Clinical Efficacy and Real-World Effectiveness of Fabry Disease Treatments: A Systematic Literature Review
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Data Collection, Extraction, and Bias Assessment
2.3. Outcome Measures
3. Results
3.1. Renal Outcomes
(A) | |||
---|---|---|---|
Author Year Study Identifier | N | Treatment Duration | Key Results |
Agalsidase alfa single-arm studies | |||
Beck 2004 [39] FOS | 150 | Mean [max]: 17 [56] months |
|
Cybulla 2022 [43] FOS | 193 | Mean/median (SD) [range]: 12.6/11.9 (5.0) [5.0, 21.6] years |
|
Feriozzi 2009 [44] FOS | 165 | 3 years |
|
Feriozzi 2012 [45] FOS | 208 | Mean [range]: 7.4 [5.0, 11.2] years |
|
Giugliani 2023 * [40] FOS | 66 | Median [IQR]: 20.03 [19.55, 20.64] years |
|
Goker-Alpan 2016 [46] | 14 | Median [range]: 54.5 [54.0, 59.0] weeks |
|
Hughes 2011 [48] FOS | 250 | ≥4 years |
|
Kampmann 2015 [47] | 45 | Median [range]: 10.8 [9.6, 12.5] years |
|
Kleinert 2006 [64] FOS | 60 | >2 years |
|
Mehta 2009 [65] FOS | 181 | Mean (SD): 3.1 (2.1) years |
|
Parini 2020 [26] FOS | 560 | Mean (SD): 7.6 (4.8) years |
|
Pastores 2007 [49] | 22 | Median [range]: 42 [11, 65] weeks |
|
Pintos-Morell 2023 [41] FOS | 285 | Mean (SD): Early initiators group: 11.2 (5.7) years; Late initiators group: 11.8 (5.8) years |
|
Ramaswami 2011 [50] FOS | 8 | Mean (SD): 4.2 (1.9) years |
|
Ramaswami 2012 [66] FOS | 98 | ≥6 months |
|
Ramaswami 2019 [42] FOS | 152 | Median [range]: Evaluable treated renal cohort (n = 152) 13.3 [10.1, 18.4] years; Females (n = 62) 12.5 [10.1, 17.1] years; Males (n = 90): 14.4 [10.1, 18.4] years |
|
Ries 2006 [51] | 24 | 26 weeks |
|
Sasa 2019 [52] | 493 | Mean [range]: 3.5 [0.0, 7.9] years; <0.5: (n = 35); >0.5–1: (n = 31); >1–2: (n = 48); >2–3: (n = 69); >3–4: (n = 86); >4–5: (n = 132); >5–6: (n = 55); >6–7: (n = 20); >7–8: (n = 17) |
|
Schiffmann 2006 [54] | 25 | ≤54 months |
|
Schiffmann 2007 [53], Schiffmann 2015 [57] | 12 | ≤10 years |
|
Schiffmann 2013 [56] | 73 | 12 months |
|
Schiffmann 2014 [55] | 17 | Mean (SD): 6.5 (0.6) years |
|
Schwarting 2006 [58] FOS | 20 | 2 years |
|
Schwarting 2006b [59] FOS | 401 | >2 years (n = 219) >3 years (n = 133) |
|
Thofehrn 2009 [60] | 9 | 36 months (n = 6) 18 months (n = 2) 12 months (n = 1) |
|
Tsuboi 2017 [61] Japan Fabry Research—002 | 36 | Median [range]: 62.5 [8, 84] months |
|
West 2009 [62] | 108 | Mean, median (SD): 2.0, 1.6 (1.0) years Mean (SD) treatment years by baseline GFR range (mL/min/1.73 m2) ≥135 (n = 8): 1.2 (0.2); 90 to <135 (n = 33): 2.0 (1.0); 60 to <90 (n = 36): 2.2 (1.2); 30 to <60 (n = 14): 2.1 (0.9) 15 to <30 (n = 2): 1.0 |
|
Whybra 2009 [63] | 36 | 4 years |
|
Agalsidase beta single-arm studies | |||
Benichou 2009 [67] | 76 | Median [range]: Phase 3: 55.9 [3.3, 60.7] months; Phase 4: 33.5 [1.9, 51.2] months |
|
Breunig 2006 [68] | 25 | Mean (SD) [range]: 23 (8) [12, 37] months |
|
Burlina 2019 * [70] The Fabry Registry | 49 | ≥2.5 years |
|
Cabrera 2017 [30] | 39 | Mean (SD): 68.2 (36.9) months |
|
Chen 2024 * [83] | 22 | 48 weeks |
|
Dutra-Clarke 2021 [71] | 20 | 2–20 years |
