Population-Based Screening or Targeted Screening Based on Initial Clinical Risk Assessment for Atrial Fibrillation: A Report from the Huawei Heart Study
Abstract
:1. Clinical Perspective
1.1. What Is New
- A simple clinical risk score, C2HEST (C2, coronary artery disease/chronic obstructive pulmonary disease; COPD (1 point each); H, hypertension; E, elderly (age ≥75, doubled); S, systolic heart failure, HF (doubled); T, thyroid disease (hyperthyroidism)) facilitates population screening and detection of incident atrial fibrillation (AF) in the general population.
- The symptomatic C2HEST score, with the presence of associated palpitations, improves the predictive ability of detected AF, which might be useful for targeted screening.
1.2. What Are the Clinical Implications
- The general age ≥40 with >3 main cardiovascular risk factors (heart failure, hypertension, coronary artery disease, hyperthyroidism, diabetes, etc.) could be the candidates for AF screening.
- Using photoplethysmography (PPG)-based monitoring wristbands/wristwatches, with continuous frequent monitoring, there was a median of 4 days to the first detection of AF in the population with high-risk C2HEST score.
2. Introduction
3. Methods
3.1. Definition of Main Cardiovascular Risk Factors
3.2. AF Detection and Confirmation
3.3. Statistical Analysis
4. Results
5. Discussion
Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclosures
References
- Freedman, B.; Camm, J.; Calkins, H.; Healey, J.S.; Rosenqvist, M.; Wang, J.; Albert, C.M.; Anderson, C.S.; Antoniou, S.; Benjamin, E.J.; et al. Screening for Atrial Fibrillation. Circulation 2017, 135, 1851–1867. [Google Scholar] [CrossRef] [PubMed]
- Steinhubl, S.R.; Waalen, J.; Edwards, A.M.; Ariniello, L.M.; Mehta, R.R.; Ebner, G.S.; Carter, C.; Baca-Motes, K.; Felicione, E.; Sarich, T.; et al. Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation: The mSToPS Randomized Clinical Trial. JAMA 2018, 320, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Halcox, J.; Wareham, K.; Cardew, A.; Gilmore, M.; Barry, J.P.; Phillips, C.; Gravenor, M.B. Assessment of Remote Heart Rhythm Sampling Using the AliveCor Heart Monitor to Screen for Atrial Fibrillation. Circulation 2017, 136, 1784–1794. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, H.; Zhang, H.; Liu, T.; Liang, Z.; Xia, Y.; Yan, L.; Xing, Y.; Shi, H.; Li, S.; et al. Mobile Photoplethysmographic Technology to Detect Atrial Fibrillation. J. Am. Coll. Cardiol. 2019, 74, 2365–2375. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pastori, D.; Guo, Y.; Wang, Y.; Lip, G.Y. Risk factors for new-onset atrial fibrillation: A focus on Asian populations. Int. J. Cardiol. 2018, 261, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, R.B.; Sullivan, L.; Levy, D.; Pencina, M.J.; Massaro, J.M.; D’Agostino, R.B.; Newton-Cheh, C.; Yamamoto, J.F.; Magnani, J.W.; Tadros, T.M.; et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): A community-based cohort study. Lancet 2009, 373, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, A.M.; Agarwal, S.K.; Folsom, A.R.; Soliman, E.Z.; Chambless, L.E.; Crow, R.; Ambrose, M.; Alonso, A. A Clinical Risk Score for Atrial Fibrillation in a Biracial Prospective Cohort (from the Atherosclerosis Risk In Communities [ARIC] Study). Am. J. Cardiol. 