The Role of Preharvest Natural Infection and Toxin Contamination in Food and Feed Safety in Maize, South-East Hungary, 2014–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Tests
2.1.1. Plant Material
2.1.2. Experimental Design
Mean Temperature (°C) | ||||||
---|---|---|---|---|---|---|
June | July | August | September | October | Mean | |
2014 | 21.1 | 23.1 | 21.9 | 18.4 | 12.9 | 19.5 |
2015 | 22.2 | 24.9 | 24.4 | 19.3 | 11.5 | 20.5 |
2016 | 21.9 | 22.9 | 21.8 | 19.3 | 10.8 | 19.3 |
2017 | 23.1 | 23.3 | 24.2 | 18.0 | 12.5 | 20.2 |
2018 | 21.6 | 23.6 | 24.6 | 18.9 | 14.3 | 20.6 |
2019 | 23.8 | 22.5 | 24.5 | 18.6 | 14.0 | 20.7 |
2020 | 21.6 | 22.3 | 23.7 | 19.3 | 12.8 | 19.9 |
2021 | 22.5 | 25.3 | 22.3 | 17.8 | 10.8 | 19.7 |
Number of hot days above a 35 °C daily maximum | ||||||
June | July | August | September | October | Sum | |
2014 | 0 | 0 | 0 | 0 | 0 | 0 |
2015 | 0 | 11 | 7 | 0 | 0 | 18 |
2016 | 1 | 1 | 0 | 0 | 0 | 2 |
2017 | 0 | 2 | 11 | 0 | 0 | 13 |
2018 | 0 | 0 | 0 | 0 | 0 | 0 |
2019 | 0 | 1 | 1 | 0 | 0 | 2 |
2020 | 0 | 0 | 0 | 0 | 0 | 0 |
2021 | 2 | 3 | 0 | 0 | 0 | 5 |
Precipitation (mm) | ||||||
June | July | August | September | October | Sum | |
2014 | 64.5 | 180.0 | 45.5 | 77.5 | 75.7 | 443.2 |
2015 | 7.0 | 19.0 | 123.5 | 35.0 | 94.0 | 278.5 |
2016 | 90.0 | 141.7 | 36.3 | 51.4 | 77.0 | 396.4 |
2017 | 49.4 | 45.4 | 18.8 | 36.0 | 35.4 | 185.0 |
2018 | 116.3 | 65.6 | 59.1 | 37.8 | 10.4 | 289.2 |
2019 | 111.3 | 47.8 | 23.3 | 30.5 | 27.1 | 240.0 |
2020 | 113.6 | 117.1 | 59.9 | 24.9 | 92.3 | 407.8 |
2021 | 35.1 | 72.8 | 41.1 | 26.9 | 35.9 | 211.8 |
2.1.3. Harvest, Evaluation of Infection, and Sample Preparation
2.2. Toxin Analysis
2.2.1. Sample Preparation
2.2.2. Chromatography
2.2.3. MS/MS Analysis
2.3. Statistical Methods
3. Results
3.1. Natural Ear Rot and Toxin Contamination of Hybrids, 2014–2021
3.2. Correlations between Natural Ear Rot Infection Severity and Natural Toxin Contamination
Year | Fus. Visual Ear Rot | Asp.Visual Ear Rot | Toxins | ||
---|---|---|---|---|---|
% | % | DON (mg/kg) | FB1 + B2 (mg/kg) | AFB1 (mg/kg) | |
2014 | 0.72 | 0.000 | 2.61 | 7.09 | 0.000 |
2015 | 1.47 | 0.330 | 0.00 | 0.81 | 0.000 |
2016 | 0.11 | 0.090 | 0.00 | 2.03 | 0.001 |
2017 | 0.18 | 0.000 | 0.60 | 0.83 | 0.055 |
2018 | 0.06 | 0.000 | 4.20 | 0.25 | 0.000 |
2019 | 0.05 | 0.000 | 6.80 | 1.39 | 0.000 |
2020 | 0.10 | 0.000 | 0.17 | 0.22 | 0.816 |
2021 | 0.04 | 0.000 | 0.14 | 0.28 | 0.010 |
Mean | 0.34 | 0.050 | 1.82 | 1.61 | 0.110 |
3.3. Natural Toxin Contamination in Two Years’ Trials, 2017/2018 and 2019/2020
Hybrid | 2017 | 2018 | Mean | 2017 | 2018 | Mean | 2017 | 2018 | Mean |
---|---|---|---|---|---|---|---|---|---|
DON (mg/kg) | FUM B1 + B2 (mg/kg) | AFB1 (μg/kg) | |||||||
4517 | 0.00 | 0.0 | 0.00 | 10.21 | 3.8 | 6.99 | 58 | 0.0 | 29.00 |
DKC 5542 | 0.00 | 0.0 | 0.00 | 4.34 | 1.1 | 2.74 | 66 | 0.0 | 33.00 |
DKC 5830 | 0.00 | 0.0 | 0.00 | 0.18 | 0.0 | 0.09 | 5 | 0.0 | 2.50 |
P 9241 | 0.00 | 0.0 | 0.00 | 1.42 | 0.0 | 0.71 | 9 | 19.0 | 14.00 |
P 9537 | 0.00 | 0.0 | 0.00 | 1.85 | 1.2 | 1.55 | 22 | 0.0 | 11.00 |
P 9911 | 0.00 | 0.0 | 0.00 | 2.09 | 0.3 | 1.20 | 21 | 0.0 | 10.50 |
PR37F80 | 0.00 | 0.0 | 0.00 | 1.22 | 0.6 | 0.89 | 33 | 5.0 | 19.00 |
DKC 4541 | 0.00 | 0.1 | 0.04 | 2.53 | 0.4 | 1.46 | 17 | 0.0 | 8.50 |
Szegedi 521 | 0.09 | 0.0 | 0.05 | 0.52 | 0.8 | 0.66 | 169 | 12.0 | 90.50 |
DKC 4717 | 0.00 | 0.1 | 0.07 | 1.24 | 2.6 | 1.94 | 14 | 1.0 | 7.50 |
P 9903 | 0.00 | 0.2 | 0.09 | 0.83 | 0.0 | 0.42 | 5 | 0.0 | 2.50 |
DKC 4590 | 0.37 | 0.0 | 0.19 | 2.22 | 1.3 | 1.77 | 2 | 1.3 | 1.66 |
Cardixxio Duo | 0.39 | 0.0 | 0.20 | 0.36 | 0.0 | 0.18 | 4 | 1.0 | 2.50 |
DKC 4943 | 0.14 | 0.5 | 0.32 | 0.76 | 0.1 | 0.45 | 43 | 0.0 | 21.50 |
Valkür | 0.22 | 1.0 | 0.61 | 0.81 | 0.2 | 0.51 | 10 | 0.0 | 5.00 |
Fornad | 0.00 | 2.1 | 1.04 | 2.88 | 0.3 | 1.59 | 7 | 6.0 | 6.50 |
