Advances and Challenges in Immunotherapy for Metastatic Uveal Melanoma: Clinical Strategies and Emerging Targets
Abstract
1. Introduction
2. Current Immunotherapy for Patients with mUM
2.1. Immune Checkpoint Inhibitors (ICIs) in Patients with mUM
2.1.1. Anti-CTLA-4 Therapy in mUM
2.1.2. Anti-PD-1/PD-L1 Monotherapy in mUM
2.1.3. Combination ICI Therapy in mUM
2.1.4. Novel ICIs and Next-Generation Checkpoint Targets
2.1.5. Immunomodulatory Agents and ICI Combinations
2.1.6. Melphalan and Regional Immunomodulation in mUM
2.1.7. Targeting Immunosuppressive Pathways: IDO, TDO, and VEGF
2.1.8. Cytokine-Based Approaches
Treatment | Conditions | Phase | Actual Enrollment | Trial Period | Sponsor/Collaborators | Status | NCT No. (Reference) |
---|---|---|---|---|---|---|---|
REGN10597 | Melanoma; Clear-Cell Renal-Cell Carcinoma (ccRCC); Advanced Solid Tumors | I/II | 150 | September 2024–March 2030 | Regeneron Pharmaceuticals (Tarrytown, NY, USA) | Recruiting | NCT06413680 |
Ipilimumab + Nivolumab + PHP | UM: Liver metastases | III | 40 | June 2024–December 2030 | Vastra Gotaland Region (Västra Götaland County, Sweden) | Recruiting | NCT06519266 |
Cemiplimab + Ziv-Aflibercept | mUM | II | 32 | February 2024–October 2030 | H. Lee Moffitt Cancer Center and Research Institute (Tampa, FL, USA); Genzyme (Cambridge, MA, USA); Regeneron Pharmaceuticals (Tarrytown, NY, USA) | Recruiting | NCT06121180 |
Cemiplimab + ONM-501 | UM; Multiple Cancers | I | 168 | October 2023–August 2026 | OncoNano Medicine, Inc. (Dallas, TX, USA) | Recruiting | NCT06022029 |
Pembrolizumab + Olaparib | UM; Ocular Melanoma | II | 37 | October 2022–July 2026 | H. Lee Moffitt Cancer Center and Research Institute (Tampa, FL, USA); Merck Sharp & Dohme LLC (Chalfont, PA, USA) | Recruiting | NCT05524935 |
Tislelizumab + Sitravatinib | UM | II | 16 | September 2022–May 2024 | Grupo Español Multidisciplinar de Melanoma (Barcelona, Spain); Mirati Therapeutics Inc. ( San Diego, CA, USA); BeiGene (San Carlos, CA, USA) | Active, not recruiting | NCT05542342 |
Pembrolizumab + Lenvatinib | mUM | II | 30 | August 2022–June 2027 | Providence Health & Services Merck Sharp & Dohme LLC (Chalfont, PA, USA); Eisai Inc (Exton, PA, USA). | Recruiting | NCT05308901 |
Pembrolizumab + Lenvatinib | mUM | II | 54 | July 2022–September 2028 | Institut Curie, Merck Sharp & Dohme LLC (Chalfont, PA, USA) | Recruiting | NCT05282901 |
Relatlimab + Nivolumab + SBRT | mUM | II | 40 | September 2021–March 2026 | California Pacific Medical Center Research Institute (San Francisco, CA, USA) | Recruiting | NCT05077280 |
LVGN3616 + LVGN6051 + LVGN7409 + Bevacizumab + Nab-Paclitaxel + Cyclophosphamide | mUM; Multiple Cancers | I | 352 | November 2021–February 2027 | M.D. Anderson Cancer Center (Houston, TX, USA); Lyvgen Biopharma Holdings Limited (San Diego, CA, USA) | Active, not recruiting | NCT05075993 |
Ipilimumab + Nivolumab with Novacure Optune | mUM. | I | 10 | February 2022–August 2025 | HonorHealth Research Institute, NovoCure Ltd. (Scottsdale, AZ, USA) | Recruiting | NCT05004025 |
Pembrolizumab + Dacetuzumab (SEA-CD40) + Pemetrexed + Carboplatin | Melanoma; Carcinoma, Non-Small-Cell Lung | II | 77 | October 2021–October 2025 | Seagen Inc. (South San Francisco, CA, USA); Merck Sharp & Dohme LLC (Chalfont, PA, USA) | Active, not recruiting | NCT04993677 |
Ipilimumab/Relatlimab + Nivolumab + SD-101 | mUM in the Liver | I | 80 | August 2021–January 2025 | TriSalus Life Sciences, Inc. (Westminster, CO, USA) | Active, not recruiting | NCT04935229 |
Spartalizumab/ Tislelizumab | UM; Multiple Cancers | II | 184 | April 2021–March 2027 | SOLTI Breast Cancer Research Group (Barcelona, Spain) | Recruiting | NCT04802876 |
Nivolumab + Relatlimab | mUM | II | 27 | November 2020–December 2026 | Jose Lutzky, MD, University of Miami (Miami, FL, USA); Bristol-Myers Squibb (New York, NY, USA); United States Department of Defense | Active, not recruiting | NCT04552223 |
RO7293583 + Tocilizumab + Obinutuzumab + Adalimumab | CM; UM; Mucosal Melanoma | I | 20 | October 2020–July 2022 | Hoffmann-La Roche (Basel, Switzerland) | Completed | NCT04551352 |
Ipilimumab + Nivolumab + IHP with melphalan | UM; Liver Metastases | I | 18 | March 2021–December 2024 | Vastra Gotaland Region (Västra Götaland County, Sweden); Bristol-Myers Squibb (New York, NY, USA) | Active, not recruiting | NCT04463368 |
Avelumab + IOA-244 + Pemetrexed + Cisplatin + Ruxolitinib | Solid Tumor; Non-Hodgkin Lymphoma; NSCLC; Myelofibrosis; UM | I | 210 | February 2020–March 2025 | iOnctura (Geneva, Switzerland) | Active, not recruiting | NCT04328844 |
Ipilimumab + Nivolumab + Melphalan CS-PHP | mUM | Ib/II | 83 | December 2019–December 2024 | HW Kapiteijn, Leiden University Medical Center (Leiden, Netherlands) | Unknown | NCT04283890 [108,109] |
Pembrolizumab + LNS8801 | Solid Tumor (Adult) | I/II | 200 | October 2019–November 2024 | Linnaeus Therapeutics, Inc. (Haddonfield, NJ, USA); Merck Sharp & Dohme LLC (Chalfont, PA, USA) | Recruiting | NCT04130516 |
Nivolumab + Pembrolizumab | mUM | NR | 100 | November 2016–December 2019 | Institut Curie (Paris, France) | Unknown | NCT03964298 |
Nivolumab + Ipilimumab + Arginine deprivation (ADI-PEG 20) | UM | I | 9 | April 2019–January 2023 | Memorial Sloan Kettering Cancer Center (New York, NY, USA) | Completed | NCT03922880 |
Nivolumab/Ipilimumab + IL-2 after radiation | Metastatic Melanoma | II | 4 | May 2019–December 2023 | Masonic Cancer Center, University of Minnesota (Minneapolis, MN, USA) | Completed | NCT03850691 |
INCAGN02390 | Melanoma; Multiple Cancers | I | 40 | September 2018–August 2021 | Incyte Corporation (Wilmington, DE, USA) | Completed | NCT03652077 |
Nivolumab + Ipilimumab | Melanoma, Ocular Melanoma | II | 52 | July 2018–June 2023 | Suthee Rapisuwon (Washington, DC, USA); Bristol-Myers Squibb (New York, NY, USA) | Active, not recruiting | NCT03528408 |
Pembrolizumab + APG-115 | UM; Multiple Cancers | I/II | 230 | August 2018–March 2025 | Ascentage Pharma Group Inc. (Rockville, MD, USA); Merck Sharp & Dohme LLC (Chalfont, PA, USA) | Recruiting | NCT03611868 |
Ipilimumab + Nivolumab + Immuno-embolization | Metastatic Malignant Neoplasm in the Liver; mUM; Stage IV UM | II | 14 | May 2018–December 2024 | Sidney Kimmel Cancer Center at Thomas Jefferson University (Philadelphia, PA, USA); Bristol-Myers Squibb (New York, NY, USA) | Active, not recruiting | NCT03472586 |
Nivolumab | mUM; Multiple Cancers | I | 70 | May 2018–December 2025 | M.D. Anderson Cancer Center (Houston, TX, USA); NCI (Bethesda, MD, USA) | Recruiting | NCT03025256 |
Ipilimumab + Nivolumab + SIR-Spheres Yttrium90 | UM; Liver Metastases | I/II | 26 | October 2016–June 2023 | David Minor, MD; California Pacific Medical Center (San Francisco, CA, USA); Jefferson Medical College of Thomas Jefferson University (Philadelphia, PA, USA); University of Chicago (Chicago, IL, USA) | Unknown | NCT02913417 |
Pembrolizumab + SRS | Ocular Melanoma; Multiple Cancers | I | 27 | October 2016–October 2023 | Emory University (Atlanta, GA, USA); Merck Sharp & Dohme Corp. (Chalfont, PA, USA) | Completed | NCT02858869 |
ICON-1 | UM; Choroid Neoplasm | I | 10 | May 2016–September 2017 | Iconic Therapeutics, Inc. (San Francisco, CA, USA) | Completed | NCT02771340 |
Pembrolizumab + Entinostat | mUM | II | 29 | February 2018–January 2023 | Vastra Gotaland Region (Västra Götaland County, Sweden); Merck Sharp & Dohme Corp. (Chalfont, PA, USA); Syndax Pharmaceuticals (Waltham, MA, USA) | Completed | NCT02697630 |
Nivolumab + Ipilimumab | UM | II | 52 | April 2016–July 2021 | Grupo Español Multidisciplinar de Melanoma (Barcelona, Spain); Bristol-Myers Squibb (New York, NY, USA) | Completed | NCT02626962 |
Ipilimumab + Nivolumab + Relatlimab | CM; UM; Mucosal Melanoma; Ocular Melanoma; Acral Lentiginous Melanoma | II | 53 | February 2016–January 2023 | M.D. Anderson Cancer Center (Houston, TX, USA); NCI (Bethesda, MD, USA) | Completed | NCT02519322 [91] |
Pembrolizumab | UM (stage III-IV) | II | 5 | May 2015–August 2019 | Vanderbilt-Ingram Cancer Center (Nashville, TN, USA); NCI (Bethesda, MD, USA) | Terminated | NCT02359851 |
Ipilimumab + Bevacizumab + Nab-paclitaxel | Metastatic Melanoma; Mucosal Melanoma; CM; UM; Unresectable Melanoma | II | 24 | October 2013–October 2019 | Academic and Community Cancer Research United (SWRochester, MN, USA); NCI (Bethesda, MD, USA) | Completed | NCT02158520 |
Ipilimumab + SIR-Spheres Yttrium90 | Ocular and extraocular melanoma; Liver Metastases | I | 6 | December 2012–February 2016 | Case Comprehensive Cancer Center (Cleveland, OH, USA); NCI (Bethesda, MD, USA) | Terminated (Research canceled) | NCT01730157 |
Nivolumab + Ipilimumab | mUM; Stage IV UM | II | 67 | November 2012–May 2024 | MD Anderson Cancer Center (Houston, TX, USA); NCI (Bethesda, MD, USA) | Completed | NCT01585194 |
INF-α-2b + Dacarbazine | Ciliary Body and Choroid Melanoma; Iris Melanoma; Recurrent Intraocular Melanoma | II | 38 | November 2009–December 2017 | Case Comprehensive Cancer Center (Cleveland, OH, USA) | Completed | NCT01100528 |
