All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator
Abstract
1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergman, K.; Beausoleil, R.; Milojicic, D. Silicon photonics. Computer 2022, 55, 78–81. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wan, Y.; Yu, Y.; Zhang, Y.; Hu, X.; Xiao, X.; Xu, H.; Zhang, L.; Pan, B. Silicon photonics for high-capacity data communications. Photonics Res. 2022, 10, A106–A134. [Google Scholar] [CrossRef]
- Taghavi, I.; Moridsadat, M.; Tofini, A.; Raza, S.; Jaeger, N.A.; Chrostowski, L.; Shastri, B.J.; Shekhar, S. Polymer modulators in silicon photonics: Review and projections. Nanophotonics 2022, 11, 3855–3871. [Google Scholar] [CrossRef] [PubMed]
- Ogudo, K.A.; Schmieder, D.; Foty, D.; Snyman, L.W. Optical propagation and refraction in silicon complementary metal–oxide–semiconductor structures at 750 nm: Toward on-chip optical links and microphotonic systems. J. Micro/Nanolithography MEMS MOEMS 2013, 12, 013015. [Google Scholar] [CrossRef]
- Reed, G.T.; Png, C.J. Silicon optical modulators. Mater. Today 2005, 8, 40–50. [Google Scholar] [CrossRef]
- Melikyan, A.; Alloatti, L.; Muslija, A.; Hillerkuss, D.; Schindler, P.C.; Li, J.; Palmer, R.; Korn, D.; Muehlbrandt, S.; Van Thourhout, D. High-speed plasmonic phase modulators. Nat. Photonics 2014, 8, 229–233. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef]
- Kim, Y.; Han, J.-H.; Ahn, D.; Kim, S. Heterogeneously-integrated optical phase shifters for next-generation modulators and switches on a silicon photonics platform: A review. Micromachines 2021, 12, 625. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Sakib, M.; Driscoll, J.; Kumar, R.; Jayatilleka, H.; Chetrit, Y.; Rong, H. A 128 Gb/s PAM4 silicon microring modulator. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. Th4A. 7. [Google Scholar]
- Shu, H.; Su, Z.; Huang, L.; Wu, Z.; Wang, X.; Zhang, Z.; Zhou, Z. Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide. Sci. Rep. 2018, 8, 991. [Google Scholar] [CrossRef] [PubMed]
- Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A.; Ferrari, A.; Romagnoli, M. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photonics 2018, 12, 40–44. [Google Scholar] [CrossRef]
- Sorianello, V.; Contestabile, G.; Romagnoli, M. Graphene on silicon modulators. J. Light. Technol. 2020, 38, 2782–2789. [Google Scholar] [CrossRef]
- Weigel, P.O.; Zhao, J.; Fang, K.; Al-Rubaye, H.; Trotter, D.; Hood, D.; Mudrick, J.; Dallo, C.; Pomerene, A.T.; Starbuck, A.L. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 2018, 26, 23728–23739. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukhopadhyay, B.; Sen, G.; Basu, P.K. Study of Si-Ge-Sn based heterobipolar phototransistor (HPT) exploiting quantum confined Stark effect and Franz Keldysh effect with and without resonant cavity. Phys. E Low-Dimens. Syst. Nanostructures 2019, 106, 62–67. [Google Scholar] [CrossRef]
- Hiraki, T.; Aihara, T.; Fujii, T.; Takeda, K.; Maeda, Y.; Kakitsuka, T.; Tsuchizawa, T.; Matsuo, S. Integration of a high-efficiency Mach-Zehnder modulator with a DFB laser using membrane InP-based devices on a Si photonics platform. Opt. Express 2021, 29, 2431–2441. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Han, Y. Electro-optic polymer ring resonator modulators. Chin. Opt. Lett. 2021, 19, 041301. [Google Scholar] [CrossRef]
- Sorger, V.J.; Lanzillotti-Kimura, N.D.; Ma, R.-M.; Zhang, X. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 2012, 1, 17–22. [Google Scholar] [CrossRef]
- Sha, Y.; Wu, J.; Xie, Z.T.; Fu, H.; Li, Q. Comparison study of multi-slot designs in epsilon-near-zero waveguide-based electro-optical modulators. IEEE Photonics J. 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Wu, J.; Malomed, B.A.; Fu, H.; Li, Q. Self-interaction of ultrashort pulses in an epsilon-near-zero nonlinear material at the telecom wavelength. Opt. Express 2019, 27, 37298–37307. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.Z.; De Leon, I.; Boyd, R.W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797. [Google Scholar] [CrossRef]
- Reshef, O.; De Leon, I.; Alam, M.Z.; Boyd, R.W. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater. 2019, 4, 535–551. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Wang, S.; Wang, Y.; Wang, Y.; Guo, Z.; Xiao, S.; Yao, Y.; Song, Q.; Zhang, H. Highly efficient silicon photonic microheater based on black arsenic–phosphorus. Adv. Opt. Mater. 2020, 8, 1901526. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Wang, H.; Liu, J.; Zheng, Z.; Zhang, M.; Zhang, H. Thermally tunable microfiber knot resonator with flexible graphene heater. Chin. Opt. Lett. 2021, 19, 051301. [Google Scholar] [CrossRef]