Siló Star | 0.00 | 2.6 | 1.31 | 0.53 | 0.1 | 0.32 | 77 | 0.0 | 38.50 |
Korimbos | 0.60 | 4.2 | 2.40 | 0.83 | 0.3 | 0.54 | 55 | 0.0 | 27.50 |
Mean | 0.10 | 0.60 | 0.35 | 1.93 | 0.73 | 1.33 | 34.28 | 2.52 | 18.40 |
LSD 5% | ns | 2.31 | ns | ||||||
ns = non-significant; bold numbers, means for two years, 2017–2018; bold names: hybrids lower than the mean in all years and toxins. | |||||||||
Correlations | 2017 | 2018 | Mean | 2017 | 2018 | Mean | 2017 | 2018 | |
DON (mg/kg) | FUM B1+B2 (mg/kg) | AFB1 (μg/kg) | |||||||
DON 2018 | 0.4819 *a | ||||||||
DON Mean | 0.5861 *b | 0.9923 *** | |||||||
FUM 2017 | –0.2426 | –0.1784 | –0.1990 | ||||||
FUM 2018 | –0.1784 | –0.2591 | –0.2646 | 0.7628 *** | |||||
FUM Mean | –0.2352 | –0.2139 | –0.2309 b | 0.9782 *** | 0.8803 *** | ||||
AFB1 2017 | –0.0265 | 0.1374 | 0.1233 | 0.0797 | 0.1517 | 0.1071 | |||
AFB1 2018 | –0.1654 | –0.1401 | –0.1528 | –0.1300 | –0.1647 | –0.1482 | 0.2414 | ||
AFB1 Mean | –0.0456 | 0.1154 | 0.1003 | 0.0611 | 0.1262 | 0.0853 | 0.9930 *** | 0.3540 | |
*** p = 0.01; * p = 0.05; a bold: correlations between 2017 and 2018; b numbers in bold and italics show correlations between yearly data and means. |
Hybrid | 2019 | 2020 | Mean | 2019 | 2020 | Mean | 2019 | 2020 | Mean |
---|---|---|---|---|---|---|---|---|---|
DON (mg/kg) | FUM B1 + B2 (mg/kg) | AFB1 (μg/kg) | |||||||
Koregraf | 0 | 0 | 0 | 0.36 | 10.9 | 5.63 | 0 | 703 | 351 |
ES Lagoon | 0 | 0 | 0 | 2.28 | 0.88 | 1.58 | 21 | 18 | 19 |
P0725 | 0 | 0 | 0 | 0.63 | 4 | 2.32 | 0 | 1588 | 794 |
Sy Zoan | 0 | 0 | 0 | 2.54 | 2.17 | 2.36 | 0 | 0 | 0 |
Illango | 0.09 | 0 | 0.05 | 1.89 | 1.57 | 1.73 | 0 | 2286 | 1143 |
ES Harmonium | 0.25 | 0 | 0.13 | 0 | 0.59 | 0.3 | 1 | 6 | 3 |
SY Zephir | 0.33 | 0 | 0.17 | 0 | 0.59 | 0.3 | 0 | 6 | 3 |
Kathedralis | 0.53 | 0 | 0.27 | 0.43 | 1.9 | 1.17 | 0 | 0 | 0 |
Kleopatras | 0 | 0.7 | 0.35 | 3.34 | 1.27 | 2.31 | 0 | 227 | 113 |
P9415 | 1.16 | 0 | 0.58 | 1.35 | 0.26 | 0.81 | 0 | 0 | 0 |
P9718E | 1.13 | 0.13 | 0.63 | 0.24 | 0 | 0.12 | 0 | 8 | 4 |
Sy Talisman | 1.04 | 0.4 | 0.72 | 1.07 | 2.68 | 1.88 | 2 | 2 | 2 |
Valkür | 2.4 | 0.15 | 1.28 | 0 | 3.3 | 1.65 | 0 | 0 | 0 |
Konfites | 3.27 | 0.12 | 1.7 | 1.23 | 3.22 | 2.23 | 0 | 4 | 2 |
DKC 5830 | 4.35 | 0 | 2.18 | 2.84 | 3.28 | 3.06 | 0 | 0 | 0 |
Armagnac | 4.65 | 0 | 2.33 | 0.61 | 0.88 | 0.75 | 0 | 18 | 9 |
Korimbos | 6.8 | 0.17 | 3.49 | 1.39 | 0.22 | 0.81 | 0 | 816 | 408 |
DKC 4541 | 7.18 | 0 | 3.59 | 0 | 1.08 | 0.54 | 0 | 0 | 0 |
Mean | 1.84 | 0.09 | 0.97 | 1.12 | 2.16 | 1.64 | 1.33 | 316 | 158 |
LSD 5% | ns | ns | ns | ||||||
Correlations | DON (mg/kg) | FUM B1 + B2 (mg/kg) | AFB1 (mg/kg) | ||||||
2019 | 2020 | Mean | 2019 | 2020 | Mean | 2019 | 2020 | ||
DON 2020 | –0.081 a | ||||||||
Mean | 0.997 ***b | –0.004 | |||||||
FUM 2019 | –0.120 | 0.391 | –0.090 | ||||||
2020 | –0.205 | –0.092 | –0.212 | –0.093 | |||||
Mean | –0.244 | 0.071 | –0.239 b | 0.318 | 0.914 *** | ||||
AFB1 2019 | –0.208 | –0.092 | –0.216 | 0.258 | –0.130 | –0.019 | |||
2020 | –0.174 | –0.112 | –0.183 | 0.098 | 0.213 | 0.243 | –0.132 | ||
Mean | –0.176 | –0.112 | –0.185 | 0.1 | 0.212 | 0.243 | –0.124 | 0.999 *** | |
*** p = 0.001; a number in bold show correlations between 2019 and 2020; b numbers in bold and italics show correlations between yearly data and means. |
3.4. Toxin Production for 1% Ear Rot Coverage
Hybrid | 2017–2018 | Hybrid | 2019–2020 | ||||
---|---|---|---|---|---|---|---|
DON | FUM B1 + B2 | AFB1 | DON | FUM B1 + B2 | AFB1 | ||
(mg/kg) | (mg/kg) | (μg/kg) | (mg/kg/%) | (mg/kg/%) | (μg/kg/%) | ||
DKC 4541 | 0.02 | 0.71 | 4.15 | DKC 4541 | 12.0 | 1.8 | 0.0 |
DKC 5830 | 0.00 | 0.14 | 4.01 | DKC 5830 | 13.2 | 18.5 | 0.0 |
Korimbos | 6.75 | 1.52 | 77.46 | Korimbos | 46.5 | 10.7 | 5440.0 |
Valkür | 7.63 | 6.31 | 62.50 | Valkür | 24.3 | 31.4 | 0.0 |
DKC 4590 | 0.12 | 1.17 | 1.10 | ES Harmonium | 0.5 | 1.2 | 14.1 |