Tremelimumab (CP-675,206) | UM | II | 11 | August 2009–August 2017 | AHS Cancer Control Alberta (Alberta, Canada) | Completed | NCT01034787 |
PV-10 | mUM; Multiple Cancers | I | 78 | October 2009–February 2023 | Provectus Biopharmaceuticals, Inc. (Knoxville, TN, USA) | Unknown | NCT00986661 |
GM-CSF by embolization | UM; Liver Metastases | II | 53 | October 2004–June 2012 | Sidney Kimmel Cancer Center at Thomas Jefferson University (Philadelphia, PA, USA); NCI | Completed | NCT00661622 |
Radiolabeled monoclonal antibody: iodine I 131 mAb 3F8 | Intraocular Melanoma; Multiple cancers | II | 78 | January 2006–February 2023 | Memorial Sloan Kettering Cancer Center (New York, NY, USA) | Completed | NCT00445965 |
Pegylated INF-α-2b + Thalidomide | Intraocular Melanoma; Melanoma (Skin) | II | 32 | January 2001–June 2007 | Barbara Ann Karmanos Cancer Institute; NCI (Bethesda, MD, USA) | Completed | NCT00238329 |
INF-β | Stage IV Melanoma; Recurrent Melanoma | II | 21 | April 2004–October 2007 | Case Comprehensive Cancer Center (Cleveland, OH, USA); NCI (Bethesda, MD, USA) | Completed | NCT00085306 |
Ipilimumab + IL-2 | Intraocular Melanoma; Melanoma (Skin) | I/II | Not mentioned | February 2003–August 2006 | NCI (Bethesda, MD, USA) | Completed | NCT00058279 |
Pegylated INF-α + Temozolomide | Intraocular Melanoma; Melanoma (Skin) | II | Not mentioned | May 2001–June 2005 | Memorial Sloan Kettering Cancer Center (New York, NY, USA); NCI (Bethesda, MD, USA) | Completed | NCT00027742 |
2.2. T Cell Receptor (TCR)-Based Therapies in Patients with mUM
2.2.1. Non-Cellular TCR-Based Therapy
2.2.2. Cellular TCR-Based Therapy
3. Vaccine Therapy in Patients with mUM
3.1. Cell-Based Vaccines in UM
3.2. Peptide-Based Vaccines in UM
3.2.1. Tumor-Associated Antigens and Peptide Vaccine Design
3.2.2. Immunoadjuvants and Immune Potentiation Strategies
3.2.3. Clinical Trials of Peptide-Based Vaccines in UM
3.3. Nucleic Acid-Based Vaccines in UM
3.3.1. Mechanism and Rationale for Nucleic Acid-Based Vaccines
3.3.2. Clinical Evidence and Application in UM and CM
3.4. Viral-Based Vaccines in UM
3.4.1. Mechanism and Rationale of Viral-Based Vaccines
3.4.2. FDA-Approved and Investigational Viral Platforms in Melanoma
3.4.3. Active Clinical Development of Viral Vaccines in UM
3.5. Summary and Future Perspectives
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAR-T | Chimeric antigen receptor T cells |
CM | Cutaneous melanoma |
CR | Complete response |
DC | Dendritic cell |
DCR | Disease control rates |
DCR | Disease control rate |
GM-CSF | Granulocyte–macrophage colony-stimulating factor |
HAVCR2 | Hepatitis A virus cellular receptor 2 |
ICI | Immune checkpoint inhibitor |
IDO | Indoleamine 2,3-dioxygenase |
IFN-β | Interferon-beta |
IFN-γ | Interferon-gamma |
IHP | Isolated hepatic perfusion |
IL-12 | Interleukin-12 |
IL-2 | Interleukin-2 |
LAG-3 | Lymphocyte activation gene-3 |
MDSCs | Myeloid-derived suppressor cells |
mOS | Median overall survival |
mPFS | Median progression-free survival |
mUM | Metastatic uveal melanoma |
NSCLC | Non-small-cell lung cancer |
ORR | Objective response rates |
ORR | Objective response rate |
OS | Overall survival |
OSR | Overall survival rates |
PD | Progressive disease |
PFS | Progression-free survival |
PHP | Percutaneous hepatic perfusion |
PR | Partial response |
RECIST | Response Evaluation Criteria in Solid Tumors |
SD | Stable disease |
SIRT | Selective internal radiation therapy |
TACE | Transarterial chemoembolization |
TCR | T cell receptor |
TCR-T | TCR-engineered T cells |
TDO | Tryptophan 2,3-dioxygenase |
TIGIT | T cell immunoreceptor with Ig and ITIM domains |
TIL | Tumor-infiltrating lymphocyte |
TIM-3 | Mucin-domain containing-3 |
TLR9 | Toll-like receptor 9 |
Tregs | Regulatory T cells |
TYRP1 | Tyrosinase-related protein 1 |
UM | Uveal melanoma |
VEGF | Vascular endothelial growth factor |
VSV | Vesicular stomatitis virus |
References
- Lorenzo, D.; Piulats, J.M.; Ochoa, M.; Arias, L.; Gutiérrez, C.; Català, J.; Cobos, E.; Garcia-Bru, P.; Dias, B.; Padrón-Pérez, N.; et al. Clinical predictors of survival in metastatic uveal melanoma. Jpn. J. Ophthalmol. 2019, 63, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Kaliki, S.; Shields, C.L. Uveal melanoma: Relatively rare but deadly cancer. Eye 2017, 31, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, R.D.; Sacco, J.J.; Jager, M.J.; Eschelman, D.J.; Olofsson Bagge, R.; Harbour, J.W.; Chieng, N.D.; Patel, S.P.; Joshua, A.M.; Piperno-Neumann, S. Advances in the clinical management of uveal melanoma. Nat. Rev. Clin. Oncol. 2023, 20, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Kim, T.-K.; Janjetovic, Z.; Brożyna, A.A.; Podgorska, E.; Dixon, K.M.; Mason, R.S.; Tuckey, R.C.; Sharma, R.; Crossman, D.K.; et al. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers 2024, 16, 2262. [Google Scholar] [CrossRef] [PubMed]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef] [PubMed]
- van Poppelen, N.M.; de Bruyn, D.P.; Bicer, T.; Verdijk, R.; Naus, N.; Mensink, H.; Paridaens, D.; de Klein, A.; Brosens, E.; Kiliҫ, E. Genetics of Ocular Melanoma: Insights into Genetics, Inheritance and Testing. Int. J. Mol. Sci. 2020, 22, 336. [Google Scholar] [CrossRef] [PubMed]
- Chokhachi Baradaran, P.; Kozovska, Z.; Furdova, A.; Smolkova, B. Targeting Epigenetic Modifications in Uveal Melanoma. Int. J. Mol. Sci. 2020, 21, 5314. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Sarna, T.; Płonka, P.M.; Raman, C.; Brożyna, A.A.; Slominski, A.T. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front. Oncol. 2022, 12, 842496. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Bollin, K.; de Macedo, M.P.; Carapeto, F.; Kim, K.B.; Roszik, J.; Wani, K.M.; Reuben, A.; Reddy, S.T.; Williams, M.D.; et al. Immune profiling of uveal melanoma identifies a potential signature associated with response to immunotherapy. J. Immunother. Cancer 2020, 8, e000960. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.S.; Somerville, R.P.T.; Yang, J.C.; Sherry, R.M.; Klebanoff, C.A.; Goff, S.L.; Wunderlich, J.R.; Danforth, D.N.; Zlott, D.; Paria, B.C.; et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: A single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Wermke, M.; Tsimberidou, A.-M.; Mohamed, A.; Mayer-Mokler, A.; Satelli, A.; Reinhardt, C.; Araujo, D.; Maurer, D.; Blumenschein, G.J.; Singh, H.; et al. 959 Safety and anti-tumor activity of TCR-engineered autologous, PRAME-directed T cells across multiple advanced solid cancers at low doses—clinical update on the ACTengine® IMA203 trial. J. Immunother. Cancer 2021, 9, A1009. [Google Scholar] [CrossRef]
- Rohaan, M.W.; Gomez-Eerland, R.; Foppen, M.H.G.; van Zon, M.; de Boer, R.; Bakker, N.A.M.; Pronk, L.M.; Sari, A.; Mallo, H.A.; van de Wiel, B.A.; et al. Results of a phase I trial with MART-1 T cell receptor modified T cells in patients with metastatic melanoma. Ann. Oncol. 2019, 30, v481. [Google Scholar] [CrossRef]
- Koch, E.A.T.; Schaft, N.; Kummer, M.; Berking, C.; Schuler, G.; Hasumi, K.; Dörrie, J.; Schuler-Thurner, B. A One-Armed Phase I Dose Escalation Trial Design: Personalized Vaccination with IKKβ-Matured, RNA-Loaded Dendritic Cells for Metastatic Uveal Melanoma. Front. Immunol. 2022, 13, 785231. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.; Gross, S.; Uslu, U.; Doerrie, J.; Kummer, M.; Schliep, S.; Sponagl, F.; Lischer, C.; Erdmann, M.; Heinzerling, L.; et al. Dendritic cell vaccination in metastatic uveal melanoma as compassionate treatment: Immunological and clinical responses. J. Clin. Oncol. 2019, 37, e21024. [Google Scholar] [CrossRef]
- Bol, K.; van den Bosch, T.; Schreibelt, G.; Punt, C.; Figdor, C.; Paridaens, D.; de Vries, J. Adjuvant dendritic cell vaccination in high-risk uveal melanoma patients. J. Immunother. Cancer 2015, 3, 127. [Google Scholar] [CrossRef]
- Yuan, J.; Ku, G.Y.; Adamow, M.; Mu, Z.; Tandon, S.; Hannaman, D.; Chapman, P.; Schwartz, G.; Carvajal, R.; Panageas, K.S.; et al. Immunologic responses to xenogeneic tyrosinase DNA vaccine administered by electroporation in patients with malignant melanoma. J. Immunother. Cancer 2013, 1, 20. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, B.A.; Gallardo, H.F.; Rasalan, T.S.; Adamow, M.; Mu, Z.; Tandon, S.; Bewkes, B.B.; Roman, R.A.; Chapman, P.B.; Schwartz, G.K.; et al. Immunologic response to xenogeneic gp100 DNA in melanoma patients: Comparison of particle-mediated epidermal delivery with intramuscular injection. Clin. Cancer Res. 2010, 16, 4057–4065. [Google Scholar] [CrossRef] [PubMed]
- Nathan, P.; Hassel, J.C.; Rutkowski, P.; Baurain, J.-F.; Butler, M.O.; Schlaak, M.; Sullivan, R.J.; Ochsenreither, S.; Dummer, R.; Kirkwood, J.M.; et al. Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2021, 385, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Bilmin, K.; Synoradzki, K.J.; Czarnecka, A.M.; Spałek, M.J.; Kujawska, T.; Solnik, M.; Merks, P.; Toro, M.D.; Rejdak, R.; Fiedorowicz, M. New Perspectives for Eye-Sparing Treatment Strategies in Primary Uveal Melanoma. Cancers 2021, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, E.N.; Salama, A.K. Metastatic Uveal Melanoma—A Review of Current Therapies and Future Directions. Oncol. Hematol. Rev. 2017, 13, 100. [Google Scholar] [CrossRef]