2011, 107, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, A.; Krijthe, B.P.; Aspelund, T.; Stepas, K.A.; Pencina, M.J.; Moser, C.B.; Sinner, M.F.; Sotoodehnia, N.; Fontes, J.D.; Janssens, C.; et al. Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: The CHARGE-AF Consortium. J. Am. Hear. Assoc. 2013, 2, e000102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Pastori, D.; Farcomeni, A.; Yang, P.-S.; Jang, E.; Joung, B.; Wang, Y.-T.; Guo, Y.-T.; Lip, G.Y.H. A Simple Clinical Risk Score (C2HEST) for Predicting Incident Atrial Fibrillation in Asian Subjects: Derivation in 471,446 Chinese Subjects, With Internal Validation and External Application in 451,199 Korean Subjects. Chest 2018, 155, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bisson, A.; Bodin, A.; Herbert, J.; Grammatico-Guillon, L.; Joung, B.; Wang, Y.; Lip, G.Y.H.; Fauchier, L. C2 HEST Score and Prediction of Incident Atrial Fibrillation in Poststroke Patients: A French Nationwide Study. J. Am. Hear. Assoc. 2019, 8, e012546. [Google Scholar]
- Lip, G.Y.H.; Skjøth, F.; Nielsen, P.B.; Larsen, T.B. Evaluation of the C2HEST Risk Score as a Possible Opportunistic Screening Tool for Incident Atrial Fibrillation in a Healthy Population (From a Nationwide Danish Cohort Study). Am. J. Cardiol. 2019, 125, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Lane, D.A.; Wang, L.; Chen, Y.; Lip, G.Y.H.; Eckstein, J.; Thomas, G.N.; Mei, F.; Xuejun, L.; Xiaoming, L.; et al. Mobile Health (mHealth) technology for improved screening, patient involvement and optimising integrated care in atrial fibrillation: The mAFA (mAF-App) II randomised trial. Int. J. Clin. Pr. 2019, 73, e13352. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-Y.; Li, Y.-G.; Li, J.; Cheng, W.-K.; Shan, Z.-L.; Wang, Y.-T.; Guo, Y.-T.; Goris, J.; Lang, M. Diagnostic Performance of a Smart Device With Photoplethysmography Technology for Atrial Fibrillation Detection: Pilot Study (Pre-mAFA II Registry). JMIR mHealth uHealth 2019, 7, e11437. [Google Scholar] [CrossRef] [PubMed]
- Svennberg, E.; Engdahl, J.; Al-Khalili, F.; Friberg, L.; Frykman, V.; Rosenqvist, M. Mass Screening for Untreated Atrial Fibrillation. Circ. 2015, 131, 2176–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, T.-F.; Lip, G.Y.H.; Lin, Y.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Tuan, T.-C.; Liao, J.-N.; Chung, F.-P.; Chen, T.-J.; et al. Age threshold for the use of non-vitamin K antagonist oral anticoagulants for stroke prevention in patients with atrial fibrillation: Insights into the optimal assessment of age and incident comorbidities. Eur. Hear. J. 2019, 40, 1504–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Tian, Y.; Wang, H.; Si, Q.; Wang, Y.; Lip, G.Y. Prevalence, Incidence, and Lifetime Risk of Atrial Fibrillation in China. Chest 2015, 147, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, Y.; Watanabe, M.; Higashiyama, A.; Nakao, Y.M.; Kusano, K.; Miyamoto, Y. Development of a Basic Risk Score for Incident Atrial Fibrillation in a Japanese General Population―The Suita Study. Circ. J. 2017, 81, 1580–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, M.K.; Lim, N.