DKC 4717 | 0.06 | 1.87 | 7.25 | ES Lagoon | 0.0 | 8.4 | 104.0 |
DKC 4943 | 0.33 | 0.47 | 22.40 | Illango | 0.3 | 9.7 | 6439.4 |
DKC 5542 | 0.00 | 2.47 | 29.73 | Kathedralis | 1.2 | 5.5 | 0.0 |
Cardixxio Duo | 0.25 | 0.23 | 3.21 | Kleopatras | 2.2 | 14.2 | 698.5 |
Fornad | 0.55 | 0.84 | 3.45 | Konfites | 8.3 | 10.9 | 9.8 |
P 9241 | 0.00 | 1.04 | 20.44 | Koregraf | 0.0 | 58.2 | 3636.2 |
P 9537 | 0.00 | 2.05 | 14.62 | P0725 | 0.0 | 13.4 | 4602.9 |
P 9903 | 0.06 | 0.32 | 1.91 | P9415 | 2.5 | 3.5 | 0.0 |
P 9911 | 0.00 | 0.81 | 7.12 | P9718E | 7.0 | 1.3 | 44.4 |
PR37F80 | 0.00 | 0.51 | 10.89 | Sy Talisman | 2.7 | 7.0 | 7.5 |
Siló Star | 2.14 | 0.52 | 63.11 | SY Zephir | 1.0 | 1.9 | 18.9 |
Szegedi 521 | 0.04 | 0.52 | 71.83 | Sy Zoan | 0.0 | 13.3 | 0.0 |
4517 | 0.00 | 3.88 | 16.11 | Armagnac | 17.2 | 5.5 | 66.7 |
Mean | 1.00 | 1.41 | 23.40 | 7.71 | 12.03 | 1171.25 |
Temperature: Mean Data for Traits and Months | |||||
---|---|---|---|---|---|
Traits | Fusx% | Asp% | DON (mg/kg) | FUM B1 + B2 (mg/kg) | AFB1 (μg/kg) |
Asp% | 0.481 | ||||
(mg/kg) | 0.481 | −0.335 | |||
(mg/kg) | 0.673 * | −0.116 | 0.927 * | ||
(μg/kg) | −0.099 | 0.110 | −0.290 | −0.105 | |
June | −0.393 | 0.279 | −0.350 | −0.527 | −0.256 |
July | 0.262 | 0.312 | −0.179 | −0.112 | −0.335 |
August | 0.033 | 0.459 | −0.410 | −0.475 | 0.200 |
September | 0.172 | −0.016 | −0.280 | −0.123 | 0.452 |
October | 0.007 | −0.193 | 0.291 | 0.081 | 0.038 |
Mean | 0.080 | 0.351 | −0.270 | −0.403 | −0.025 |
No. of hot days above 35 °C: Mean data for traits and months | |||||
Traits | Fus% | Asp% | (mg/kg) | (mg/kg) | (μg/kg) |
June | −0.467 | −0.343 | −0.209 | −0.254 | −0.310 |
July | 0.535 | 0.699 | −0.315 | −0.122 | −0.006 |
August | 0.340 | 0.962 | −0.305 | −0.147 | 0.008 |
September | # | # | # | # | # |
October | # | # | # | # | # |
Sum | 0.450 | 0.938 | −0.383 | −0.185 | −0.032 |
Precipitation mm, Mean data for traits and months | |||||
Traits | Fus% | Asp% | (mg/kg) | (mg/kg) | (μg/kg) |
June | −0.535 | −0.656 * | 0.022 | −0.175 | 0.192 |
July | 0.038 | −0.595 | 0.603 | 0.650 * | 0.084 |
August | 0.625 * | 0.391 | −0.170 | 0.051 | 0.293 |
September | 0.578 | −0.177 | 0.817 *** | 0.874 **** | −0.370 |
October | 0.424 | 0.199 | 0.052 | 0.363 | 0.570 |
Sum | 0.251 | −0.445 | 0.454 | 0.586 | 0.351 |
**** p = 0.01; *** p = 0.02; * p = 0.10; x Fus = Fusarium; Asp = Aspergillus. |
4. Discussion
4.1. Mycotoxins and Their Preharvest Character
4.2. Reasons for Controversial Visual Ear Rot and Toxin Data
4.3. Toxin Forecasting
4.4. What Is the Usefullness of Natural Toxin Data?
4.5. Adaptation to Environmental Stresses
4.6. Control Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFB1 | Aflatoxin B1 |
ANOVA | Analysis of variance |
Asp | Aspergillus |
Bt hybrid | Containing an insecticide gene from B. thuringiensis |
DON | Deoxynivalenol |
FER | Fusarium ear rot (mostly F. verticillioides) |
FUM | Fumonisin |
Fus | Fusarium |
GER | Gibberella ear rot (mostly F. graminearum) |
GM | Genetically modified |
References
- Christensen, C.M.; Kaufmann, H.H. Grain Storage, the Role of Fungi in Quality Loss; University of Minnesota Press: Minneapolis, MN, USA, 1969; Library of Congress Catalog Card number: 70-76174; 153p. [Google Scholar]
- Document 32006R1881; Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs; Official Journal of the European Union: Brussels, Belgium, 2006; L 364/5.
- Document 32002L0032; Commission Regulation Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed; Official Journal of the European Union: Brussels, Belgium, 2002; 2002L0032—EN—20.10.2006—006.001—1, (OJ L 140, 30.5, p. 10).
- Commission Regulation 2006/576/EC; Commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding; Official Journal of the European Union: Brussels, Belgium, 2006; Volume I.229, pp. 7–9.