|
Germain 2015 [82] | 52 | Median [IQR]: 10 [7.3, 10.3] years |
|
Goicoechea 2020 * [72] | 69 | Median [range] follow-up: 60 [24, 120] months |
|
Hopkin 2023 [23] The Fabry Registry | 785 | Median: 6.3 years in males; 5.0 years in females |
|
Hwang 2022 [73] | 10 | 22-week follow-up Mean (SD) [range]: 4.6 (3.2) [1, 9] years |
|
Lubanda 2009 [74] | 21 | 96 weeks |
|
Ortiz 2021 * [75] | 254 | Median post-treatment period: 4.1 years |
|
Ramaswami 2019 [76] | 31 | 5 years |
|
Veloso 2023 * [69] | 9 | Mean (SD): 70.2 (12.9) months |
|
Wanner 2020 [77] Fabry Registry | 86 | Mean (SD) [range]: 3.9 (0.9) [2.0, 5.0] years |
|
Warnock 2012 [78] Fabry Registry | 213 | ≥2 years |
|
Warnock 2015 [79] FAACET | 24 | Median [IQR] duration of therapy before first visit: 3.1 [0.3, 4.4] years Patients were followed up during a 21-month treatment phase |
|
Weidemann 2013 [80] | 40 | Median [IQR]: 6.0 [5.1, 7.2] years |
|
Wraith 2008 [81] | 16 | 48 weeks |
|
(B) | |||
Author Year Study Identifier | Treatment Groups, n Treatment Duration | Key Results | |
Comparator studies | |||
Arends 2018 [29] | Agalsidase alfa: 248 Agalsidase beta: 139 Median [range]: All patients 4.9 [0.8, 14.4] years; Agalsidase alfa 5.2 [0.8. 14.4] years; Agalsidase beta 3.8 [0.8, 12.1] years |
| |
Beck 2015 [112] FOS | Agalsidase alfa: 740 Published findings for untreated patients Median [range]: 5.4 [1.5, 13.7] years |
| |
Cybulla 2009 [113] FOS | Kidney transplant recipients: 27 (20 received agalsidase alfa, 7 untreated) Median ERT treatment duration: 3.5 years |
| |
Cybulla 2013 * [115] FOS | Kidney transplant recipients: 93 (78 treated with ERT before or after transplant surgery, 15 untreated) Mean (SD): 3.7 (3.1) years |
| |
Cybulla 2014 * [114] FOS | Kidney transplant recipients: 51 (47 treated with ERT before or after transplant surgery, 4 untreated) Median [range]: 2.9 [0.0, 13.4] years |
| |
Dehout 2003 [116] FOS | Agalsidase alfa: 234, Untreated: 103 12 months |
| |
Golan 2015 [118] | Agalsidase alfa 0.2 mg/kg EOW: 20 Agalsidase alfa 0.2 mg/kg weekly: 19 Agalsidase alfa 0.4 mg/kg weekly: 5 1 year |
| |
Guerard 2018 [119] | Lucerastat + ERT: 10 ERT only: 4 12 weeks Mean (SD) previous ERT at baseline: Lucerastat: 4.5 (2.6) years; ERT only: 6.3 (4.2) years |
| |
Hughes 2008 [121] | Agalsidase alfa: 7 Placebo: 8 Randomized phase: 6 months OLE: 2 years |
| |
Hughes 2019 * [120] | Agalsidase alfa: 21 Untreated: 52 NR |
| |
Jovanovic 2017 * [122] FACETS ATTRACT | FACETS: Migalastat or placebo: 67; OLE, migalastat: 54, 24 months ATTRACT: Migalastat or ERT: 52, 18 months Efficacy analyses focused on patients with amenable mutations, FACETS: (n = 41); ATTRACT: (n = 34) |
| |
Prabakaran 2014 [123] | Agalsidase beta/agalsidase alfa: 13 Untreated: 4 ≤6 years |
| |
Schiffmann 2018 * [124] | Migalastat cohort: 52 Natural history cohort: 90 (untreated patients) 3–5 years |
| |
Sirrs 2018 * [27] | Agalsidase alfa 0.2 mg/kg: 76 Agalsidase beta 1 mg/kg: 56 Median [range]: 99 [5, 123] months |
| |
