Various Forming Conditions Using Several Modeling Approaches" Materials 18, no. 5: 1121. https://doi.org/10.3390/ma18051121
APA StyleAlzahrani, B., Abd El-Aty, A., Xu, Y., Hou, Y., Zhang, S.-H., Ali, A., Ahmed, M. M. Z., & Shokry, A. (2025). Constitutive Analysis of the Deformation Behavior of Al-Mg-Si Alloy Under Various Forming Conditions Using Several Modeling Approaches. Materials, 18(5), 1121. https://doi.org/10.3390/ma18051121