- Kuczma, M.; Ding, Z.-C.; Zhou, G. Immunostimulatory Effects of Melphalan and Usefulness in Adoptive Cell Therapy with Antitumor CD4+ T Cells. Crit. Rev. Immunol. 2016, 36, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Raman, C.; Chen, J.Y.; Slominski, A.T. How cancer hijacks the body’s homeostasis through the neuroendocrine system. Trends Neurosci. 2023, 46, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Lamas, N.J.; Martel, A.; Nahon-Estève, S.; Goffinet, S.; Macocco, A.; Bertolotto, C.; Lassalle, S.; Hofman, P. Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers 2021, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Danielli, R.; Ridolfi, R.; Chiarion-Sileni, V.; Queirolo, P.; Testori, A.; Plummer, R.; Boitano, M.; Calabrò, L.; De Rossi, C.; Giacomo, A.M.; et al. Ipilimumab in pretreated patients with metastatic uveal melanoma: Safety and clinical efficacy. Cancer Immunol. Immunother. 2012, 61, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Callahan, M.; Postow, M.A.; Chapman, P.B.; Schwartz, G.K.; Dickson, M.A.; D’Angelo, S.P.; Luke, J.J.; Bluth, M.J.; Roman, R.A.; et al. Ipilimumab in the treatment of uveal melanoma: The memorial Sloan-Kettering Cancer Center experience. J. Clin. Oncol. 2012, 30, 8549. [Google Scholar] [CrossRef]
- Maio, M.; Sileni, V.C.; Pilla, L.; Nicoletti, S.V.L.; Di Guardo, L.; Queirolo, P.; De Galitiis, F.; Mandala, M.; Guida, M.; Ascierto, P.A. Efficacy and Safety of Ipilimumab in Patients with Pretreated, Ocular Melanoma: Experience from Italian Clinics Participating in the European Expanded Access Programme (EAP). Ann. Oncol. 2012, 23, ix369–ix370. [Google Scholar] [CrossRef]
- Khattak, M.A.; Fisher, R.; Hughes, P.; Gore, M.; Larkin, J. Ipilimumab activity in advanced uveal melanoma. Melanoma Res. 2013, 23, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Wiater, K.; Witaj, T.; Mackiewicz, J.; Kalinka-Warzocha, E.; Wojtukiewicz, M.; Szambora, P.; Falkowski, S.; Rogowski, W.; Mackiewicz, A.; Rutkowski, P. Efficacy and safety of ipilimumab therapy in patients with metastatic melanoma: A retrospective multicenter analysis. Wspolczesna Onkol. 2013, 17, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Maio, M.; Danielli, R.; Chiarion-Sileni, V.; Pigozzo, J.; Parmiani, G.; Ridolfi, R.; De Rosa, F.; Del Vecchio, M.; Di Guardo, L.; Queirolo, P.; et al. Efficacy and safety of ipilimumab in patients with pre-treated, uveal melanoma. Ann. Oncol. 2013, 24, 2911–2915. [Google Scholar] [CrossRef] [PubMed]
- Luke, J.J.; Callahan, M.K.; Postow, M.A.; Romano, E.; Ramaiya, N.; Bluth, M.; Giobbie-Hurder, A.; Lawrence, D.P.; Ibrahim, N.; Ott, P.A.; et al. Clinical activity of ipilimumab for metastatic uveal melanoma: A retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience. Cancer 2013, 119, 3687–3695. [Google Scholar] [CrossRef] [PubMed]
- Kelderman, S.; Van Der Kooij, M.K.; Van Den Eertwegh, A.J.M.; Soetekouw, P.M.M.B.; Jansen, R.L.H.; Van Den Brom, R.R.H.; Hospers, G.A.P.; Haanen, J.B.A.G.; Kapiteijn, E.; Blank, C.U. Ipilimumab in pretreated metastastic uveal melanoma patients. Results of the Dutch Working group on Immunotherapy of Oncology (WIN-O). Acta Oncol. 2013, 52, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Mellor, J.D.; McArthur, G.; Kee, D. Ipilimumab in pretreated patients with unresectable or metastatic cutaneous, uveal and mucosal melanoma. Med. J. Aust. 2014, 201, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.M.P.; de Olza, M.O.; Codes, M.; Lopez-Martin, J.A.; Berrocal, A.; García, M.; Gurpide, A.; Homet, B.; Martin-Algarra, S. Phase II study evaluating ipilimumab as a single agent in the first-line treatment of adult patients (Pts) with metastatic uveal melanoma (MUM): The GEM-1 trial. J. Clin. Oncol. 2014, 32, 9033. [Google Scholar] [CrossRef]
- Deo, M.A. Long-term survival benefit from ipilimumab treatment in metastatic uveal melanoma patients. J. Clin. Oncol. 2014, 32, 3060. [Google Scholar] [CrossRef]
- Zimmer, L.; Eigentler, T.K.; Kiecker, F.; Simon, J.; Utikal, J.; Mohr, P.; Berking, C.; Kämpgen, E.; Dippel, E.; Stadler, R.; et al. Open-label, multicenter, single-arm phase II DeCOG-study of ipilimumab in pretreated patients with different subtypes of metastatic melanoma. J. Transl. Med. 2015, 13, 351. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, L.; Vaubel, J.; Mohr, P.; Hauschild, A.; Utikal, J.; Simon, J.; Garbe, C.; Herbst, R.; Enk, A.; Kämpgen, E.; et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naïve patients with metastatic uveal melanoma. PLoS ONE 2015, 10, e0118564. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.S.; Qian, W.; Ellis, S.; Mason, E.; Khattak, M.A.; Gupta, A.; Shaw, H.; Quinton, A.; Kovarikova, J.; Thillai, K.; et al. Ipilimumab in the real world: The UK expanded access programme experience in previously treated advanced melanoma patients. Melanoma Res. 2015, 25, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Itchins, M.; Ascierto, P.A.; Menzies, A.M.; Oatley, M.; Lo, S.; Douraghi-Zadeh, D.; Harrington, T.; Maher, R.; Grimaldi, A.M.; Guminski, A. A multireferral centre retrospective cohort analysis on the experience in treatment of metastatic uveal melanoma and utilization of sequential liver-directed treatment and immunotherapy. Melanoma Res. 2017, 27, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Mignard, C.; Deschamps Huvier, A.; Gillibert, A.; Duval Modeste, A.B.; Dutriaux, C.; Khammari, A.; Avril, M.F.; Kramkimel, N.; Mortier, L.; Marcant, P.; et al. Efficacy of Immunotherapy in Patients with Metastatic Mucosal or Uveal Melanoma. J. Oncol. 2018, 2018, 1908065. [Google Scholar] [CrossRef] [PubMed]
- Bol, K.F.; Ellebaek, E.; Hoejberg, L.; Bagger, M.M.; Larsen, M.S.; Klausen, T.W.; Køhler, U.H.; Schmidt, H.; Bastholt, L.; Kiilgaard, J.F.; et al. Real-world impact of immune checkpoint inhibitors in metastatic uveal melanoma. Cancers 2019, 11, 1489. [Google Scholar] [CrossRef] [PubMed]
- Arzu Yaşar, H.; Turna, H.; Esin, E.; Murat Sedef, A.; Alkan, A.; Oksuzoglu, B.; Ozdemir, N.; Sendur, M.N.; Sezer, A.; Kılıckap, S.; et al. Prognostic factors for survival in patients with mucosal and ocular melanoma treated with ipilimumab: Turkish Oncology Group study. J. Oncol. Pharm. Pract. 2020, 26, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Rozeman, E.A.; Prevoo, W.; Meier, M.A.J.; Sikorska, K.; Van, T.M.; Van De Wiel, B.A.; Van Der Wal, J.E.; Mallo, H.A.; Grijpink-Ongering, L.G.; Broeks, A.; et al. Phase Ib/II trial testing combined radiofrequency ablation and ipilimumab in uveal melanoma (SECIRA-UM). Melanoma Res. 2019, 20, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Koch, E.A.T.; Petzold, A.; Wessely, A.; Dippel, E.; Gesierich, A.; Gutzmer, R.; Hassel, J.C.; Haferkamp, S.; Hohberger, B.; Kähler, K.C.; et al. Immune checkpoint blockade for metastatic uveal melanoma: Patterns of response and survival according to the presence of hepatic and extrahepatic metastasis. Cancers 2021, 13, 3359. [Google Scholar] [CrossRef] [PubMed]
- Shaw, H.; Larkin, J.; Corrie, P.; Ellis, S.; Nobes, J.; Marshall, E.; Kumar, S.; Danson, S.; Plummer, R.; Nathan, P. Ipilimumab for Advanced Melanoma in an Expanded Access Programme (EAP): Ocular, Mucosal and Acral Subtype UK Experience. Ann. Oncol. 2012, 23, ix374. [Google Scholar] [CrossRef]
- Tarhini, A.A.; Cherian, J.; Moschos, S.J.; Tawbi, H.A.; Shuai, Y.; Gooding, W.E.; Sander, C.; Kirkwood, J.M. Safety and efficacy of combination immunotherapy with interferon Alfa-2b and tremelimumab in patients with stage IV melanoma. J. Clin. Oncol. 2012, 30, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Joshua, A.M.; Monzon, J.G.; Mihalcioiu, C.; Hogg, D.; Smylie, M.; Cheng, T. A phase 2 study of tremelimumab in patients with advanced uveal melanoma. Melanoma Res. 2015, 25, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Nathan, P.; Ascierto, P.A.; Haanen, J.; Espinosa, E.; Demidov, L.; Garbe, C.; Guida, M.; Lorigan, P.; Chiarion-Sileni, V.; Gogas, H.; et al. Safety and efficacy of nivolumab in patients with rare melanoma subtypes who progressed on or after ipilimumab treatment: A single-arm, open-label, phase II study (CheckMate 172). Eur. J. Cancer 2019, 119, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, K.; Takahashi, A.; Mori, T.; Tsutsumida, A.; Suzuki, S.; Motoi, N.; Jinnai, S.; Kage, Y.; Mizuta, H.; Muto, Y.; et al. Nivolumab for patients with metastatic uveal melanoma previously untreated with ipilimumab: A single-institution retrospective study. Melanoma Res. 2020, 2014, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Heppt, M.V.; Heinzerling, L.; Kähler, K.C.; Forschner, A.; Kirchberger, M.C.; Loquai, C.; Meissner, M.; Meier, F.; Terheyden, P.; Schell, B.; et al. Prognostic factors and outcomes in metastatic uveal melanoma treated with programmed cell death-1 or combined PD-1/cytotoxic T-lymphocyte antigen-4 inhibition. Eur. J. Cancer 2017, 82, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, K.; Takahashi, A.; Tsutsumida, A.; Mori, T.; Motoi, N.; Jinnai, S.; Kage, Y.; Muto, Y.; Nakano, E.; Yamazaki, N. Nivolumab for patients with metastatic uveal melanoma previously untreated with ipilimumab: A single-institutional retrospective study. Ann. Oncol. 2017, 28, x114. [Google Scholar] [CrossRef]
