Age- and Gender-Related Differences in the Morphology of Cuff Tear Arthropathy: A Cross Sectional Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brorson, S. Cuff tear arthropathy in the nineteenth century: “Chronic rheumatic arthritis” with “partial luxation upwards” of the humeral head. Int. Orthop. 2019, 43, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Neer, C.S.; Craig, E.V.; Fukuda, H. Cuff-tear arthropathy. J. Bone Jt. Surg. Am. 1983, 65, 1232–1244. [Google Scholar] [CrossRef]
- Mccarty, D.J.; Halverson, P.B.; Carrera, G.F.; Brewer, B.J.; Kozin, F. “Milwaukee shoulder”—Association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. Arthritis Rheum. 1981, 24, 464–473. [Google Scholar] [CrossRef]
- Collins, D.N.; Harryman, D.T.I. Arthroplasty for arthritis and rotator cuff deficiency. Orthop. Clin. N. Am. 1997, 28, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Silldorff, M.D.; Choo, A.D.; Choi, A.J.; Lin, E.; Carr, J.A.; Lieber, R.L.; Lane, J.G.; Ward, S.R. Effect of Supraspinatus Tendon Injury on Supraspinatus and Infraspinatus Muscle Passive Tension and Associated Biochemistry. J. Bone Jt. Surg. 2014, 96, e175. [Google Scholar] [CrossRef]
- Gibbons, M.C.; Sato, E.J.; Bachasson, D.; Cheng, T.; Azimi, H.; Schenk, S.; Engler, A.J.; Singh, A.; Ward, S.R. Muscle architectural changes after massive human rotator cuff tear. J. Orthop. Res. 2016, 34, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Walch, G.; Collotte, P.; Raiss, P.; Athwal, G.S.; Gauci, M.O. The Characteristics of the Favard E4 Glenoid Morphology in Cuff Tear Arthropathy: A CT Study. J. Clin. Med. 2020, 9, 3704. [Google Scholar] [CrossRef]
- Van Parys, M.; Alkiar, O.; Naidoo, N.; Van Tongel, A.; De Wilde, L. Three-dimensional evaluation of scapular morphology in primary glenohumeral arthritis, rotator cuff arthropathy, and asymptomatic shoulders. J. Shoulder Elb. Surg. 2021, 30, 1803–1810. [Google Scholar] [CrossRef] [PubMed]
- Visotsky, J.L.; Basamania, C.; Seebauer, L.; Rockwood, C.A.; Jensen, K.L. Cuff tear arthropathy: Pathogenesis, classification, and algorithm for treatment. J. Bone Jt. Surg. Am. 2004, 86-A (Suppl. 2), 35–40. [Google Scholar] [CrossRef]
- Brolin, T.J.; Updegrove, G.F.; Horneff, J.G. Classifications in Brief: Hamada Classification of Massive Rotator Cuff Tears. Clin. Orthop. Relat. Res. 2017, 475, 2819–2823. [Google Scholar] [CrossRef] [PubMed]
- Lévigne, C.; Boileau, P.; Favard, L.; Garaud, P.; Molé, D.; Sirveaux, F.; Walch, G. Scapular notching in reverse shoulder arthroplasty. J. Shoulder Elb. Surg. 2008, 17, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Bercik, M.J.; Kruse, K.; Yalizis, M.; Gauci, M.O.; Chaoui, J.; Walch, G. A modification to the Walch classification of the glenoid in primary glenohumeral osteoarthritis using three-dimensional imaging. J. Shoulder Elb. Surg. 2016, 25, 1601–1606. [Google Scholar] [CrossRef]
- Habermeyer, P.; Magosch, P.; Lichtenberg, S. Classifications and Scores of the Shoulder; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-24350-2. [Google Scholar]
- Goutallier, D.; Postel, J.-M.; Bernageau, J.; Lavau, L.; Voisin, M.-C. Fatty Muscle Degeneration in Cuff Ruptures. Pre- and Postoperative Evaluation by CT Scan. Clin. Orthop. Relat. Res. 1994, 304, 78–83. [Google Scholar] [CrossRef]
- Thomazeau, H.; Rolland, Y.; Lucas, C.; Duval, J.; Langlais, F. Atrophy of the supraspinatus belly Assessment by MRI in 55 patients with rotator cuff pathology. Acta Orthop. Scand. 1996, 67, 264–268. [Google Scholar] [CrossRef]
- Patte, D. Classification of rotator cuff lesions. Clin. Orthop. Relat. Res. 1990, 254, 81–86. [Google Scholar] [CrossRef]
- Nyffeler, R.W.; Werner, C.M.L.; Sukthankar, A.; Schmid, M.R.; Gerber, C. Association of a large lateral extension of the acromion with rotator cuff tears. J. Bone Jt. Surg. Ser. A 2006, 88, 800–805. [Google Scholar] [CrossRef]
- Moor, B.K.; Bouaicha, S.; Rothenfluh, D.A.; Sukthankar, A.; Gerber, C. Is there an association between the individual anatomy of the scapula and the development of rotator cuff tears or osteoarthritis of the glenohumeral joint? A radiological study of the critical shoulder angle. Bone Jt. J. 2013, 95 B, 935–941. [Google Scholar] [CrossRef]