-K.; Cho, M.-C.; Park, H.-Y. Incidence and Risk Factors for Atrial Fibrillation in Korea: The National Health Insurance Service Database (2002–2010). Korean Circ. J. 2016, 46, 515–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Index | Age 18–39 (n = 145,389) | Age 40–54 (n = 52,089) | Age 55–64 (n = 8716) | Age ≥ 65 (n = 3080) |
---|---|---|---|---|
Female | 15,339 (10.6%) | 4556 (8.7%) | 1423 (16.3%) | 875 (28.4%) |
C2HEST mean (SD) | 0.43 (0.37) | 0.78 (0.68) | 1.07 (0.94) | 1.72 (1.53) |
0 | 94,605 (65.1%) | 22,837 (43.8%) | 2902 (33.3%) | 677 (22.0%) |
1 | 41,772 (28.7%) | 20,075 (38.5%) | 3252 (37.3%) | 859 (27.9%) |
2 | 7548 (5.2%) | 7745 (14.9%) | 1895 (21.7%) | 765 (24.8%) |
3 | 1031 (0.7%) | 1040 (2.0%) | 469 (5.4%) | 419 (13.6%) |
4 | 235 (0.2%) | 225 (0.4%) | 123 (1.4%) | 198 (6.4%) |
5 | 62 (0.0%) | 119 (0.2%) | 66 (0.8%) | 109 (3.5%) |
6+ | 136 (0.1%) | 48 (0.1%) | 9 (0.1%) | 53 (1.7%) |
Palpitation | 43,018 (29.6%) | 18,093 (34.7%) | 3297 (37.8%) | 1402 (45.5%) |
Hypertension | 13,318 (9.2%) | 13,587 (26.1%) | 3552 (40.8%) | 1530 (49.7%) |
COPD/OSAS | 42,022 (28.9%) | 21,732 (41.7%) | 3445 (39.5%) | 1156 (37.5%) |
CAD | 1047 (0.7%) | 2630 (5.0%) | 1502 (17.2%) | 967 (31.4%) |
Diabetes | 2088 (1.4%) | 3538 (6.8%) | 1408 (16.2%) | 586 (19.0%) |
Heart failure | 1950 (1.3%) | 805 (0.4%) | 304 (0.1%) | 227 (0.1%) |
Hyperthyroidism | 1740 (1.2%) | 909 (1.7%) | 218 (2.5%) | 75 (2.4%) |
Risk Score | Detected AF (n = 739) |
---|---|
C2HEST | |
0 | 11 (1–46) |
1 | 11 (2–46) |
2 | 6 (1–38) |
3 | 7 (2–64) |
4 | 5 (1–31) |
5 | 3 (1–29) |
6+ | 5 (0–19) |
Low 0–1 | 11 (1–46) |
Intermediate 2–3 | 6 (1–49) |
High > 3 | 4 (1–24) |
p | 0.03 |
Risk Score | General Population (n = 209,274) | Population with Palpitations (n = 65,810) | ||||
---|---|---|---|---|---|---|
C2HEST | Detected AF, n | Total Number, n | Detected Rate of AF, % | Detected AF, n | Total Number, n | Detected Rate of AF, % |
0 | 186 | 121,021 | 0.15% | 93 | 30,487 | 0.31% |
1 | 241 | 65,958 | 0.37% | 153 | 23,603 | 0.65% |
2 | 165 | 17,953 | 0.92% | 119 | 8468 | 1.41% |
3 | 81 | 2959 | 2.74% | 66 | 2086 | 3.16% |
4 | 34 | 781 | 4.35% | 29 | 613 | 4.73% |
5 | 20 | 356 | 5.62% | 19 | 317 | 5.99% |
6+ | 12 | 246 | 4.88% | 12 | 236 | 5.08% |
Low 0–1 | 427 | 186,979 | 0.23% | 246 | 54,090 | 0.45% |
Intermediate 2–3 | 246 | 20,912 | 1.18% | 185 | 10,554 | 1.75% |
High > 3 | 66 | 1383 | 4.77% | 60 | 1166 | 5.15% |
p for trend | <0.001 | <0.001 |
(A) Suspected AF. | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Detected AF (n = 739) | Age 18–39 (n = 145,389) | Age 40–54 (n = 52,089) | Age 55–64 (n = 8716) | Age ≥ 65 (n = 3080) | ||||||||||||
C2HEST | AF | Number, n | Rate, % | HR (95%CI) | AF | Number, n | Rate, % | HR (95%CI) | AF | Number, n | Rate, % | HR (95%CI) | AF | Number, n | Rate,% | HR (95% CI) |