- van der Kooij, M.K.; Joosse, A.; Speetjens, F.M.; Hospers, G.A.P.; Bisschop, C.; de Groot, J.W.B.; Koornstra, R.; Blank, C.U.; Kapiteijn, E. Anti-PD1 treatment in metastatic uveal melanoma in the Netherlands. Acta Oncol. 2017, 56, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Tacar, S.Y.; Selcukbiricik, F.; Yilmaz, M.; Erturk, K.; Sarici, A.M.; Gulturk, I.; Ayhan, M.; Tural, D. Nivolumab for metastatic uveal melanoma: A multicenter, retrospective study. Melanoma Res. 2021, 31, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Piperno-Neumann, S.; Servois, V.; Mariani, P.; Cassoux, N.; Barnhill, R.; Rodrigues, M.J. Activity of anti-PD1 drugs in uveal melanoma patients. J. Clin. Oncol. 2016, 34, 9588. [Google Scholar] [CrossRef]
- Tsai, K.K.; Shoushtari, A.N.; Munhoz, R.R.; Eroglu, Z.; Piulats, J.M.; Ott, P.A.; Johnson, D.B.; Hwang, J.; Daud, A.; Sosman, J.A.; et al. Efficacy and safety of programmed death receptor-1 (PD-1) blockade in metastatic uveal melanoma (UM). J. Clin. Oncol. 2016, 34, 9507. [Google Scholar] [CrossRef]
- Jespersen, H.; Olofsson Bagge, R.; Ullenhag, G.; Carneiro, A.; Helgadottir, H.; Ljuslinder, I.; Levin, M.; All-Eriksson, C.; Andersson, B.; Stierner, U.; et al. Phase II multicenter open label study of pembrolizumab and entinostat in adult patients with metastatic uveal melanoma (PEMDAC study). Ann. Oncol. 2019, 30, v907. [Google Scholar] [CrossRef]
- Johnson, D.B.; Bao, R.; Ancell, K.K.; Daniels, A.B.; Wallace, D.; Sosman, J.A.; Luke, J.J. Response to anti–PD-1 in uveal melanoma without high-volume liver metastasis. J. Natl. Compr. Cancer Netw. 2019, 17, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Jansen, Y.J.L.; Seremet, T.; Neyns, B. Pembrolizumab for the treatment of uveal melanoma: A case series. Rare Tumors 2020, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Ny, L.; Jespersen, H.; Karlsson, J.; Alsén, S.; Filges, S.; All-Eriksson, C.; Andersson, B.; Carneiro, A.; Helgadottir, H.; Levin, M.; et al. The PEMDAC phase 2 study of pembrolizumab and entinostat in patients with metastatic uveal melanoma. Nat. Commun. 2021, 12, 5155. [Google Scholar] [CrossRef] [PubMed]
- Algazi, A.P. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Glob. Ecol. Biogeogr. 2017, 26, 1386–1397. [Google Scholar] [CrossRef] [PubMed]
- Karydis, I.; Chan, P.Y.; Wheater, M.; Arriola, E.; Szlosarek, P.W.; Ottensmeier, C.H. Clinical activity and safety of Pembrolizumab in Ipilimumab pre-treated patients with uveal melanoma. OncoImmunology 2016, 5, e1143997. [Google Scholar] [CrossRef] [PubMed]
- Kottschade, L.A.; McWilliams, R.R.; Markovic, S.N.; Block, M.S.; Bisneto, J.V.; Pham, A.Q.; Esplin, B.L.; Dronca, R.S. The use of pembrolizumab for the treatment of metastatic uveal melanoma. Melanoma Res. 2016, 26, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Molinero, L.; Bolen, C.R.; Sosman, J.A.; Muñoz-Couselo, E.; Kluger, H.M.; McDermott, D.F.; Powderly, J.D.; Sarkar, I.; Ballinger, M.; et al. Safety, clinical activity, and biological correlates of response in patients with metastatic melanoma: Results from a phase I trial of atezolizumab. Clin. Cancer Res. 2019, 25, 6061–6072. [Google Scholar] [CrossRef] [PubMed]
- Keilholz, U.; Mehnert, J.M.; Bauer, S.; Bourgeois, H.P.; Patel, M.R.; Gravenor, D.; Nemunaitis, J.J.; Taylor, M.H.; Wyrwicz, L.; Lee, K.-W.; et al. Avelumab in patients with previously treated metastatic melanoma: Phase 1b results from the JAVELIN Solid Tumor trial. J. Clin. Oncol. 2018, 36, 191. [Google Scholar] [CrossRef]
- Kirchberger, M.C.; Moreira, A.; Erdmann, M.; Schuler, G.; Heinzerling, L. Real world experience in low-dose ipilimumab in combination with PD-1 blockade in advanced melanoma patients. Oncotarget 2018, 9, 28903–28909. [Google Scholar] [CrossRef] [PubMed]
- Piulats Rodriguez, J.M.; De La Cruz Merino, L.; Espinosa, E.; Alonso Carrión, L.; Martin Algarra, S.; López-Castro, R.; Curiel García, M.T.; Rodriguez Abreu, D.; Rullan Iriarte, A.J.; Berrocal Jaime, A. Phase II multicenter, single arm, open label study of nivolumab in combination with ipilimumab in untreated patients with metastatic uveal melanoma (GEM1402.NCT02626962). Ann. Oncol. 2018, 29, viii443. [Google Scholar] [CrossRef]
- Heppt, M.V.; Amaral, T.; Kähler, K.C.; Heinzerling, L.; Hassel, J.C.; Meissner, M.; Kreuzberg, N.; Loquai, C.; Reinhardt, L.; Utikal, J.; et al. Combined immune checkpoint blockade for metastatic uveal melanoma: A retrospective, multi-center study. J. Immunother. Cancer 2019, 7, 299. [Google Scholar] [CrossRef] [PubMed]
- Karivedu, V.; Eldessouki, I.; Correa, Z.; Taftaf, A.; Zhu, Z.; Makramalla, A.; Karim, N.A. Corrigendum to “Nivolumab and Ipilimumab in the Treatment of Metastatic Uveal Melanoma: A Single-Center Experience”. Case Rep. Oncol. Med. 2019, 2019, 3868790. [Google Scholar] [CrossRef] [PubMed]
- Hogg, D.; Monzon, J.G.; Savage, J.; Skinn, B.; Ernst, S.; Song, X.; McWhirter, E.; Romeyer, F.; Smylie, M. Canadian cohort expanded-access program of nivolumab plus ipilimumab in advanced melanoma. Curr. Oncol. 2020, 27, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Klemen, N.D.; Wang, M.; Rubinstein, J.C.; Olino, K.; Clune, J.; Ariyan, S.; Cha, C.; Weiss, S.A.; Kluger, H.M.; Sznol, M. Survival after checkpoint inhibitors for metastatic acral, mucosal and uveal melanoma. J. Immunother. Cancer 2020, 8, e000341. [Google Scholar] [CrossRef] [PubMed]
- Najjar, Y.G.; Navrazhina, K.; Ding, F.; Bhatia, R.; Tsai, K.; Abbate, K.; Durden, B.; Eroglu, Z.; Bhatia, S.; Park, S.; et al. Ipilimumab plus nivolumab for patients with metastatic uveal melanoma: A multicenter, retrospective study. J. Immunother. Cancer 2020, 8, e000331. [Google Scholar] [CrossRef] [PubMed]
- Koch, E.A.T.; Petzold, A.; Wessely, A.; Dippel, E.; Erdmann, M.; Heinzerling, L.; Hohberger, B.; Knorr, H.; Leiter, U.; Meier, F.; et al. Clinical determinants of long-term survival in metastatic uveal melanoma. Cancer Immunol. Immunother. 2021, 71, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Piulats, J.M.; Espinosa, E.; de la Cruz Merino, L.; Varela, M.; Alonso Carrión, L.; Martín-Algarra, S.; López Castro, R.; Curiel, T.; Rodríguez-Abreu, D.; Redrado, M.; et al. Nivolumab Plus Ipilimumab for Treatment-Naïve Metastatic Uveal Melanoma: An Open-Label, Multicenter, Phase II Trial by the Spanish Multidisciplinary Melanoma Group (GEM-1402). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Pelster, M.S.; Gruschkus, S.K.; Bassett, R.; Gombos, D.S.; Shephard, M.; Posada, L.; Glover, M.S.; Simien, R.; Diab, A.; Hwu, P.; et al. Nivolumab and Ipilimumab in Metastatic Uveal Melanoma: Results From a Single-Arm Phase II Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; Chapman, P.B.; Sznol, M.; Lao, C.D.; Gonzalez, R.; Smylie, M.; Daniels, G.A.; Thompson, J.A.; Kudchadkar, R.; Sharfman, W.; et al. Safety and efficacy of combination nivolumab plus ipilimumab in patients with advanced melanoma: Results from a North American expanded access program (CheckMate 218). Melanoma Res. 2021, 1, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Minor, D.R.; Kim, K.B.; Tong, R.T.; Wu, M.C.; Kashani-Sabet, M.; Orloff, M.; Eschelman, D.J.; Gonsalves, C.F.; Adamo, R.D.; Anne, P.R.; et al. A Pilot Study of Hepatic Irradiation with Yttrium-90 Microspheres Followed by Immunotherapy with Ipilimumab and Nivolumab for Metastatic Uveal Melanoma. Cancer Biother. Radiopharm. 2022, 37, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Salaun, H.; Saint-ghislain, M.; Servois, V.; Garcia, A.; Matet, A.; Cassoux, N.; Mariani, P.; Piperno-neumann, S.; Rodrigues, M. Nivolumab plus ipilimumab in metastatic uveal melanoma: A real-life, retrospective cohort of 47 patients. Oncoimmunology 2022, 11, 2116845. [Google Scholar] [CrossRef] [PubMed]
- Kraehenbuehl, L.; Holland, A.; Armstrong, E.; O’Shea, S.; Mangarin, L.; Chekalil, S.; Johnston, A.; Bomalaski, J.S.; Erinjeri, J.P.; Barker, C.A.; et al. Pilot Trial of Arginine Deprivation Plus Nivolumab and Ipilimumab in Patients with Metastatic Uveal Melanoma. Cancers 2022, 14, 2638. [Google Scholar] [CrossRef] [PubMed]
- Middleton, M.R.; McAlpine, C.; Woodcock, V.K.; Corrie, P.; Infante, J.R.; Steven, N.M.; Jeffry Evans, T.R.; Anthoney, A.; Shoushtari, A.N.; Hamid, O.; et al. Tebentafusp, a TCR/Anti-CD3 bispecific fusion protein targeting gp100, potently activated antitumor immune responses in patients with metastatic melanoma. Clin. Cancer Res. 2020, 26, 5869–5878. [Google Scholar] [CrossRef] [PubMed]