- Desjardins, A.E. Fusarium Mycotoxins, Chemistry, Genetics, and Biology; American Phytopathological Society (APS) Press: St. Paul, MN, USA, 2016; 260p., ISBN 10-0-89054-335-6. [Google Scholar]
- Logrieco, A.; Visconti, A. (Eds.) An Overview on Toxigenic Fungi and Mycotoxins in Europe; Kluwer Acedemic Publishers: Dordecht, The Netherlands, 2004; 252p, ISBN 1-4020-2645-5. [Google Scholar]
- Munkvold, G.P.; White, D.G. (Eds.) Compendium of Corn Diseases; The American Phytopathological Society (APS) Press: St. Paul, MN, USA, 2016; 165p. [Google Scholar]
- Mesterházy, Á.; Bartók, T.; Kászonyi, G.; Varga, M.; Tóth, B.; Varga, J. Common resistance to different Fusarium spp. causing Fusarium head blight in wheat. Eur. J. Plant Path. 2005, 112, 267–281. [Google Scholar] [CrossRef]
- Shotwell, O.L.; Hesseltine, C.W.; Goulden, M.L. Incidence of aflatoxin in southern corn, 1969–1970. Cereal Sci. Today 1973, 18, 192–196. [Google Scholar]
- Anderson, H.W.; Nehring, E.W.; Wichser, W.R. Aflatoxin contamination of com in the field. J. Agric. Food Chem. 1975, 23, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, E.B.; Kwolek, W.F.; Fennell, D.I.; Milburn, M.S. Aflatoxin incidence and association with bright greenish yellow fluorescence and insect damage in a limited survey of freshly harvested high-moisture com. Cereal Chem. 1975, 52, 403–412. [Google Scholar]
- Widstrom, N.W. Breeding strategies to control aflatoxin contamination of maize through host plant resistance. In Aflatoxin in Maize: Proceedings of the Workshop; Zuber, M.S., Lillehoj, E.B., Renfro, B.L., Eds.; CIMMYT: México-Veracruz, El Batan, Mexico, 1987; pp. 212–220. [Google Scholar]
- Fennel, D.; Lillehoj, E.B.; Kwolek, W.F. Aspergillus flavus and other fungi associated with insect-damaged field com. Cereal Chem. 1975, 52, 314–321. [Google Scholar]
- Payne, G.A. Aspergillus flavus infection of maize: Silks and kernels. In Aflatoxin in Maize: Proceedings of the Workshop; Zuber, M.S., Lillehoj, E.B., Renfro, B.L., Eds.; CIMMYT: México-Veracruz, El Batan, Mexico, 1987; pp. 119–129. [Google Scholar]
- Lillehoj, E.B.; Kwolek, W.F.; Manwiller, A.; Du Rant, J.A.; La Prade, J.C.; Homer, E.S.; Reid, J.; Zuber, M.S. Aflatoxin production in several com hybrids grown in South Carolina and Florida. Crop Sci. 1976, 16, 483–485. [Google Scholar] [CrossRef]
- Abbas, H.K.; Cartwright, R.D.; Xie, W.; Shier, W.T. Aflatoxin and fumonisin contamination of corn (maize, Zea mays) hybrids in Arkansas. Crop Prot. 2006, 25, 1–9. [Google Scholar] [CrossRef]
- Gursoy, N.; Bicici, M. A review on current situation of toxigenic fungi and mycotoxin formation in Turkey. In An Overview on Toxigenic Fungi and Mycotoxins in Europe; Logrieco, A., Visconti, A., Eds.; Kluwer Acedemic Publishers: Dordecht, The Netherlands, 2004; pp. 237–246. 252p, ISBN 1-4020-2645-5. [Google Scholar]
- Abbas, H.K.; Mascagni, H.J., Jr.; Bruns, H.A.; Shier, W.T.; Damann, K.E. Effect of planting density, irrigation regimes, and maize hybrids with varying ear size on yield, and aflatoxin and fumonisin contamination levels. Am. J. Plant Sci. 2012, 3, 1341–1354. [Google Scholar] [CrossRef] [Green Version]
- Abbas, H.K.; Zablotowicz, R.M.; Shier, W.T.; Johnson, B.J.; Phyllips, N.A.; Weawer, M.A.; Abel, C.A.; Bruns, H.A. Aflatoxin and fumonisin in corn (Zea mays 1236–1240.ys) infected by common smut Ustilago maydis. Plant Dis. 2015, 99, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Lillehoj, E.B. The aflatoxin-in-maize problem: The historical perspective. In Aflatoxin in Maize: Proceedings of the Workshop; Zuber, M.S., Lillehoj, E.B., Renfro, B.L., Eds.; CIMMYT: México-Veracruz, El Batan, Mexico, 1987; pp. 13–30. ISBN 968-6127-12-7. [Google Scholar]
- Astoreca, A.; Vaamonde, G.; Dalcero, A.; Marin, S.; Ramos, A. Abiotic factors, and their interactions influence on the co-production of aflatoxin B1 and cyclopiazonic acid by Aspergillus flavus isolated from corn. Food Microbiol. 2014, 38, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Castaneda, N.; Laguna, S.; Rodrıguez, Y.; Anguiano, G.L.; Guzmán-de-Peña, D. Limestone effect upon aflatoxin in naturally contaminated corn (Abstr.). In Aflatoxin and fumonisin elimination and fungal genomics workshops, San Antonio, Texas, 23–25 October 2002. Mycopathologia 2004, 157, 428. [Google Scholar]
- Moretti, A.; Logrieco, A.; Visconti, A.; Bottalico, A. An overview of mycotoxins and toxigenic fungi in Italy. In An Overview on Toxigenic Fungi and Mycotoxins in Europe; Logrieco, A., Visconti, A., Eds.; Kluwer Acedemic Publishers: Dordecht, The Netherlands, 2004; pp. 141–160. 252p, ISBN 1-4020-2645-5. [Google Scholar]
- Varga, J.; Tóth, B.; Mesterhazy, A.; Teren, J.; Fazekas, B. Mycotoxigenic fungi and mycotoxins in foods and feeds in Hungary. In An Overview on Toxigenic Fungi and Mycotoxins in Europe; Logrieco, A., Visconti, A., Eds.; Kluwer Acedemic Publishers: Dordecht, The Netherlands, 2004; pp. 123–139. 252p, ISBN 1-4020-2645-5. [Google Scholar]
- Masic, Z.; Bocarov-Stancic, A.; Sinovec, Z.; Dilas, S.; Adamovic, M. Mycotoxins in food in Serbia and Montenegro. In An Overview on Toxigenic Fungi and Mycotoxins in Europe; Logrieco, A., Visconti, A., Eds.; Kluwer Acedemic Publishers: Dordecht, The Netherlands, 2004; pp. 201–218. 252p, ISBN 1-4020-2645-5. [Google Scholar]
- Mesterházy, Á.; Szieberth, D.; Szabó, B.; Berényi, A.; Tóth, B. Mycotoxin contamination of maize (Zea mays L.) samples in Hungary, 2012–2017. Cereal Res. Comm. 2022, 50, 1–9. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Rajasekaran, K.; Cary, J.W.; Brown, R.L.; Yu, J.; Cleveland, T.E. Molecular Approaches to Development of Resistance to Preharvest Aflatoxin Contamination. In Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade; CABI (CAB International): Cambridge, MA, USA, 2008; pp. 257–276. [Google Scholar]
- Cleveland, T.E.; Dowd, P.F.; Desjardins, A.E.; Bhatnagar, D.; Cotty, P.J. United States Department of Agriculture-agricultural research service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops. Pest Manag. Sci. 2003, 59, 629–642. [Google Scholar] [CrossRef]