0 | 55 | 94,605 | 0.06% | 1.00 (reference) | 82 | 22,837 | 0.36% | 1.00 (reference) | 28 | 2902 | 0.96% | 1.00 (reference) | 21 | 677 | 3.10% | 1.00 (reference) |
1 | 39 | 41,772 | 0.09% | 1.59 (1.06–2.40) | 107 | 20,075 | 0.53% | 1.48 (1.11–1.98) | 58 | 3252 | 1.78% | 1.83 (1.17–2.88) | 37 | 859 | 4.31% | 1.38 (0.80–2.36) |
2 | 19 | 7548 | 0.25% | 4.29 (2.54–7.23) | 55 | 7745 | 0.71% | 1.98 (1.41–2.79) | 51 | 1895 | 2.69% | 2.79 (1.76–4.43) | 40 | 765 | 5.23% | 1.64 (0.97–2.79) |
3 | 6 | 1031 | 0.58% | 10.18 (4.38–23.64) | 18 | 1040 | 1.73% | 4.90 (2.94–8.17) | 25 | 469 | 5.33% | 5.58 (3.25–9.57) | 32 | 419 | 7.64% | 2.48 (1.42–4.30) |
4 | 1 | 235 | 0.43% | 7.54 (1.04–54.46) | 8 | 225 | 3.56% | 10.03 (4.85–20.73) | 10 | 123 | 8.13% | 8.66 (4.21–17.84) | 15 | 198 | 7.58% | 2.34 (1.20–4.55) |
5 | 0 | 62 | 0.00% | - | 4 | 119 | 3.36% | 9.38 (3.44–25.60) | 2 | 66 | 3.03% | 3.19 (0.76–13.39) | 14 | 109 | 12.84% | 4.69 (2.38–9.22) |
6+ | 1 | 136 | 0.74% | 13.18 (1.82–95.29) | 2 | 48 | 4.17% | 11.94 (2.93–48.57) | 1 | 9 | 11.11% | 11.21 (1.52–82.43) | 8 | 53 | 15.09% | 5.06 (2.24–11.44) |
Low 0–1 | 94 | 136,377 | 0.07% | 1.00 (reference) | 189 | 42912 | 0.44% | 1.00 (reference) | 86 | 6154 | 1.40% | 1.00 (reference) | 58 | 1536 | 3.78% | 1.00 (reference) |
Intermediate 2–3 | 25 | 8579 | 0.29% | 4.21 (2.71–6.54) | 73 | 8785 | 0.83% | 1.89 (1.44–2.48) | 76 | 2364 | 3.21% | 2.31 (1.70–3.15) | 72 | 1184 | 6.08% | 1.59 (1.13–2.26) |
High > 3 | 2 | 433 | 0.46% | 6.86 (1.69–27.83) | 14 | 392 | 3.57% | 8.19 (4.76–14.10) | 13 | 198 | 6.57% | 4.81 (2.68–8.63) | 37 | 360 | 10.28% | 2.78 (1.84–4.21) |
p for trend | <0.001 | <0.001 | <0.001 | <0.001 | ||||||||||||
(B) Confirmed AF. | ||||||||||||||||
Confirmed AF (n = 374) | Age 18–39 (n = 145,389) | Age 40–54 (n = 52,089) | Age 55–64 (n = 8716) | Age ≥ 65 (n = 3080) | ||||||||||||
C2HEST | AF | Number, n | Rate, % | HR (95%CI) | AF | Number, n | Rate, % | HR (95% CI) | AF | Number, n | Rate,% | HR (95%CI) | AF | Number, n | Rate, % | HR (95% CI) |
0 | 22 | 94,605 | 0.02% | 1.00 (reference) | 41 | 22,837 | 0.18% | 1.00 (reference) | 16 | 2902 | 0.55% | 1.00 (reference) | 7 | 677 | 1.03% | 1.00 (reference) |
1 | 17 | 41,772 | 0.04% | 1.74 (0.92–3.28) | 53 | 20,075 | 0.26% | 1.47 (0.98–2.21) | 31 | 3252 | 0.95% | 1.72 (0.94–3.14) | 23 | 859 | 2.68% | 2.58 (1.10–6.02) |
2 | 8 | 7548 | 0.11% | 4.52 (2.01–10.15) | 22 | 20,075 | 0.11% | 1.59 (0.94–2.66) | 31 | 1895 | 1.64% | 2.97 (1.62–5.43) | 24 | 765 | 3.14% | 2.93 (1.26–6.81) |
3 | 2 | 1031 | 0.19% | 8.43 (1.98–35.87) | 11 | 1040 | 1.06% | 5.99 (3.08–11.65) | 15 | 469 | 3.20% | 5.88 (2.90–11.89) | 17 | 419 | 4.06% | 3.89 (1.61–9.40) |
4 | 0 | 235 | 0.00% | - | 2 | 225 | 0.89% | 5.03 (1.21–20.79) | 7 | 123 | 5.69% | 10.56 (4.34–25.68) | 5 | 198 | 2.53% | 2.26 (0.71–7.17) |
5 | 0 | 62 | 0.00% | - | 3 | 119 | 2.52% | 14.08 (4.36–45.49) | 2 | 66 | 3.03% | 5.54 (1.27–24.11) | 8 | 109 | 7.34% | 8.23 (2.98–22.72) |
6+ | 0 | 136 | 0.00% | - | 1 | 48 | 2.08% | 11.90(1.63–86.52) | 1 | 9 | 11.11% | 19.45 (2.58–146.73) | 5 | 53 | 9.43% | 9.47 (3.00–29.84) |