- Ding, Z.-x.; Chen, Y.; Xu, F. Multifunctional all-fiber mode-locked laser based on graphene-integrated polarization-dependent microfiber resonator. Opt. Laser Technol. 2021, 143, 107381. [Google Scholar] [CrossRef]
- Li, J.-H.; Chen, J.-H.; Yan, S.-C.; Ruan, Y.-P.; Xu, F.; Lu, Y.-Q. Versatile hybrid plasmonic microfiber knot resonator. Opt. Lett. 2017, 42, 3395–3398. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1. [Google Scholar]
- Michelotti, F.; Dominici, L.; Descrovi, E.; Danz, N.; Menchini, F. Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm. Opt. Lett. 2009, 34, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Frebel, A.; Creutz, K.A.; Huang, B. Origin and quantification of the ultimate carrier concentration limits in In2O3 and Sn-doped In2O3. Phys. Rev. Mater. 2024, 8, 044–601. [Google Scholar] [CrossRef]
- Lotkov, E.S.; Baburin, A.S.; Ryzhikov, I.A.; Sorokina, O.S.; Ivanov, A.I.; Zverev, A.V.; Ryzhkov, V.V.; Bykov, I.V.; Baryshev, A.V.; Panfilov, Y.V. ITO film stack engineering for low-loss silicon optical modulators. Sci. Rep. 2022, 12, 6321. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Li, E.; Bo, Y.; Wang, A.X. High-speed plasmonic-silicon modulator driven by epsilon-near-zero conductive oxide. J. Light. Technol. 2020, 38, 3338–3345. [Google Scholar] [CrossRef]
- Edwards, P.P.; Porch, A.; Jones, M.O.; Morgan, D.V.; Perks, R.M. Basic materials physics of transparent conducting oxides. Dalton Trans. 2004, 19, 2995–3002. [Google Scholar] [CrossRef]
- Huang, G.; Zhao, G.; Huang, X.; Zhuang, H.; Zhang, Z.; Gao, R.; Xie, F. Influence of deposition parameters of ITO films on the performance of HJT solar cells. Int. J. Photoenergy 2023, 1, 1065503. [Google Scholar] [CrossRef]
- Xin, P.; Cheng, Q. Effect of PN junction doping concentration on depletion layer width, internal electric field and internal potential. Coll. Phys. 2015, 34, 54. [Google Scholar]
- Doerr, C.R. Silicon photonic integration in telecommunications. Front. Phys. 2015, 3, 37. [Google Scholar] [CrossRef]
- Nedeljkovic, M.; Soref, R.; Mashanovich, G.Z. Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14-μm Infrared Wavelength Range. IEEE Photonics J. 2011, 3, 1171–1180. [Google Scholar] [CrossRef]
- Niu, X.; Hu, X.; Chu, S.; Gong, Q. Epsilon-near-zero photonics: A new platform for integrated devices. Adv. Opt. Mater. 2018, 6, 1701292. [Google Scholar] [CrossRef]
- Cheng, Y.; Yao, B.-C.; Wu, Y.; Wang, Z.-G.; Gong, Y.; Rao, Y.-J. Simulation and experimental research of phase transmission features based on evanescent field coupled graphene waveguide. Acta Phys. Sin. 2013, 62, 237805. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Stokes, L.F.; Chodorow, M.; Shaw, H.J. All-single-mode fiber resonator. Opt. Lett. 1982, 7, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Gardes, F.; Brimont, A.; Sanchis, P.; Rasigade, G.; Marris-Morini, D.; O’Faolain, L.; Dong, F.; Fedeli, J.; Dumon, P.; Vivien, L. High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode. Opt. Express 2009, 17, 21986–21991. [Google Scholar] [CrossRef]
- RG, J.S.; Balaji, V. Step PN Junction-Based Silicon Microring Modulator for High-Speed Application. Silicon 2022, 14, 10651–10660. [Google Scholar]
- Shekhawat, D.; Mehra, R. Design of ultra-compact and highly-sensitive graphene assisted silicon micro-ring resonator modulator for switching applications. Silicon 2022, 14, 4383–4390. [Google Scholar] [CrossRef]
- Peng, X.; Hao, R.; Ye, Z.; Qin, P.; Chen, W.; Chen, H.; Jin, X.; Yang, D.; Li, E. Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect. Opt. Lett. 2017, 42, 1736–1739. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, Z.; Chen, X.; Zhu, H.; Zhou, L.; Zhou, Y.; Liu, Y.; Zhang, Y.; Tian, X.; Sun, S.; et al. All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator. Materials 2025, 18, 307. https://doi.org/10.3390/ma18020307
Zhu Y, Wang Z, Chen X, Zhu H, Zhou L, Zhou Y, Liu Y, Zhang Y, Tian X, Sun S, et al. All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator. Materials. 2025; 18(2):307. https://doi.org/10.3390/ma18020307
Chicago/Turabian StyleZhu, Yihan, Ziqian Wang, Xing Chen, Honghai Zhu, Lizhuo Zhou, Yujie Zhou, Yi Liu, Yule Zhang, Xilin Tian, Shuo Sun, and et al. 2025. "All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator" Materials 18, no. 2: 307. https://doi.org/10.3390/ma18020307
APA StyleZhu, Y., Wang, Z., Chen, X., Zhu, H., Zhou, L., Zhou, Y., Liu, Y., Zhang, Y., Tian, X., Sun, S., Li, J., Jiang, K., Zhang, H., & Wang, H. (2025). All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator. Materials, 18(2), 307. https://doi.org/10.3390/ma18020307