- Akello, J.; Ortega-Beltran, A.; Katati, B.; Atehnkeng, J.; Augusto, J.; Mwila, C.M.; Mahuku, G.; Chikoye, D.; Bandyopadhyay, R. Prevalence of aflatoxin- and fumonisin-producing fungi associated with cereal crops grown in Zimbabwe and their associated risks in a climate change scenario. Foods 2021, 10, 287. [Google Scholar] [CrossRef]
- Magan, N.; Medina, A.; Aldred, D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Rossi, V.; Scandolara, A.; Battilani, P. Effect of environmental conditions on spore production by Fusarium verticillioides, the causal agent of maize ear rot. Eur. J. Plant Pathol. 2009, 123, 159–169. [Google Scholar] [CrossRef]
- Giorni, P.; Magan, N.; Battilani, P. Environmental factors modify carbon nutritional patterns and niche overlap between Aspergillus flavus and Fusarium verticillioides strains from maize. Int. J. Food Microbiol. 2009, 130, 213–218. [Google Scholar] [CrossRef]
- Bush, B.J.; Carson, M.L.; Cubeta, M.A.; Hagler, W.M.; Payne, G.A. Infection and fumonisin production by Fusarium verticillioides in developing maize kernels. Phytopathology 2004, 94, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Klich, M.A. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant Path. 2007, 8, 713–722. [Google Scholar] [CrossRef]
- Miedaner, T.; Juroszek, P. Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north-western Europe. Plant Pathol. 2021, 70, 1032–1046. [Google Scholar] [CrossRef]
- Buric, D.; Doderovic, M. Projected temperature changes in Kolašin (Montenegro) up to 2100 according to EBU-POM and ALADIN regional climate models. Q. J. Hung. Meteorol. Serv. 2020, 124, 427–445. [Google Scholar] [CrossRef]
- Yu, J.; Hennessy, D.A.; Tack, J.; Wu, F. Climate change will increase aflatoxin presence in US Corn. Environ. Res. Lett. 2022, 17, 054017. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van der Fels-Klerck, H.J.; Moretti, A.; Leggieri, M.C.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, Y.S.; Wright, G.C.; Rachaputi, N.C. Modelling climatic risks of aflatoxin contamination in maize. Aust. J. Exper. Agric. 2008, 48, 358–366. [Google Scholar] [CrossRef]
- Chauhan, Y.; Tatnell, J.; Krosch, S.; Karanja, J.; Gnonlonfin, B.; Wanjuki, I.; Wainaina, J.; Harvey, J. An improved simulation model to predict pre-harvest aflatoxin risk in maize. Field Crops Res. 2015, 178, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Damianidis, D.; Ortiz, B.V.; Bowen, K.L.; Windham, G.L.; Hoogenboom, G.; Hagan, A.; Knappenberger, T.; Abbas, H.K.; Scully, B.T.; Mourtzinis, S. Minimum temperature, rainfall, and agronomic management impacts on corn grain aflatoxin contamination. Agron. J. 2018, 110, 1697–1708. [Google Scholar] [CrossRef] [Green Version]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Mesterházy, A.; Lemmens, M. Reid, L.M. Breeding for resistance to ear rots caused by Fusarium spp. in maize—A review. Plant Breed. 2012, 131, 1–19. [Google Scholar] [CrossRef]
- Van der Fels-Klerx, H.J.; Vermeulen, L.C.; Gavai, A.K.; Liu, C. Climate change impacts on aflatoxin B1 in maize and aflatoxin M1 in milk: A case study of maize grown in Eastern Europe and imported to the Netherlands. PLoS ONE 2019, 14, e0218956. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Sultan, Y.; Magan, N. Climate change factors and Aspergillus flavus: Effects on gene expression, growth, and aflatoxin production. World Mycotoxin J. 2015, 8, 171–179. [Google Scholar]
- Gasperini, A.M.; Rodriguez-Sixtos, A.; Verheecke-Vaessen, C.; Garcia-Cela, E.; Medina, A.; Magan, N. Resilience of biocontrol for aflatoxin minimization strategies: Climate change abiotic factors may affect control in non-GM and GM-maize cultivars. Front. Microbiol. 2019, 10, 2525. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Atehnkeng, J.; Ortega-Beltran, A.; Akande, A.; Falade, T.D.O.; Cotty, P.J. “Ground-truthing” efficacy of biological control for aflatoxin mitigation in farmers’ fields in Nigeria: From field trials to commercial usage, a 10-year study. Front. Microbiol. 2019, 10, 2528. [Google Scholar] [CrossRef] [Green Version]
- Mesterhazy, A.; Szieberth, D.; Toldine, E.T.; Nagy, Z.; Szabó, B.; Herczig, B.; Bors, I.; Tóth, B. Updating the Methodology of Identifying Maize Hybrids Resistant to Ear Rot Pathogens and Their Toxins—Artificial Inoculation Tests for Kernel Resistance to Fusarium graminearum, F. verticillioides, and Aspergillus flavus. J. Fungi 2022, 8, 293. [Google Scholar] [CrossRef]
- Mesterhazy, A. Resistance of corn to Fusarium ear rot and its relation to seedling resistance. Phytopath. Z. 1982, 103, 218–231. [Google Scholar] [CrossRef]
- Mesterhazy, A. Relationship between resistance to stalk rot and ear rot of corn influenced by rind resistance, premature death, and the rate of drying of the ear. Maydica 1983, 28, 425–437. [Google Scholar]
- Mesterhazy, A.; Kovács, K. Breeding corn against fusarial stalk rot, ear rot and seedling blight. Acta Phytopath. Acad. Sci. Hung. 1986, 21, 231–249. [Google Scholar]
- Szabó, B.; Toth, B.; Toth Toldine, E.; Varga, M.; Kovacs, N.; Varga, J.; Kocsube, S.; Palagyi, A.; Bagi, F.; Budakov, D.; et al. A new concept to secure food safety standards against Fusarium species and Aspergillus flavus and their toxins in maize. Toxins 2018, 10, 372. [Google Scholar] [CrossRef]
- Mesterhazy, A.; Toldine Toth, E.; Szel, S.; Varga, M.; Toth, B. Resistance of maize hybrids to Fusarium graminearum, F. culmorum, and F. verticillioides ear rots with toothpick and silk channel inoculation, as well as their toxin production. Agronomy 2020, 10, 1283. [Google Scholar] [CrossRef]
- Hong, S.B.; Go, S.J.; Shin, H.D.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 2005, 97, 1316–1329. [Google Scholar] [CrossRef]
- Anonymous. Analytical procedure of Bonafarm Babolna Feed UPLC-MS/MS method, approved by the National Accreditation Authority under the code NAH-1254-14-1560/2016, issued on 14 December 2016, approval for mycotoxins was issued under No. BBVM-111:2015. Available online: www.babolnatakarmany.hu/labor (accessed on 12 October 2021).