Skuban 2017 * [108] FACETS ATTRACT | FACETS: Migalastat or placebo: 67 OLE, migalastat: 60 FACETS: 6-month double-blind followed by open-label migalastat from 6 to 12 months (stage 2) plus an additional year ATTRACT: Migalastat or ERT: 53.18 months |
| |
van der Veen 2022 [33] | Agalsidase beta 0.5 mg/kg: 3 Agalsidase beta 1 mg/kg: 4 Untreated: 23 10 years |
| |
Vedder 2007 [28] | Agalsidase alfa: 18 Agalsidase beta: 16 24 months |
| |
Wallace 2022 * [125], Wallace 2024 [127] NCT02795676 | Pegunigalsidase alfa: 52 Agalsidase beta: 25 24 months |
| |
Eng 2001 [117], Wilcox 2004 [126] | Agalsidase beta: 29 Placebo: 29 Initial trial: 20 weeks Follow-up: 30–36 months |
|
3.2. Cardiac Outcomes
(A) | |||
---|---|---|---|
Author Year | N | Treatment Duration Assessment Method | Key Results |
Agalsidase alfa single-arm studies | |||
Baehner 2003 [141] | 15 | Up to 55 weeks Echocardiography |
|
Beck 2004 [39] | 188 | Mean [max]: 17 [56] months Echocardiography |
|
Giugliani 2023 * [40] | 66 | Median [IQR]: 20.0 [19.6, 20.6] NR |
|
Goker-Alpan 2015 [128] | 100 | 24 months Echocardiography |
|
Goker-Alpan 2016 [46] | 14 | Median [range]: 54.5 [54.0, 59.0] weeks Echocardiography |
|
Hughes 2009 * [142] FOS | 250 | 4 years Echocardiography |
|
Hughes 2011 [48] FOS | 250 | ≥4 years Echocardiography |
|
Kampmann, 2009 [143] | 45 | 30–42 months (defined as 36 months) Echocardiography |
|
Kampmann 2015 [47] | 45 | Median [range]: 10.8 [9.6, 12.5] years Echocardiography |
|
Mehta 2009 [65] FOS | 181 | Mean (SD): 3.1 (2.1) years Echocardiography |
|
Pintos-Morell 2023 [41] FOS | 285 | Mean (SD): Early initiators group: 11.2 (5.7); Late initiators group: 11.8 (5.8) NR |
|
Ramaswami 2011 [50] FOS | 8 | Mean (SD): 4.2 (1.9) years Echocardiography |
|
Ramaswami 2012 [66] FOS | 98 | ≥6 months Echocardiography |
|
Ramaswami 2019 [42] FOS | 69 | Median [range] time from start of ERT to FOS data extraction (years): Evaluable treated cardiac cohort (n = 69): 13.6 [10.1–17.1]; Females (n = 34): 12.8 [10.1–16.5]; Males (n = 35): 14.3 [10.2–17.1] Echocardiography |
|
Ries 2006 [51] | 24 | 26 weeks Echocardiography |
|
Sasa 2019 [52] | 493 | Mean [range]: 3.5 [0.0, 7.9] years Echocardiography |
|
Schiffmann 2014 [55] | 17 | Mean (SD): 6.5 (0.6) years Echocardiography |
|
Tsuboi 2017 [61] Japan Fabry Research—002 | 36 | Median [range]: 62.5 [8, 84] months Echocardiography |
|
Whybra 2009 [63] | 36 | 4 years Echocardiography |
|
Agalsidase beta single-arm studies | |||
Cabrera 2017 [30] | 39 | Mean (SD): 68.2 (36.9) months Echocardiography |
|
Elliot 2006 [144] | 5 | Mean (SD): 10.1 (2.3) months Echocardiography |
|
Hwang 2022 [73] | 10 | 22-week follow-up Mean (SD) [range]: 4.6 (3.2) [1, 9] years Echocardiography |
|
Kalliokoski 2006 [145] | 10 | 12 months Echocardiography |
|
Messalli 2012 [146] | 16 | 48 months MRI |
|
Motwani, 2012 [147] | 66 | Median [range]: 3 [2, 5] years Echocardiography |
|
Pisani 2005 [148] | 9 | 24-months Echocardiography |
|
Ramaswami 2019 [76] | 31 | 5 years Echocardiography |
|
Veloso 2023 * [69] | 9 | Mean (SD): 70.2 (12.9) months MRI and Echocardiography |