- Sacco, J.; Carvajal, R.; Butler, M.; Shoushtari, A.; Hassel, J.; Ikeguchi, A.; Hernandez-Aya, L.; Nathan, P.; Hamid, O.; Piulats, J.; et al. Updated survival of patients with previously treated metastatic uveal melanoma who recived Tebentafusp. J. Immunother. Cancer 2021, 9, A568. [Google Scholar]
- Carvajal, R.D.; Nathan, P.; Sacco, J.J.; Orloff, M.; Hernandez-Aya, L.F.; Yang, J.; Luke, J.J.; Butler, M.O.; Stanhope, S.; Collins, L.; et al. Phase I Study of Safety, Tolerability, and Efficacy of Tebentafusp Using a Step-Up Dosing Regimen and Expansion in Patients With Metastatic Uveal Melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Wessely, A.; Steeb, T.; Erdmann, M.; Heinzerling, L.; Vera, J.; Schlaak, M.; Berking, C.; Heppt, M.V. The Role of Immune Checkpoint Blockade in Uveal Melanoma. Int. J. Mol. Sci. 2020, 21, 879. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Long, G.V.; Robert, C.; Tawbi, H.A.; Flaherty, K.T.; Ascierto, P.A.; Nathan, P.D.; Rutkowski, P.; Leonov, O.; Dutriaux, C.; et al. Randomized Phase III Trial Evaluating Spartalizumab Plus Dabrafenib and Trametinib for BRAF V600–Mutant Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2022, 40, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Durer, C.; Durer, S.; Hoilat, G.J.; Abu-Zaid, A.; Milhem, M.M. Outcomes of combined ipilimumab/nivolumab in metastatic uveal melanoma: A prevalence meta-analysis. J. Clin. Oncol. 2022, 40, 9534. [Google Scholar] [CrossRef]
- Orloff, M.M.; Pan, K.; Gonsalves, C.F.; Eschelman, D.J.; Mastrangelo, M.J.; Sato, T. Combination treatment with ipilimumab and immunoembolization in metastatic uveal melanoma: A feasibility study. J. Clin. Oncol. 2015, 33, e20015. [Google Scholar] [CrossRef]
- Qin, S.; Dong, B.; Yi, M.; Chu, Q.; Wu, K. Prognostic Values of TIM-3 Expression in Patients With Solid Tumors: A Meta-Analysis and Database Evaluation. Front. Oncol. 2020, 10, 1288. [Google Scholar] [CrossRef] [PubMed]
- de Vos, L.; Carrillo Cano, T.M.; Zarbl, R.; Klümper, N.; Ralser, D.J.; Franzen, A.; Herr, E.; Gabrielpillai, J.; Vogt, T.J.; Dietrich, J.; et al. CTLA4, PD-1, PD-L1, PD-L2, TIM-3, TIGIT and LAG3 DNA Methylation Is Associated With BAP1 -Aberrancy, Transcriptional Activity, and Overall Survival in Uveal Melanoma. J. Immunother. 2022, 45, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.E.; Tang, S.-C.; Powderly, J.D.; Balmanoukian, A.S.; Janik, J.; Hoyle, P.; Wei, W.; Gong, X.; Hamid, O. 730MO First-in-human phase I study of INCAGN02390, a TIM-3 monoclonal antibody antagonist in patients with advanced malignancies. Ann. Oncol. 2022, 33, S876–S877. [Google Scholar] [CrossRef]
- Singh, L.; Singh, M.K.; Kumar, N.; Jha, J.; Lomi, N.; Sen, S.; Kashyap, S. 189P Prognostic significance of lymphocyte activation gene-3 (LAG3 gene) in uveal melanoma patients. Ann. Oncol. 2021, 32, S1463–S1464. [Google Scholar] [CrossRef]
- Amaria, R.N.; Postow, M.; Burton, E.M.; Tezlaff, M.T.; Ross, M.I.; Torres-cabala, C.; Glitza, I.C.; Duan, F.; Milton, D.R.; Busam, K.; et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature 2022, 611, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Fourcade, J.; Sun, Z.; Chauvin, J.-M.; Ka, M.; Davar, D.; Pagliano, O.; Wang, H.; Saada, S.; Menna, C.; Amin, R.; et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 2018, 3, e121157. [Google Scholar] [CrossRef] [PubMed]
- Davar, D.; Haymaker, C.L.; Sheth, R.; Kuban, J.; Weintraub, J.; Wehrenberg-Klee, E.; Novelli, P.M.; Gonsalves, C.F.; Adamo, R.D.; Lucci, A.; et al. Safety and early biologic effects of phase 1 PERIO-01 trial of pressure-enabled drug delivery (PEDD) of TLR9 agonist SD-101 and immune checkpoint inhibition (ICI) in uveal melanoma metastatic to the liver (MUM). J. Clin. Oncol. 2023, 41, 2521. [Google Scholar] [CrossRef]
- Ribas, A.; Medina, T.; Kummar, S.; Amin, A.; Kalbasi, A.; Drabick, J.J.; Barve, M.; Daniels, G.A.; Wong, D.J.; Schmidt, E.V.; et al. SD-101 in Combination with Pembrolizumab in Advanced Melanoma: Results of a Phase Ib, Multicenter Study. Cancer Discov. 2018, 8, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Agarwala, S.S.; Ross, M.; Zager, J.S.; Sarnaik, A.S.; Shirai, K.; Lu, G.; Essner, R.; Smithers, B.; Atkinson, V.V.; Wachter, E. 1125P A phase Ib study of rose bengal disodium and anti-PD-1 in metastatic cutaneous melanoma: Results in patients naïve to immune checkpoint blockade. Ann. Oncol. 2020, 31, S756. [Google Scholar] [CrossRef]
- Olofsson Bagge, R.; Nelson, A.; Shafazand, A.; All-Eriksson, C.; Cahlin, C.; Elander, N.; Gustavsson, A.; Helgadottir, H.; Kiilgaard, J.F.; Kinhult, S.; et al. Survival and Quality of Life after Isolated Hepatic Perfusion with Melphalan as a Treatment for Uveal Melanoma Liver Metastases—Final Results from the Phase III Randomized Controlled Trial SCANDIUM. Ann. Surg. 2024, 282, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.; Shafazand, A.; All-Eriksson, C.; Cahlin, C.; Elander, N.; Helgadottir, H.; Kiilgaard, J.F.; Kinhult, S.; Ljuslinder, I.; Mattsson, J.E.; et al. Long-term overall survival after isolated liver perfusion with melphalan in patients with isolated liver metastases of uveal melanoma (SCANDIUM trial). J. Clin. Oncol. 2024, 42, 9532. [Google Scholar] [CrossRef]
- Olofsson Bagge, R.; Nelson, A.; Shafazand, A.; Cahlin, C.; Carneiro, A.; Helgadottir, H.; Levin, M.; Rizell, M.; Ullenhag, G.; Wirén, S.; et al. A phase Ib randomized multicenter trial of isolated hepatic perfusion in combination with ipilimumab and nivolumab for uveal melanoma metastases (SCANDIUM II trial). ESMO Open 2024, 9, 103623. [Google Scholar] [CrossRef] [PubMed]
- Terai, M.; Londin, E.; Rochani, A.; Link, E.; Lam, B.; Kaushal, G.; Bhushan, A.; Orloff, M.; Sato, T. Expression of Tryptophan 2,3-Dioxygenase in Metastatic Uveal Melanoma. Cancers 2020, 12, 405. [Google Scholar] [CrossRef] [PubMed]
- Platten, M.; Wick, W.; Van den Eynde, B.J. Tryptophan catabolism in cancer: Beyond IDO and tryptophan depletion. Cancer Res. 2012, 72, 5435–5440. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Wu, Y.-H.; Song, Y.; Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol. J. Hematol. Oncol. 2021, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- Hagström, A.; Kal Omar, R.; Williams, P.A.; Stålhammar, G. The rationale for treating uveal melanoma with adjuvant melatonin: A review of the literature. BMC Cancer 2022, 22, 398. [Google Scholar] [CrossRef] [PubMed]
- Ott, P.A.; Hodi, F.S.; Buchbinder, E.I. Inhibition of Immune Checkpoints and Vascular Endothelial Growth Factor as Combination Therapy for Metastatic Melanoma: An Overview of Rationale, Preclinical Evidence, and Initial Clinical Data. Front. Oncol. 2015, 5, 202. [Google Scholar] [CrossRef] [PubMed]
- Zirlik, K.; Duyster, J. Anti-Angiogenics: Current Situation and Future Perspectives. Oncol. Res. Treat. 2018, 41, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. Oncoimmunology 2016, 5, e1163462. [Google Scholar] [CrossRef] [PubMed]
- Kye, Y.; Nagineni, L.; Gadad, S.; Ramirez, F.; Riva, H.; Fernandez, L.; Samaniego, M.; Holland, N.; Yeh, R.; Takigawa, K.; et al. The Identification and Clinical Applications of Mutated Antigens in the Era of Immunotherapy. Cancers 2022, 14, 4255. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Bloch, N.; Chang, A.Y.; Bhavsar, R.; Wang, Q.; Crawford, A.; DiLillo, D.J.; Vazzana, K.; Mohrs, K.; Dudgeon, D.; et al. A PD-1-targeted, receptor-masked IL-2 immunocytokine that engages IL-2Rα strengthens T cell-mediated anti-tumor therapies. Cell Rep. Med. 2024, 5, 101747. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.M.L.; Burgmans, M.C.; Speetjens, F.M.; van Erkel, A.R.; van der Meer, R.W.; van Rijswijk, C.S.P.; Jonker, M.A.; Roozen, I.C.F.M.; Lutjeboer, J.; van Persijn-van Meerten, E.L.; et al. Safety and efficacy of combined melphalan percutaneous hepatic perfusion (M-PHP) and ipilimumab plus nivolumab (IPI+NIVO) in metastasized uveal melanoma (mUM): First results of the phase Ib part of the CHOPIN trial. J. Clin. Oncol. 2022, 40, 9560. [Google Scholar] [CrossRef]
- Tong, T.M.L.; van der Kooij, M.K.; Speetjens, F.M.; van Erkel, A.R.; van der Meer, R.W.; Lutjeboer, J.; van Persijn van Meerten, E.L.; Martini, C.H.; Zoethout, R.W.M.; Tijl, F.G.J.; et al. Combining Hepatic Percutaneous Perfusion with Ipilimumab plus Nivolumab in advanced uveal melanoma (CHOPIN): Study protocol for a phase Ib/randomized phase II trial. Trials 2022, 23, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Sacco, J.J.; Carvajal, R.; Butler, M.O.; Shoushtari, A.N.; Hassel, J.C.; Ikeguchi, A.; Hernandez-Aya, L.; Nathan, P.; Hamid, O.; Rodriguez, J.M.P.; et al. 64MO A phase (ph) II, multi-center study of the safety and efficacy of tebentafusp (tebe) (IMCgp100) in patients (pts) with metastatic uveal melanoma (mUM). Ann. Oncol. 2020, 31, S1442–S1443. [Google Scholar] [CrossRef]
- Esfandiari, A.; Cassidy, S.; Webster, R.M. Bispecific antibodies in oncology. Nat. Rev. Drug Discov. 2022, 21, 411–412. [Google Scholar] [CrossRef] [PubMed]