- Hoenig, J.M.; Heisey, D.M. The abuse of power: The pervasive fallacy of power calculations for data analysis. Am. Stat. 2001, 55, 19–24. [Google Scholar] [CrossRef]
- Han, O.J.; Hoon, K.S.; Kang, J.Y.; Hee, O.C.; Gong, H.S. Effect of Age on Functional and Structural Outcome after Rotator Cuff Repair. Am. J. Sports Med. 2010, 38, 672–678. [Google Scholar] [CrossRef]
- Gelvosa, M.N.; Azarcon, A. Gender and laterality differences on measurements of acromiohumeral distance (AHD) at rest and at shoulder abduction using musculoskeletal ultrasound in asymptomatic Filipino adults. Ann. Phys. Rehabil. Med. 2018, 61, e435–e436. [Google Scholar] [CrossRef]
- Feeley, B.T.; Gallo, R.A.; Craig, E.V. Cuff tear arthropathy: Current trends in diagnosis and surgical management. J. Shoulder Elb. Surg. 2009, 18, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, S.; Longo, U.G.; Papalia, R.; Denaro, V. Reverse shoulder arthroplasty for massive irreparable rotator cuff tears and cuff tear arthropathy: A systematic review. Musculoskelet. Surg. 2017, 101, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Minagawa, H.; Yamamoto, N.; Abe, H.; Fukuda, M.; Seki, N.; Kikuchi, K.; Kijima, H.; Itoi, E. Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: From mass-screening in one village. J. Orthop. 2013, 10, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Takagishi, K.; Osawa, T.; Yanagawa, T.; Nakajima, D.; Shitara, H.; Kobayashi, T. Prevalence and risk factors of a rotator cuff tear in the general population. J. Shoulder Elbow Surg. 2010, 19, 116–120. [Google Scholar] [CrossRef]

| n = 342 | Female (n = 257) | Male (n = 85) | p |
|---|---|---|---|
| Age (years) | 74.37 ± 7.5 | 70.11 ± 10.0 | 0.001 |
| Side (left/right) | 101 (39.3)/156 (60.7) | 32 (37.6)/53 (62.4) | 0.887 |
| n = 342 | <74.5 years (n = 171) | >74.5 years (n = 171) | p |
| Gender (female/male) | 120 (70.2)/51 (29.8) | 137 (80.1)/34 (19.9) | 0.045 |
| Side (left/right) | 65 (38)/106 (62) | 68 (39.8)/103 (60.2) | 0.824 |
| Distribution | Statistical Significance f | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| n | Female | Male | Older | Younger | Median | SD e | f/m | o/y | |
| Seebauer (1A/1B/2A/2B) | 341 | 256 | 85 | 171 | 170 | 0.341 | 0.006 | ||
| Hamada (1–5) | 329 | 248 | 81 | 166 | 163 | 0.483 | 0.417 | ||
| Favard (E0–E4) | 342 | 257 | 85 | 171 | 171 | 0.807 | 0.534 | ||
| Walch (A1–2/B1–B3/C/D) | 238 | 180 | 58 | 106 | 132 | 0.686 | 0.107 | ||
| Habermeyer (0/A/B/C) | 159 | 117 | 42 | 61 | 98 | 0.652 | <0.001 | ||
| Goutallier (0–4) | 166 | 121 | 45 | 63 | 103 | 0.006 | 0.001 | ||
| Thomazeau (1–3) | 183 | 121 | 62 | 62 | 103 | 0.063 | 0.037 | ||
| Patte (0–3) | 163 | 119 | 44 | 62 | 101 | 0.543 | 0.003 | ||
| AHI b | 287 | 214 | 73 | 144 | 143 | 0.71 | 0.11 | 0.219 | 0.397 |
| AHD c (mm) | 272 | 203 | 69 | 126 | 146 | 4.9 | 3.2 | 0.076 | 0.001 |
| CSA d (°) | 294 | 220 | 74 | 150 | 144 | 31.76 | 4.95 | 0.843 | 0.123 |
| Version (°) | 232 | 178 | 54 | 103 | 129 | 5.6 | 8.8 | 0.144 | 0.482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruber, M.S.; Bischofreiter, M.; Brandstätter, P.; Hochreiter, J.; Sadoghi, P.; Ortmaier, R. Age- and Gender-Related Differences in the Morphology of Cuff Tear Arthropathy: A Cross Sectional Analysis. J. Funct. Morphol. Kinesiol. 2023, 8, 8. https://doi.org/10.3390/jfmk8010008
Gruber MS, Bischofreiter M, Brandstätter P, Hochreiter J, Sadoghi P, Ortmaier R. Age- and Gender-Related Differences in the Morphology of Cuff Tear Arthropathy: A Cross Sectional Analysis. Journal of Functional Morphology and Kinesiology. 2023; 8(1):8. https://doi.org/10.3390/jfmk8010008
Chicago/Turabian StyleGruber, Michael Stephan, Martin Bischofreiter, Patrick Brandstätter, Josef Hochreiter, Patrick Sadoghi, and Reinhold Ortmaier. 2023. "Age- and Gender-Related Differences in the Morphology of Cuff Tear Arthropathy: A Cross Sectional Analysis" Journal of Functional Morphology and Kinesiology 8, no. 1: 8. https://doi.org/10.3390/jfmk8010008
APA StyleGruber, M. S., Bischofreiter, M., Brandstätter, P., Hochreiter, J., Sadoghi, P., & Ortmaier, R. (2023). Age- and Gender-Related Differences in the Morphology of Cuff Tear Arthropathy: A Cross Sectional Analysis. Journal of Functional Morphology and Kinesiology, 8(1), 8. https://doi.org/10.3390/jfmk8010008