- Sváb, J. BiometriaiMódszerekAkutatásban (Methods for Biometrics in Research), 3rd ed.; MezogazdaságiKiadó (Agr. Publ. House): Budapest, Hungary, 1981; 557p, ISBN 963-231-0136. [Google Scholar]
- Weber, E. Grundriss der BiologischenStatistik. (Fundaments of the Biological Statistics); VEB Fisher Verlag: Jena, Germany, 1967; 706p. [Google Scholar]
- Lanubile, A.; Machietto, V.; Marocco, A. Breeding maize for resistance to mycotoxins. In Mycotoxin Reduction in Grain Chains; Leslie, J.F., Logrieco, A.F., Eds.; Wiley Blackwell: Oxford, UK, 2014; pp. 37–58. 352p, ISBN 978-0-8138-2083-5. [Google Scholar]
- Pechanova, O.; Pechan, T.; Williams, W.P.; Luthe, D.S. Proteomic analysis of maize rachis: Potential roles constitutive and induced proteins in resistance to Aspergillus flavus infection and aflatoxin accumulation. Protheomics 2011, 11, 114–127. [Google Scholar] [CrossRef]
- Pechanova, O.; Pechan, T. Maize-Pathogen interactions: An ongoing combat from a proteomics perspective. Int. J. Mol. Sci. 2015, 16, 28429–28448. [Google Scholar] [CrossRef] [Green Version]
- Smart, M.G.; Wicklow, D.T.; Caldwell, R.W. Pathogenesis of Aspergillus ear rot of maize: Light microscopy of fungal spread from wounds. Phytopathology 1990, 80, 1287–1294. [Google Scholar] [CrossRef] [Green Version]
- Mesterházy, Á.; Kovács, G., Jr.; Kovács, K. Breeding resistance for Fusarium ear rot (FER) in corn. In Proceedings of the 18th International Conference on Maize and Sorghum Genetics and Breeding, Belgrade, Yugoslavia, 4–9 June 2000; Acta Biologica Iugoslavica: Beograd, Serbia Serija F, Genetika. ; Volume 32, pp. 495–505. [Google Scholar]
- Kelly, S.M.; Wallin, J.R. Systemic infection of maize plants by Aspergillus flavus. In Aflatoxin in Maize: Proceedings of the Workshop; Zuber, M.S., Lillehoj, E.B., Renfro, B.L., Eds.; CIMMYT: México-Veracruz, El Batan, Mexico, 1987; pp. 187–193. [Google Scholar]
- Payne, G.A. Process of contamination by aflatoxin-producing fungi and their impact on crops. In Mycotoxins in Agriculture and Food Safety; Bhatnagar, D., Sinha, K.K., Eds.; CRC Press: Boca Raton, FL, USA, 1998; pp. 279–310. 520p, ISBN 9780824701925. [Google Scholar]
- Barnett, N.M.; Naylor, A.W. Amino acid, and protein metabolism in Bermuda grass during water stress. Plant Physiol. 1966, 41, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Payne, G.A.; Hagler, W.M. Effect of specific amino acids on growth and aflatoxin production by Aspergillus parasiticus and Aspergillus flavus in defined media. Appl. Environ. Microbiol. 1983, 46, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Amaike, S.; Keller, N.P. Aspergillus flavus. Ann. Rev. Phytopathol. 2011, 49, 107–133. [Google Scholar] [CrossRef]
- Cotty, P.J.; Bhatnagar, D. Variability among antitoxic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. App. Environ. Microbiol. 1994, 60, 2248–2252. [Google Scholar] [CrossRef] [Green Version]
- Battilani, P.; Barbano, C.; Piva, G. Aflatoxin B1 contamination in maize related to the aridity index in North Italy. World Mycotoxin J. 2008, 1, 449–456. [Google Scholar] [CrossRef]
- Battilani, P.; Pietri, A.; Barbano, C.; Scandolara, A.; Bertuzzi, T.; Marocco, A. Logistic regression modeling of cropping systems to predict fumonisin contamination in maize. J. Agric. Food Chem. 2008, 56, 10433–10438. [Google Scholar] [CrossRef]
- Thompson, M.E.H.; Raizada, M.N. Fungal pathogens of maize gaining free passage along the silk road. Pathogens 2018, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.M.; Payne, G.A. Factors affecting Aspergillus flavus group infection and aflatoxin contamination of crops. In The Toxicology of Aflatoxins: Human Health, Veterinary and Agricultural Significance; Eaton, D.L., Groopman, J.D., Eds.; Academic Press: San Diego, CA, USA, 1994; pp. 309–325. [Google Scholar]
- Battilani, P.; Leggieri, M.C.; Rossi, V.; Giorni, P. AFLA-maize, a mechanistic model for Aspergillus flavus infection and aflatoxin B1 contamination in maize. Comput. Electron. Agric. 2013, 94, 38–46. [Google Scholar] [CrossRef]
- Miraglia, M.; Marvin, H.J.P.; Kleter, G.A.; Battilani, P.; Brera, C.; Coni, E.; Cubadda, F.; Croci, L.; De Santis, B.; Dekkers, S.; et al. Climate change and food safety: An emerging issue with special focus on Europe. Food Chem. Toxicol. 2009, 47, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Assunçao, R.; Martins, C.; Viegas, S.; Viegas, C.; Jakobsen, L.S.; Pires, S.; Alvito, P. Climate change and the health impact of aflatoxins exposure in Portugal—An overview. Food Addit. Contam. Part A. 2018, 35, 1610–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA (European Food Safety Authority); Maggiore, A.; Afonso, A.; Barrucci, F.; De Sanctis, G. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA Supporting Publ. 2020, EN-1881, 146. [Google Scholar] [CrossRef]
- Brown, R.I.; Bhatnagar, D. Foreword: Aflatoxins in maize and other crops. World Mycotoxin J. 2015, 8, 135–136. [Google Scholar] [CrossRef]
- Gaikpa, D.S.; Miedaner, T. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: Methods, advances, and prospects. Theor. Appl. Genet. 2019, 132, 2721–2739. [Google Scholar] [CrossRef]
- Hruska, Z.; Yao, H.; Kincaid, R.; Tao, F.; Brown, R.L.; Cleveland, T.E.; Rajasekaran, K.; Bhatnagar, D. Spectral-based screening approach evaluating two specific maize lines with divergent resistance to invasion by aflatoxigenic fungi. Front. Microbiol. 2020, 10, 3152. [Google Scholar] [CrossRef]
- Logrieco, A.F.; Battilani, P.; Leggieri, C.M.; Haesaert, G.; Jiang, Y.; Lanubile, A.; Mahuku, G.; Mesterhazy, A.; Ortega-Beltran, A.; Pasti, M.A.; et al. Perspectives on global mycotoxin issues and management from the MycoKey Maize Working Group. Plant Dis. 2020, 105, 525–537. [Google Scholar] [CrossRef]
- Blaney, B.J.; O’Keeffe, K.O.; Bricknell, L.K. Managing mycotoxins in maize: Case studies. Aust. J. Exp. Agric. 2007, 47. in press. Available online: https://www.researchgate.net/profile/Barry-Blaney/publication/29660388 (accessed on 23 May 2019).