- de Vries, T.J.; Trancikova, D.; Ruiter, D.J.; van Muijen, G.N. High expression of immunotherapy candidate proteins gp100, MART-1, tyrosinase and TRP-1 in uveal melanoma. Br. J. Cancer 1998, 78, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Boudousquie, C.; Bossi, G.; Hurst, J.M.; Rygiel, K.A.; Jakobsen, B.K.; Hassan, N.J. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8+ and CD4+ T cells. Immunology 2017, 152, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Hassel, J.C.; Piperno-Neumann, S.; Rutkowski, P.; Baurain, J.-F.; Schlaak, M.; Butler, M.O.; Sullivan, R.J.; Dummer, R.; Kirkwood, J.M.; Orloff, M.; et al. Three-Year Overall Survival with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2023, 389, 2256–2266. [Google Scholar] [CrossRef] [PubMed]
- Piperno-Neumann, S.; Mailly-Giacchetti, L.; Ramtohul, T.; Saint-Ghislain, M.; Pracht, M.; Thery, J.C.; Combe, P.; Litrowski, N.; Martin, H.; Dutriaux, C.; et al. Tebentafusp (tebe) in a real-world cohort of 72 French metastatic uveal melanoma (UM) patients (pts). J. Clin. Oncol. 2023, 41, e21583. [Google Scholar] [CrossRef]
- Anbari, S.; Wang, H.; Arulraj, T.; Nickaeen, M.; Pilvankar, M.; Wang, J.; Hansel, S.; Popel, A.S. Identifying biomarkers for treatment of uveal melanoma by T cell engager using a QSP model. NPJ Syst. Biol. Appl. 2024, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.P.; Forget, M.-A.; Kreidieh, F.Y.; Pelster, M.; Davies, M.A.; Amaria, R.N.; Gombos, D.S.; Bernatchez, C. Tumor infiltrating lymphocyte (TIL) harvest and ex vivo expansion from primary and metastatic (met) uveal melanoma (UM) tumors. J. Clin. Oncol. 2023, 41, 9513. [Google Scholar] [CrossRef]
- Jacoby, E.; Shahani, S.A.; Shah, N.N. Updates on CAR T-cell therapy in B-cell malignancies. Immunol. Rev. 2019, 290, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Nazha, B.; Inal, C.; Owonikoko, T.K. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front. Oncol. 2020, 10, 1000. [Google Scholar] [CrossRef] [PubMed]
- Gaissmaier, L.; Elshiaty, M.; Christopoulos, P. Breaking Bottlenecks for the TCR Therapy of Cancer. Cells 2020, 9, 2095. [Google Scholar] [CrossRef] [PubMed]
- Gezgin, G.; Visser, M.; Ruano, D.; Santegoets, S.J.; de Miranda, N.F.C.C.; van der Velden, P.A.; Luyten, G.P.M.; van der Burg, S.H.; Verdegaal, E.M.; Jager, M.J. Tumor-Infiltrating T Cells Can Be Expanded Successfully from Primary Uveal Melanoma after Separation from Their Tumor Environment. Ophthalmol. Sci. 2022, 2, 100132. [Google Scholar] [CrossRef] [PubMed]
- Beard, R.E.; Abate-Daga, D.; Rosati, S.F.; Zheng, Z.; Wunderlich, J.R.; Rosenberg, S.A.; Morgan, R.A. Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 4941–4950. [Google Scholar] [CrossRef] [PubMed]
- Amir, A.L.; van der Steen, D.M.; van Loenen, M.M.; Hagedoorn, R.S.; de Boer, R.; Kester, M.D.G.; de Ru, A.H.; Lugthart, G.-J.; van Kooten, C.; Hiemstra, P.S.; et al. PRAME-specific Allo-HLA-restricted T cells with potent antitumor reactivity useful for therapeutic T-cell receptor gene transfer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 5615–5625. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Talukder, A.H.; Lim, S.A.; Kim, K.; Pan, K.; Melendez, B.; Bradley, S.D.; Jackson, K.R.; Khalili, J.S.; Wang, J.; et al. SLC45A2: A Melanoma Antigen with High Tumor Selectivity and Reduced Potential for Autoimmune Toxicity. Cancer Immunol. Res. 2017, 5, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.S.; Yu, Y.Y.L.; Dudley, M.E.; Zheng, Z.; Robbins, P.F.; Li, Y.; Wunderlich, J.; Hawley, R.G.; Moayeri, M.; Rosenberg, S.A.; et al. Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum. Gene Ther. 2005, 16, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.; Singh, S.; Lizee, G.; Solis, L.M.; Welsh, J.W.; Bassett, R.L.; Beal, L.G.; Kim, P.Y.; Murthy, R.; Talukder, A.; et al. A phase Ib study of endogenous T cell therapy using SLC45A2-specific CD8 T cells for patients with metastatic uveal melanoma. J. Clin. Oncol. 2023, 41, 9588. [Google Scholar] [CrossRef]
- Liu, J.; Fu, M.; Wang, M.; Wan, D.; Wei, Y.; Wei, X. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J. Hematol. Oncol. J. Hematol. Oncol. 2022, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Ward, E.M.; Flowers, C.R.; Gansler, T.; Omer, S.B.; Bednarczyk, R.A. The importance of immunization in cancer prevention, treatment, and survivorship. CA Cancer J. Clin. 2017, 67, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Bol, K.F.; Mensink, H.W.; Aarntzen, E.H.J.G.; Schreibelt, G.; Keunen, J.E.E.; Coulie, P.G.; de Klein, A.; Punt, C.J.A.; Paridaens, D.; Figdor, C.G.; et al. Long overall survival after dendritic cell vaccination in metastatic uveal melanoma patients. Am. J. Ophthalmol. 2014, 158, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Kumai, T.; Yamaki, H.; Kono, M.; Hayashi, R.; Wakisaka, R.; Komatsuda, H. Antitumor Peptide-Based Vaccine in the Limelight. Vaccines 2022, 10, 70. [Google Scholar] [CrossRef] [PubMed]
- Schwartzentruber, D.J.; Lawson, D.H.; Richards, J.M.; Conry, R.M.; Miller, D.M.; Treisman, J.; Gailani, F.; Riley, L.; Conlon, K.; Pockaj, B.; et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 2011, 364, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Slingluff, C.L.; Petroni, G.R.; Chianese-Bullock, K.A.; Wages, N.A.; Olson, W.C.; Smith, K.T.; Haden, K.; Dengel, L.T.; Dickinson, A.; Reed, C.; et al. Trial to evaluate the immunogenicity and safety of a melanoma helper peptide vaccine plus incomplete Freund’s adjuvant, cyclophosphamide, and polyICLC (Mel63). J. Immunother. Cancer 2021, 9, e000934. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, N.; Jin, R.; Slingluff, C.L. Adjuvant polypeptide vaccines for high-risk uveal melanoma. J. Clin. Oncol. 2023, 41, e21509. [Google Scholar] [CrossRef]
- Lopes, A.; Vandermeulen, G.; Préat, V. Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J. Exp. Clin. Cancer Res. CR 2019, 38, 146. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Zhang, Y.; Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 2021, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Yuan, J.; Houghton, A.N.; Gallardo, H.F.; Rasalan, T.S.; Wang, J.; Zhang, Y.; Ranganathan, R.; Chapman, P.B.; Krown, S.E.; et al. Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol. Ther. J. Am. Soc. Gene Ther. 2007, 15, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Weide, B.; Carralot, J.-P.; Reese, A.; Scheel, B.; Eigentler, T.K.; Hoerr, I.; Rammensee, H.-G.; Garbe, C.; Pascolo, S. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J. Immunother. 2008, 31, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Weide, B.; Pascolo, S.; Scheel, B.; Derhovanessian, E.; Pflugfelder, A.; Eigentler, T.K.; Pawelec, G.; Hoerr, I.; Rammensee, H.-G.; Garbe, C. Direct injection of protamine-protected mRNA: Results of a phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother. 2009, 32, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokarakis, D.; Kuhn, A.N.; Omokoko, T.; et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 2020, 585, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Larocca, C.; Schlom, J. Viral vector-based therapeutic cancer vaccines. Cancer J. Sudbury Mass 2011, 17, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, P.F.; Pala, L.; Conforti, F.; Cocorocchio, E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers 2021, 13, 1383. [Google Scholar] [CrossRef] [PubMed]
- Curti, B.D.; Richards, J.; Hyngstrom, J.R.; Daniels, G.A.; Faries, M.; Feun, L.; Margolin, K.A.; Hallmeyer, S.; Grose, M.; Zhang, Y.; et al. Intratumoral oncolytic virus V937 plus ipilimumab in patients with advanced melanoma: The phase 1b MITCI study. J. Immunother. Cancer 2022, 10, e005224. [Google Scholar] [CrossRef] [PubMed]
- Sacco, J.J.; Harrington, K.J.; Olsson-Brown, A.; Chan, T.Y.; Nenclares, P.; Leslie, I.; Bommareddy, P.; Kalbasi, A.; Xie, B.; Mishal, M.; et al. Safety, efficacy, and biomarker results from an open-label, multicenter, phase 1 study of RP2 alone or combined with nivolumab in a cohort of patients with uveal melanoma. J. Clin. Oncol. 2024, 42, 9511. [Google Scholar] [CrossRef]
- Koch, E.A.T.; Petzold, A.; Dippel, E.; Erdmann, M.; Gesierich, A.; Gutzmer, R.; Hassel, J.C.; Haferkamp, S.; Kähler, K.C.; Kreuzberg, N.; et al. Optimizing immune checkpoint blockade in metastatic uveal melanoma: Exploring the association of overall survival and the occurrence of adverse events. Front. Immunol. 2024, 15, 1395225. [Google Scholar] [CrossRef] [PubMed]
Drugs | References |
---|---|
ICIs | |
Anti-CTLA-4 single-agent therapy | |
Ipilimumab | [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44] |
Tremelimumab | [45,46], NCT01034787 |
Anti-PD-1 single-agent therapy | |
Nivolumab | [38,39,47,48,49,50,51,52,53,54] |
Pembrolizumab | [38,39,43,49,51,53,54,55,56,57,58,59,60,61] |
Spartalizumab | NCT04802876 |
Anti-PD-L1 single-agent therapy | |
Atezolizumab | [59,62] |
Avelumab | [63], NCT04328844 |
Other ICIs | |
Anti-TIM-3 (INCAGN02390) | NCT03652077 |
Targeting-PD-1 and anti-IL-2Rα (REGN10597) | NCT06413680 |
Combined ICIs | |
Combined anti-PD-1 and anti-CTLA-4 | [40,49,64,65,66,67,68,69,70,71,72,73,74,75,76,77], NCT06519266 |