Low 0–1 | 39 | 136,377 | 0.03% | 1.00 (reference) | 94 | 42,912 | 0.22% | 1.00 (reference) | 47 | 6154 | 0.76% | 1.00 (reference) | 30 | 1536 | 1.95% | 1.00 (reference) |
Intermediate 2–3 | 10 | 8579 | 0.12% | 4.06 (2.02–8.12) | 33 | 8785 | 0.38% | 1.72 (1.15–2.56) | 46 | 2364 | 1.95% | 2.56 (1.70–3.85) | 41 | 1184 | 3.46% | 1.74 (1.08–2.79) |
High > 3 | 0 | 433 | 0.00% | - | 6 | 392 | 1.53% | 7.07 (3.09–16.14) | 10 | 198 | 5.05% | 6.73 (3.40–13.33) | 18 | 360 | 5.00% | 2.59 (1.44–4.67) |
p for trend | <0.001 | <0.001 | <0.001 | <0.001 |
Detected AF (n = 739) | Univariable | Multivariable | ||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Male | 1.29(1.04–1.61) | 0.021 | 1.69 (1.35–2.11) | <0.001 |
Age | 1.10 (1.09–1.11) | <0.001 | 1.09 (1.08–1.10) | <0.001 |
Palpitation | 4.32(3.71–5.04) | <0.001 | 3.07 (2.61–3.61) | <0.001 |
Heart failure | 10.52 (8.55–12.95) | <0.001 | 2.75 (2.17–3.48) | <0.001 |
CAD | 9.80 (8.25–11.64) | <0.001 | 1.15 (0.93–1.41) | 0.18 |
Hypertension | 3.64 (3.14–4.21) | <0.001 | 1.16 (0.99–1.36) | 0.06 |
Hyperthyroidism | 3.29 (2.32–4.67) | <0.001 | 1.47 (1.02–2.11) | 0.034 |
Diabetes | 3.18 (2.52–4.02) | <0.001 | 1.31 (1.03–1.69) | 0.029 |
COPD/OSAS | 1.55 (1.34–1.80) | <0.001 | 0.95 (0.82–1.11) | 0.58 |
Confirmed AF (n = 374) | Univariable | Multivariable | ||
Male | 0.76 (0.56–1.02) | 0.07 | 1.75 (1.28–2.38) | <0.001 |
Age | 1.11(1.10–1.12) | <0.001 | 1.10 (1.09–1.11) | <0.001 |
Palpitation | 4.61 (3.71–5.73) | <0.001 | 3.25 (2.58–4.09) | <0.001 |
Heart failure | 10.15 (7.55–13.64) | <0.001 | 2.37 (1.69–3.31) | <0.001 |
CAD | 9.85 (7.74–12.55) | <0.001 | 1.03 (0.77–1.37) | 0.82 |
Hypertension | 4.21 (3.43–5.17) | <0.001 | 1.29 (1.03–1.61) | 0.024 |
Hyperthyroidism | 3.99 (2.54–6.27) | <0.001 | 1.79 (1.12–2.85) | 0.014 |
Diabetes | 3.19 (2.30–4.43) | <0.001 | 1.40 (1.00–2.00) | 0.053 |
COPD/OSAS | 1.67 (1.36–2.04) | <0.001 | 1.02(0.82–1.25) | 0.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, H.; Zhang, H.; Chen, Y.; Lip, G.Y.H. Population-Based Screening or Targeted Screening Based on Initial Clinical Risk Assessment for Atrial Fibrillation: A Report from the Huawei Heart Study. J. Clin. Med. 2020, 9, 1493. https://doi.org/10.3390/jcm9051493
Guo Y, Wang H, Zhang H, Chen Y, Lip GYH. Population-Based Screening or Targeted Screening Based on Initial Clinical Risk Assessment for Atrial Fibrillation: A Report from the Huawei Heart Study. Journal of Clinical Medicine. 2020; 9(5):1493. https://doi.org/10.3390/jcm9051493
Chicago/Turabian StyleGuo, Yutao, Hao Wang, Hui Zhang, Yundai Chen, and Gregory Y. H. Lip. 2020. "Population-Based Screening or Targeted Screening Based on Initial Clinical Risk Assessment for Atrial Fibrillation: A Report from the Huawei Heart Study" Journal of Clinical Medicine 9, no. 5: 1493. https://doi.org/10.3390/jcm9051493
APA StyleGuo, Y., Wang, H., Zhang, H., Chen, Y., & Lip, G. Y. H. (2020). Population-Based Screening or Targeted Screening Based on Initial Clinical Risk Assessment for Atrial Fibrillation: A Report from the Huawei Heart Study. Journal of Clinical Medicine, 9(5), 1493. https://doi.org/10.3390/jcm9051493