- Logrieco, A.; Mule, G.; Moretti, A.; Bottalico, A. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur. J. Plant Pathol. 2002, 108, 597–609. [Google Scholar] [CrossRef]
- Mesterházy, Á.; Vojtovics, M. Akukorica Fusarium okoztafertõzöttségénekvizsgálata 1972-1975-ben. (Investigation of Fusarium species in corn kernels 1972–1975). Növénytermelés 1977, 26, 367–378. [Google Scholar]
- Wu, F.; Mitchell, N.J. How climate change and regulations can affect the economics of mycotoxins. World Mycotoxin J. 2016, 9, 653–663. [Google Scholar] [CrossRef]
- Medina, A.; Rodriguez, A.; Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 2014, 5, 348. [Google Scholar] [CrossRef] [Green Version]
- Mesterházy, Á.; Varga, M.; Tóth, B.; Kótai, C.; Bartók, T.; Véha, A.; Ács, K.; Vágvölgyi, C.; Lehoczki-Krsjak, S. Reduction of deoxynivalenol (DON) contamination by improved fungicide use in wheat. Part 2. Farm scale tests with different nozzle types and updating the integrated approach. Eur. J. Plant Pathol. 2018, 151, 1–20. [Google Scholar] [CrossRef]
- Mesterhazy, A. Updating the Breeding Philosophy of Wheat to Fusarium Head Blight (FHB): Resistance Components, QTL Identification and Phenotyping—A review. Plants 2020, 9, 1702. [Google Scholar] [CrossRef]
- Mauro, A.; Battilani, P.; Cotty, J.P. Atoxigenic Aspergillus flavus endemic to Italy for biocontrol of aflatoxins in maize. BioControl 2014, 60, 125–134. [Google Scholar] [CrossRef]
- Steward, P.R.; Thierfelderb, C.; Dougilla, A.J.; Ligowec, I. Conservation agriculture enhances resistance of maize to climate stress in a Malawian medium-term trial. Agric. Ecosyst. Environ. 2019, 277, 95–104. [Google Scholar] [CrossRef]
- Pruter, L.S.; Weaver, M.; Brewer, M.J. Overview of risk factors and strategies for management of insect-derived ear injury and aflatoxin accumulation for maize grown in subtropical areas of North America. J. Integr. Pest Manag. 2020, 11, 13. [Google Scholar] [CrossRef]
- Dowd, P.F. Involvement of arthropods in the establishment of mycotoxigenic fungi under field conditions. In Mycotoxins in Agriculture and Food Safety; Sinha, K.K., Bhatnagar, D., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1998; pp. 307–350. [Google Scholar]
- Wu, F.; Guclu, H. Aflatoxin regulations in a network of global maize trade. PLoS ONE 2012, 7, e45151. [Google Scholar] [CrossRef] [Green Version]
- Alberts, J.; Rheeder, J.; Gelderblom, W.; Shephard, G.; Burger, H.-M. Rural subsistence maize farming in South Africa: Risk Assessment and Intervention models for Reduction of Exposure to Fumonisin Mycotoxins. Toxins 2019, 11, 334. [Google Scholar] [CrossRef]
- Mesterházy, Á.; Oláh, J.; Popp, J. 2020. Losses in the grain supply chain: Causes and solutions. Sustainability 2020, 12, 2342. [Google Scholar] [CrossRef] [Green Version]
- Mesterhazy, A.; Szabó, B.; Szél, S.; Nagy, Z.; Berényi, A.; Tóth, B. Novel Insights into the Inheritance of Gibberella Ear Rot (GER), Deoxynivalenol (DON) Accumulation, and DON Production. Toxins 2022, 14, 583. [Google Scholar] [CrossRef]
Year | Moldy Samples | Regular Samples | ||||||
---|---|---|---|---|---|---|---|---|
FUMO | DON | T-2 | ZON | FUMO | DON | T-2 | ZON | |
μg/kg | μg/kg | μg/kg | μg/kg | μg/kg | μg/kg | μg/kg | μg/kg | |
1993 | 260 | 4330 | 200 | 1260 | 100 | 220 | 100 | 20 |
1994 | 6440 | 90 | 165 | 30 | 1520 | 50 | 50 | 8 |
1995 | 8650 | 2400 | 430 | 360 | 1600 | 370 | 180 | 100 |
1996 | 5520 | 3200 | 380 | 230 | 1380 | 420 | 160 | 150 |
1997 | 5940 | 3400 | 480 | 560 | 1170 | 470 | 220 | 190 |
1998 | 3960 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
1999 | n.d. | n.d. | n.d. | n.d. | 1190 | 480 | 210 | n.d. |
Mean | 5128 | 2684 | 331 | 488 | 1160 | 335 | 153 | 94 |
Rate M/R | 4.42 | 8.01 | 2.16 | 5.21 |
Years | ERF/ERA | ERF/DON | ERF/FUM | ERA/AFB1 | DON/FUM | DON/AFB1 | FUM/AFB1 | n |
---|---|---|---|---|---|---|---|---|
2014 | 0.088 | 0.194 | 0.192 | −0.125 | 0.523 * | −0.057 | −0.146 | 20 |
2015 | 0.834 *** | −0.063 | −0.180 | −0.080 | −0.197 | −0.076 | −0.146 | 23 |