TCR-based therapy | |
Non-cell-based therapy | |
Tebentafusp (IMCgp100) | [18,78,79,80] |
Cell-based therapy | |
Genetically unmodified T cells (TILs therapy) | [10] |
Genetically modified T cells: classical TCR T cells - MART1-specific TCR therapy - PRAME-specific TCR therapy - SLC45A2-specific TCR therapy - MAGE-C2-specific TCR therapy CAR T cells - C7R-GD2-specific CAR-T cells therapy | [11,12] |
Vaccines | |
Cell-based vaccines | [13,14,15] |
Peptide-based vaccines | |
Nucleic acid-based vaccines | [16,17] |
Oncolytic virus-based vaccines | |
Combined therapy (ICIs with…) | |
Chemotherapy: -Lenvatinib -Entinostat, -Nab-paclitaxel -Pemetrexed -Carboplatin -Ruxolitinib -Cisplatin -Obinutuzumab -Melphalan -IOA-244 -LNS8801 -APG-115 -Sitravatinib -Olaparib -ONM-501 | NCT05308901, NCT05282901 NCT02697630 NCT05075993, NCT02158520 NCT04993677, NCT04328844 NCT04993677 NCT04328844 NCT04328844 NCT04551352 NCT04283890 NCT04328844 NCT04130516 NCT03611868 NCT05542342 NCT05524935 NCT06022029 |
Targeted therapy (mAbs): -CD40 agonist (Dacetuzumab, LVGN7409) -CD137 agonist (LVGN6051) -TLR-9 agonist (SD-101) -Anti-VEGF (Bevacizumab, Lenvatinib, Ziv-Aflibercept) -Anti-LAG-3 (Relatlimab) -Anti-Tyrp1 T cell engager (RO7293583) -Anti-IL-6R (Tocilizumab) -Anti-CD20 (Obinutuzumab) -Anti-TNF (Adalimumab) -Anti-tissue factor (ICON-1) -Anti-GD2 (iodine I 131 mAb 3F8) | NCT04993677, NCT05075993 NCT05075993 NCT04935229 NCT05075993, NCT02158520, NCT05308901, NCT05282901 NCT06121180 NCT02519322 NCT04551352 NCT04551352 NCT04551352 NCT04551352 NCT02771340 NCT00445965 |
SIRT | NCT02913417 |
Oncolytic viruses | NCT02831933, NCT03408587, NCT06581406 |
Peptide vaccine | NCT0084656, NCT0032045, NCT0025181 |
Non-cell-based therapy (Tebentafusp) | NCT02535078 |
Cell-based therapy (autologous CD8+ SLC45A2- T cells) | NCT03068624 |
Treatment | Conditions | Phase | Actual Enrollment | Trial Period | Sponsor/Collaborators | Status | NCT No. (Reference) |
---|---|---|---|---|---|---|---|
Non-cellular TCR-based therapy | |||||||
Tebentafusp + TheraSphere™ Yttrium-90 Trans-Arterial Radioembolization | mUM | II | 30 | February 2025–February 2031 | University of Miami (Miami, FL, USA); Immunocore Ltd. (Abingdon, Oxfordshire, UK) | Not yet recruiting | NCT06627244 |
Tebentafusp-Tebn | Locally Advanced Unresectable Uveal Melanoma | II | 19 | January 2025–April 2029 | Thomas Jefferson University (Philadelphia, PA, USA) | Not yet recruiting | NCT06414590 |
Tebentafusp | mUM | II | 44 | December 2024–November 2029 | Diwakar Davar (Pittsburgh, PA, USA); Immunocore Ltd. (Abingdon, Oxfordshire, UK) | Not yet recruiting | NCT06070012 |
Tebentafusp | UM | III | 290 | November 2024–November 2032 | European Organisation for Research and Treatment of Cancer–EORTC (Brussels, Belgium); Northwell Health (New Hyde Park, NY, USA); Immunocore Ltd. (Abingdon, Oxfordshire, UK) | Recruiting | NCT06246149 |
Tebentafusp-Tebn + GM-CSF (Sargramostim) + Carmustine (BCNU) | mUM | I/II | 109 | October 2024–August 2026 | Thomas Jefferson University (Philadelphia, PA, USA); Sidney Kimmel Cancer Center at Thomas Jefferson University (Philadelphia, PA, USA) | Not yet recruiting | NCT06626516 |
Tebentafusp | Melanoma (Skin); UM | II | 850 | July 2022–June 2026 | University of Oxford (Oxford, United Kingdom); Immunocore Ltd. (Abingdon, Oxfordshire, UK); Natera, Inc. (Austin, TX, USA) | Recruiting | NCT05315258 |
Tebentafusp or Investigator choice (Dacarbazine, Ipilimumab, or Pembrolizumab) | UM | II | 378 | October 2017–June 2025 | Immunocore Ltd. (Abingdon, Oxfordshire, UK) | Active, not recruiting | NCT03070392 [18] |
Tebentafusp | Malignant Melanoma | II | 3 | January 2017–April 2019 | Immunocore Ltd. (Abingdon, Oxfordshire, UK) | Terminated | NCT02889861 |
Tebentafusp | UM | I/II | 146 | February 2016–October 2022 | Immunocore Ltd. (Abingdon, Oxfordshire, UK) | Completed | NCT02570308 [79,80] |
Tebentafusp + Durvalumab + Tremelimumab | Malignant Melanoma | Ib/II | 0 | November 2015–September 2023 | Immunocore Ltd. (Abingdon, Oxfordshire, UK); AstraZeneca (Cambridge, UK) | Withdrawn | NCT02535078 |
Tebentafusp | Malignant Melanoma | I | 84 | September 2010–February 2017 | Immunocore Ltd. (Abingdon, Oxfordshire, UK) | Completed | NCT01211262 [78] |
Cellular TCR-based therapy | |||||||
Autologous TILs + Melphalan + IL-2 | UM; mCM | I | 6 | December 2023–December 2029 | Vastra Gotaland Region (Västra Götaland County, Sweden) | Not yet recruiting | NCT05903937 |
OBX-115 (IL15 expressing TIL) | |||||||
Autologous TILs + Melphalan + IL-2 | mUM; mCM | I | 6 | February 2023–February 2030 | Vastra Gotaland Region (Västra Götaland County, Sweden); Miltenyi Biomedicine GmbH (Bergisch Gladbach, Germany) | Active, not recruiting | NCT04812470 |
Autologous TILs (TBio-4101) + Pembrolizumab | UM; CM; Breast Cancer; Colorectal Cancer; Non-Small-Cell Lung Cancer; Head and Neck Squamous Cell Carcinoma | I | 60 | January 2023–June 2025 | Turnstone Biologics, Corp. (Ottawa, ON, Canada) | Recruiting | NCT05576077 |
Autologous TILs (LN-144/LN-145) | UM; mUM; Melanoma; Metastatic Melanoma | I | 20 | November 2022–May 2025 | Memorial Sloan Kettering Cancer Center (New York, NY, USA); Iovance Biotherapeutics, Inc. (San Carlos, CA, USA) | Recruiting | NCT05607095 |
Autologous TILs (TBio-4101) + IL-2 + Cyclophosphamide + Fludarabine | Metastatic Melanoma; UM; Acral Melanoma; Mucosal Melanoma | I | 25 | December 2022–December 2026 | H. Lee Moffitt Cancer Center and Research Institute (Tampa, FL, USA); Turnstone Biologics, Corp. (Ottawa, ON, Canada) | Recruiting | NCT05628883 |
Autologous TILs (LN-144) | Metastatic Melanoma | I | 10 | November 2022–November 2025 | Memorial Sloan Kettering Cancer Center (New York, NY, USA); Iovance Biotherapeutics, Inc. (San Carlos, CA, USA) | Active. Not recruiting | NCT05640193 |
Autologous MAGE-C2 TCR-T cells + Valproic acid + 5′ azacytide | Melanoma; UM; Head and Neck Cancer | I/II | 20 | October 2020–October 2027 | Erasmus Medical Center (Rotterdam, The Netherlands); Ludwig Institute for Cancer Research (New York, NY, USA); Dutch Cancer Society (Amsterdam, The Netherlands); Stichting Coolsingel Rotterdam grant (Rotterdam, The Netherlands); Jan Ivo Stichting grant (Amsterdam, The Netherlands) | Recruiting | NCT04729543 |
C7R-GD2.CAR-T cells + Cyclophosphamide + Fludarabine | Relapsed and Refractory Neuroblastoma; Relapsed Osteosarcoma; Relapsed Ewing Sarcoma; Relapsed Rhabdomyosarcoma; UM; Phyllodes Breast Tumor | I | 94 | April 2019–May 2038 | Naylor College of Medicine (Houston, TX, USA); Center for Cell and Gene Therapy, Baylor College of Medicine (Houston, TX, USA); The Methodist Hospital System (Houston, TX, USA); Cancer Prevention Research Institute of Texas (Austin, TX, USA) | Active, not recruiting | NCT03635632 |
Autologous TILs + IL-2 + Cyclophosphamide + Fludarabine | UM; Uveal Neoplasms | II | 47 | May 2018–December 2027 | Udai Kammula (Bethesda, MD, USA); | Recruiting | NCT03467516 |
Autologous CD8+ SLC45A2-specific T Lymphocytes + Aldesleukin + Cyclophosphamide+ Ipilimumab | Metastatic Malignant Neoplasm in the Liver; mUM | I | 34 | September 2017–July 2025 | M.D. Anderson Cancer Center (Houston, TX, USA) | Active, not recruiting | NCT03068624 |
Autologous CD8+ SLC45A2- T cells+ Cyclophosphamide + IL-2 + Ipilimumab | Metastatic Malignant Neoplasm in the Liver; mUM | Ib | 34 | September 2017–July 2025 | MD Anderson Cancer Center (Houston, TX, USA); | Active, not recruiting | NCT03068624 |
Autologous PRAME TCR-T cells (BPX-701) + Rimiducid + IL-2 | Acute Myeloid Leukemia; Myelodysplastic Syndrome; UM | I/II | 4 | April 2017–July 2020 | Bellicum Pharmaceuticals (Houston, TX, USA) | Terminated | NCT02743611 [11] |
Pembrolizumab + TIL + IL-2 | Metastatic Melanoma; Cutaneous Melanoma | II | 18 | August 2015–October 2022 | M.D. Anderson Cancer Center (Houston, TX, USA); | Completed | NCT02500576 |
Anti-MAGE-A3-DP4 T Cell Receptor (TCR) Peripheral Blood Lymphocytes (PBL) + Cyclophosphamide + Fludarabine + Aldesleukin | Melanoma | I/II | 21 | February 2014–March 2021 | NCI (Bethesda, MD, USA) | Completed | NCT02111850 |
Autologous MART-1 TCR-T cells + Cyclophosphamide + Fludarabine | Stage IV Skin Melanoma; Eye Melanoma | I/IIa | 12 | March 2012–January 2020 | The Netherlands Cancer Institute (Amsterdam, The Netherlands) | Unknown | NCT02654821 [12] |
Autologous TILs + IL-2 + Cyclophosphamide + Fludarabine | Metastatic Ocular Melanoma; mUM | II | 24 | March 2013–May 2017 | NCI (Bethesda, MD, USA) | Terminated | NCT01814046 [10] |
DCs + T cells + Cyclophosphamide + IL-2 + Fludarabine + Mesna | Melanoma | II | 1230 | February 2006–February 2030 | M.D. Anderson Cancer Center (Houston, TX, USA); Prometheus Laboratories (San Diego, CA, USA); Key Biologics, LLC (Memphis, TN, USA); NCI (Bethesda, MD, USA); Adelson Medical Research (Las Vegas, NV, USA) | Active, not recruiting | NCT00338377 |
Treatment | Conditions | Phase | Actual Enrollment | Trial Period | Sponsor/Collaborators | Status | NCT No. (Reference) |
---|---|---|---|---|---|---|---|
Cell-based vaccines | |||||||
Autologous DCs loaded with autologous tumor mRNA encoding for IKKβ | Melanoma; mUM | I | 12 | June 2020–January 2024 | Hasumi International Research Foundation (Bethesda, MD, USA); | Unknown | NCT04335890 [13] |
Autologous DCs loaded with autologous tumor mRNA | UM | III | 200 | June 2014–December 2023 | University Hospital Erlangen (Erlangen, Germany), University Hospital Lübeck (Lübeck, Germany), University Hospital Munich (Munich, Germany), Universitätsklinikum Hamburg-Eppendorf (Hamburg, Germany), University Hospital Homburg/Saar (Hamburg, Germany), Universitätsklinikum Köln (Köln, Germany), University Hospital Tuebingen (Tübingen, Germany), University Hospital, Essen (Essen, Germany), Wuerzburg University Hospital (Würzburg, Germany) | Unknown | NCT01983748 [14] |
Autologous DCs loaded with autologous tumor mRNA encoding for gp100 and tyrosinase | UM | I/II | 23 | June 2009–April 2016 | Radboud University Medical Center (Nijmegen, Netherlands), Rotterdam Eye Hospital (Rotterdam, Netherlands) | Terminated | NCT00929019 [15] |
Autologous DCs loaded with melanoma peptides (MART-1, gp100, tyrosinase) | Intraocular Melanoma; Melanoma (Skin) | II | 6 | October 2003–June 2005 | University of Southern California (Los Angeles, CA, USA); NCI (Bethesda, MD, USA) | Completed | NCT00334776 |
Autologous DCs loaded with melanoma peptides (MART-1, gp100, and others) + Fludarabine + ALI | Intraocular Melanoma; Melanoma (Skin) | I | 18 | February 2006–March 2012 | H. Lee Moffitt Cancer Center and Research Institute (Tampa, FL, USA); NCI (Bethesda, MD, USA) | Completed | NCT00313508 |
Peptide-based vaccines | |||||||
6MHP/NeoAg-mBRAF + Adjuvants (PolyICLC + CDX-1140) | Melanoma; Ocular melanoma; UM | I/II | 22 | September 2020–March 2024 | Craig L Slingluff, Jr (Charlottesville, VA, USA); Celldex Therapeutics (Fall River, MA, USA) | Completed | NCT04364230 |
6MHP + Adjuvants (Montanide ISA-51 + polyICLC) + CDX-1127 | Melanoma | I/II | 33 | November 2018–January 2024 | Craig L Slingluff, Jr (Charlottesville, VA, USA); Celldex Therapeutics (Fall River, MA, USA) | Completed | NCT03617328 |
MELITAC 12.1 + lipopolysaccharide + polyICLC + Montanide ISA-51 | Melanoma | I | 53 | October 2012–July 2014 | Craig L Slingluff, Jr (Charlottesville, VA, USA); University of Virginia (Charlottesville, VA, USA); NCI (Bethesda, MD, USA); Oncovir, Inc. (Washington, DC, USA) | Completed | NCT01585350 |
MART-1/gp100/tyrosinase (in IFA) + Sargramostim | Ocular Melanoma; Multiple cancers | III | 815 | February 2000–January 2013 | NCI (Bethesda, MD, USA) | Completed | NCT01989572 |
MELITAC 12.1 peptide + Epacadostat | Mucosal Melanoma; Recurrent Melanoma; Recurrent UM; Skin Melanoma (Stage IIIA-IV); UM (Stage IIIA-IV) | II | 11 | September 2013–May 2017 | Fred Hutchinson Cancer Center (Seattle, WA, USA); Incyte Corporation (Wilmington, DE, USA); NCI (Bethesda, MD, USA); University of Virginia (Charlottesville, VA, USA) | Completed | NCT01961115 |
Multi-epitope melanoma peptide vaccine + tetanus toxoid helper peptide (in IFA) | Intraocular Melanoma; Malignant Conjunctival Neoplasm; Melanoma (Skin) | I | 45 | May 2008–June 2009 | Craig L Slingluff, Jr (Charlottesville, VA, USA); NCI (Bethesda, MD, USA) | Completed | NCT00705640 |
MART-1/gp100/tyrosinase (in IFA) + GM-CSF and CpG 7909 (PF3512676) | Intraocular Melanoma; Malignant Conjunctival Neoplasm; Melanoma (Skin) | I | 22 | October 2008–December 2011 | Ahmad Tarhini (Tampa, FL, USA); NCI (Bethesda, MD, USA) | Completed | NCT00471471 |
gp100/MAGE-3 + Leuprolide | Melanoma | II | 98 | November 2005–October 2012 | M.D. Anderson Cancer Center (Houston, TX, USA) | Completed | NCT00254397 |
6MHP vaccine + GM-CSF + (in IFA) | Intraocular Melanoma; Melanoma (Skin), Stage IIb-IV | I/II | 39 | July 2003–May 2006 | University of Virginia (Charlottesville, VA, USA); NCI (Bethesda, MD, USA) | Completed | NCT00089219 |
Multi-epitope melanoma peptide vaccine + GM-CSF (in IFA) | Intraocular Melanoma; Melanoma (Skin), Stage III-IV | II | 7 | August 2002–November 2005 | University of Virginia (Charlottesville, VA, USA); NCI (Bethesda, MD, USA) | Completed | NCT00089206 |
Multi-epitope melanoma peptide vaccine (gp100/tyrosinase/MAGE-3.1) in IFA + agatolimod sodium | Intraocular Melanoma; Multiple cancers | II | 42 | May 2004–September 2007 | University of Southern California (Los Angeles, CA, USA); NCI (Bethesda, MD, USA) | Completed | NCT00085189 |
Tyrosinase/gp100/MART-1 Peptide vaccine + Ipilimumab | Intraocular Melanoma; Melanoma (Skin). | II | 77 | May 2004–October 2009 | Bristol-Myers Squibb (New York, NY, USA); NCI (Bethesda, MD, USA) | Completed | NCT00084656 |
MART-1/gp100/tyrosinase/NA17-A | Intraocular Melanoma. | III | 13 | February 2002–February 2003 | European Organisation for Research and Treatment of Cancer–EORTC (Brussels, Belgium) | Terminated (low accrual) | NCT00036816 |
gp100 (in IFA) + Ipilimumab | Intraocular Melanoma; Melanoma (Skin), Stage IV | II | not mentioned | January 2002–August 2006 | NCI (Bethesda, MD, USA) | Completed | NCT00032045 |
MART-1/gp100/tyrosinase (in IFA) + IL-12 + GM-CSF + alum adjuvant | Intraocular Melanoma; Melanoma (Skin), Stage II-IV | II | 60 | February 2002–November 2007 | University of Southern California (Los Angeles, CA, USA); NCI (Bethesda, MD, USA) | Completed | NCT00031733 |
MART-1/gp100/tyrosinase (in IFA) + Ipilimumab | Intraocular Melanoma; Melanoma (Skin), Stage III-IV | I | 19 | October 2001–June 2005 | University of Southern California (Los Angeles, CA, USA); NCI (Bethesda, MD, USA) | Completed | NCT00025181 |
gp100/MART-1 (in IFA) + IL-2 | Extraocular Extension Melanoma; Recurrent Intraocular Melanoma | II | Not mentioned | February 2001–March 2007 | NCI (Bethesda, MD, USA) | Completed | NCT00020475 |
MAGE-12 (in IFA) + IL-2 | Melanoma; Eye cancer; Multiple cancers | I | Not mentioned | July 2000–Not mentioned | NCI (Bethesda, MD, USA) | Completed | NCT00020267 |
MART-1/gp100/tyrosinase (in IFA) + progenipoietin | Intraocular Melanoma; Melanoma (Skin), Stage III-IV | I | 15 | June 2000–October 2002 | University of Southern California (Los Angeles, CA, USA); NCI (Bethesda, MD, USA) | Terminated (Toxicity/Side Effects) | NCT00005841 |
gp100/tyrosinase (in IFA) + IL-12 | Intraocular Melanoma; Melanoma (Skin), Stage III-IV | II | 48 | November 1998–September 2004 | University of Southern California (Los Angeles, CA, USA); NCI (Bethesda, MD, USA) | Completed | NCT00003339 |
Nucleic acid-based vaccines | |||||||
Chimeric tyrosinase DNA vaccine using TriGrid Delivery System for i.m. electroporation. | Intraocular Melanoma; Melanoma (Skin) | I | 24 | April 2007–May 2010 | Ichor Medical Systems Incorporated (San Diego, CA, USA); Memorial Sloan Kettering Cancer Center (New York, NY, USA) | Completed | NCT00471133 [16] |
Chimeric (mouse) gp100 DNA vaccine by i.m. or PMED. | Intraocular Melanoma; Melanoma (Skin), Stage IIb-IV | I | 35 | October 2006–March 2011 | Memorial Sloan Kettering Cancer Center (New York, NY, USA); NCI (Bethesda, MD, USA) | Completed | NCT00398073 [17] |
Oncolytic virus-based vaccines | |||||||
Nivolumab + RP2/Ipilimumab | mUM | II/III | 280 | January 2025–October 2031 | Replimune Inc. (Woburn, MA, USA) | Recruiting | NCT06581406 |
RP2 + Nivolumab | Cancer | I | 36 | October 2019–April 2028 | Replimune Inc. (Woburn, MA, USA) | Recruiting | NCT04336241 |
VSV-IFNβ-TYRP1 | mUM; CM; Metastatic Choroid Melanoma; Metastatic Melanoma; Metastatic Mucosal Melanoma | I | 12 | June 2019–January 2027 | Mayo Clinic (Rochester, MN, USA); NCI (Bethesda, MD, USA) | Active, not recruiting | NCT03865212 |
CVA21 + Ipilimumab | UM; Liver Metastases | Ib | 11 | January 2018–May 2019 | Viralytics (Sydney, Australia) | Completed | NCT03408587 |
ADV/HSV-tk + Valacyclovir + Nivolumab + SBRT | mUM; Lung Squamous Cell Carcinoma Stage IV; Nonsquamous NSCLC | II | 11 | February 2017–November 2020 | Eric Bernicker, MD (Frisco, CO, USA), The Methodist Hospital System (Houston, TX, USA) | Terminated | NCT02831933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoruta, M.; Kong, X.; Qin, Y. Advances and Challenges in Immunotherapy for Metastatic Uveal Melanoma: Clinical Strategies and Emerging Targets. J. Clin. Med. 2025, 14, 5137. https://doi.org/10.3390/jcm14145137
Grigoruta M, Kong X, Qin Y. Advances and Challenges in Immunotherapy for Metastatic Uveal Melanoma: Clinical Strategies and Emerging Targets. Journal of Clinical Medicine. 2025; 14(14):5137. https://doi.org/10.3390/jcm14145137
Chicago/Turabian StyleGrigoruta, Mariana, Xiaohua Kong, and Yong Qin. 2025. "Advances and Challenges in Immunotherapy for Metastatic Uveal Melanoma: Clinical Strategies and Emerging Targets" Journal of Clinical Medicine 14, no. 14: 5137. https://doi.org/10.3390/jcm14145137
APA StyleGrigoruta, M., Kong, X., & Qin, Y. (2025). Advances and Challenges in Immunotherapy for Metastatic Uveal Melanoma: Clinical Strategies and Emerging Targets. Journal of Clinical Medicine, 14(14), 5137. https://doi.org/10.3390/jcm14145137