2016 | −0.092 | 0.119 | 0.146 | −0.053 | −0.098 | −0.031 | 0.169 | 23 |
2017 | 0.016 | −0.181 | 0.510 * | −0.207 | −0.038 | 0.743 *** | 0.037 | 23 |
2018 | −0.094 | −0.143 | 0.186 | −0.067 | −0.127 | 0.218 | −0.172 | 23 |
2019 | 0.263 | −0.240 | 0.301 | −0.089 | −0.034 | −0.186 | 0.118 | 23 |
2020 | 0.480 * | −0.097 | −0.230 | −0.091 | −0.092 | −0.112 | 0.213 | 18 |
2021 | 0.0035 | 0.278 | 0.564 * | −0.277 | 0.066 | −0.129 | −0.158 | 14 |
Year | Visual Ear Rot | Visual Ear Rot | Toxin | ||
---|---|---|---|---|---|
Fus% | Asp% | DON (mg/kg) | FUM B1 + B2 (mg/kg) | AFB1 (μg/kg) | |
2014 | 1.12 | 0.001 | 6.29 | 20.79 | 16 |
2015 | 1.21 | 0.040 | 0.14 | 4.03 | 87 |
2016 | 0.25 | 0.001 | 0.16 | 1.76 | 6 |
2017 | 0.47 | 0.040 | 0.25 | 1.82 | 51 |
2018 | 0.47 | 0.001 | 0.90 | 0.7 | 3 |
2019 | 0.18 | 0.001 | 1.77 | 1.16 | 4 |
2020 | 0.18 | 0.004 | 0.09 | 2.16 | 316 |
2021 | 0.09 | 0.000 | 0.71 | 0.87 | 0.86 |
Mean | 0.50 | 0.011 | 1.29 | 4.16 | 60.48 |
Correlations | Fus. Ear rot % | Asp Ear rot % | DON (mg/kg) | FUM B1 + B2 (mg/kg) | |
Asp Ear rot % | 0.4808 | ||||
DON mgt/kg | 0.4812 | −0.3351 | |||
FUM B1 + B2 mg/kg | 0.6731 * | −0.1161 | 0.9277 ** | ||
AFB1 μg/kg | −0.0987 | 0.1103 | −0.2897 | −0.1047 |
Year | Fus.Visual Ear Rot | Asp.Visual Ear Rot | Toxins | ||
---|---|---|---|---|---|
% | % | DON (mg/kg) | FUM B1 + B2 (mg/kg) | AFB1 (μg/kg) | |
2017 | 0.02 | 0.000 | 0.22 | 0.81 | 0.010 |
2018 | 0.03 | 0.000 | 1.00 | 0.20 | 0.000 |
2019 | 0.07 | 0.000 | 2.40 | 0.00 | 0.000 |
2020 | 0.04 | 0.000 | 0.15 | 3.30 | 0.000 |
2021 | 0.03 | 0.000 | 0 | 1.48 | 0.001 |
Mean | 0.04 | 0.000 | 0.76 | 1.16 | 0.0022 |
Hybrid | DON (mg/kg) | Mean | Variance | |||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | |||
Valkür | 0.22 | 1.00 | 2.40 | 0.15 | 0.94 | 1.09 |
DKC 5830 | 0.00 | 0.00 | 4.35 | 0.00 | 1.09 | 4.73 |
Korimbos | 0.60 | 4.20 | 6.80 | 0.17 | 2.94 | 9.88 |
DKC 4541 | 0.00 | 0.10 | 7.18 | 0.00 | 1.82 | 12.77 |
Mean | 0.21 | 1.32 | 5.18 | 0.08 | 1.7 | 7.12 |
LSD 5% | ns | |||||
Hybrid | FUM B1 + B2 (mg/kg) | Mean | Variance | |||
2017 | 2018 | 2019 | 2020 | |||
Valkür | 0.81 | 0.20 | 0.00 | 3.30 | 1.08 | 2.31 |
DKC 5830 | 0.18 | 0.00 | 2.84 | 3.28 | 1.58 | 2.98 |
Korimbos | 0.83 | 0.30 | 1.39 | 0.22 | 0.67 | 0.29 |
DKC 4541 | 2.53 | 0.40 | 0.00 | 1.08 | 1.00 | 1.24 |
Mean | 1.09 | 0.21 | 1.06 | 1.97 | 1.08 | 1.71 |
LSD 5% | ns | |||||
Hybrid | AFB1 (μg/kg) | Mean | Variance | |||
2017 | 2018 | 2019 | 2020 | |||
Valkür | 10 | 0 | 0 | 0 | 2.50 | 25.00 |
DKC 5830 | 5 | 0 | 0 | 0 | 1.25 | 6.25 |
Korimbos | 55 | 0 | 0 | 816 | 217.75 | 159,740.25 |
DKC 4541 | 17 | 0 | 0 | 0 | 4.25 | 72.25 |
Mean | 21.75 | 0 | 0 | 204 | 56.44 | 39,960.93 |
LSD 5% | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesterhazy, A.; Szieberth, D.; Tóth, E.T.; Nagy, Z.; Szabó, B.; Herczig, B.; Bors, I.; Tóth, B. The Role of Preharvest Natural Infection and Toxin Contamination in Food and Feed Safety in Maize, South-East Hungary, 2014–2021. J. Fungi 2022, 8, 1104. https://doi.org/10.3390/jof8101104
Mesterhazy A, Szieberth D, Tóth ET, Nagy Z, Szabó B, Herczig B, Bors I, Tóth B. The Role of Preharvest Natural Infection and Toxin Contamination in Food and Feed Safety in Maize, South-East Hungary, 2014–2021. Journal of Fungi. 2022; 8(10):1104. https://doi.org/10.3390/jof8101104
Chicago/Turabian StyleMesterhazy, Akos, Denes Szieberth, Eva Toldine Tóth, Zoltan Nagy, Balazs Szabó, Beata Herczig, Istvan Bors, and Beata Tóth. 2022. "The Role of Preharvest Natural Infection and Toxin Contamination in Food and Feed Safety in Maize, South-East Hungary, 2014–2021" Journal of Fungi 8, no. 10: 1104. https://doi.org/10.3390/jof8101104
APA StyleMesterhazy, A., Szieberth, D., Tóth, E. T., Nagy, Z., Szabó, B., Herczig, B., Bors, I., & Tóth, B. (2022). The Role of Preharvest Natural Infection and Toxin Contamination in Food and Feed Safety in Maize, South-East Hungary, 2014–2021. Journal of Fungi, 8(10), 1104. https://doi.org/10.3390/jof8101104