|
Weidemann 2013 [80] | 40 | ≥5 years Median [IQR]: 6.0 [5.1, 7.2] MRI and Echocardiography |
|
Wuest 2011 [149] | 14 | 13 ± 1 months Echocardiography |
|
(B) | |||
Author Year | Comparator Arms, n/N | Treatment Duration Assessment Method | Key Results |
Comparator studies | |||
Arends 2018 [29] | Agalsidase alfa: 248 Agalsidase beta: 139 | Median [range]: All patients: 4.9 [0.8, 14.4] years; Agalsidase alfa: 5.2 [0.8, 14.4] years; Agalsidase beta: 3.8 [0.8, 12.1] years Echocardiography |
|
Beck 2015 [112] | Agalsidase alfa: 164 Previously published untreated cohort: 78 | Median [range]: 5.4 [1.5, 13.7] years Echocardiography |
|
Figliozzi 2024 [164] | 445 | Median [IQR]: 45 [24–58] months MRI |
|
Germain 2013 [166] | Untreated group: 48 Agalsidase beta: 115 (11 included in both panels, because they had at least 2 years of LVM data during each observation period) | Mean [range]: Untreated group, 4.1 [2.1, 12.7] years; Agalsidase beta, 4.8 [1.8, 9.5] years Echocardiography |
|
Golan 2015 [118] | Agalsidase alfa 0.2 mg/kg EOW: 20 Agalsidase alfa 0.2 mg/kg weekly: 19 Agalsidase alfa 0.4 mg/kg weekly: 5 | 1 year Echocardiography |
|
Guerard 2018 [119] | Lucerastat + ERT: 10 ERT only: 4 | Lucerastat 1000 mg b.i.d. for 12 weeks Echocardiography |
|
Hughes 2008 [121] | Agalsidase alfa: 7 Placebo: 8 | Up to 4 years MRI and Echocardiography |
|
Jovanovic 2017 * [160] FACETS ATTRACT | FACETS Migalastat or placebo: 67 ATTRACT Migalastat or ERT: 60 | FACETS: up to 24 months (plus OLE) ATTRACT: up to 30 months (including OLE) Echocardiography |
|
Kramer 2014 [161] | ERT: 57 No ERT: 16 | Mean (SD): 4.8 (2.4) years MRI |
|
Lee 2022 [162] | ERT: 267 No ERT: 285 | 4.1 years NR |
|
Madsen 2017 [37] | ERT: 47 No ERT: 19 | Median [range]: Patients in ERT 8 [0, 12] years; Patients without ERT 6 [0, 13] years Echocardiography |
|
Mignani 2008 [163] | Dialysis: 17 Transplant: 17 | Mean (SD): Dialysis patients: 45.1 (19.8) months; Transplant patients: 48.4 (13.2) months Echocardiography |
|
Nordin 2019 [156] | Pre-ERT group, 20 Established ERT, 18 No ERT, 18 | Mean (SD): 1.1 (0.2) years Median [range]: Pre-ERT group: 1 year; Established ERT: 4.2 [1.4, 12.2] years; No ERT: 1 year MRI |
|
Pogoda 2023 [165] | Untreated controls: 30 Migalastat-treated: 20 ERT-treated: 48 | Up to 81 months Echocardiography |
|
Van der Veen 2022 [33] | 0.5 mg/kg agalsidase beta: 3 1.0 mg/kg agalsidase beta: 4 Untreated: 23 | Median [range]: 10.4 [9.5, 10.7] years MRI and Echocardiography |
|
Vedder 2007 [28] | Agalsidase alfa: 18 Agalsidase beta: 16 | 24 months Echocardiography |
|
3.3. Cerebrovascular Outcomes
(A) | |||
---|---|---|---|
Author, Year | N | Treatment Duration | Key Results |
Agalsidase alfa single-arm studies | |||
Beck 2018 [21] FOS | Total: 677 Female: 317 (47%) Male: 360 (53%) | Median [IQR]: Overall: 3.0 (1.1, 6.7) years; Female: 2.9 (1.2, 6.3) years Male: 3.2 (1.0, 7.0) years |
|
Hughes 2011 [48] FOS | Total: 250 Female: 78 (31.2%) Male: 172 (68.8%) | 4 years |
|
Jardim 2006 [171] | 8 | 24 months |
|
Lee 2017 [172] FOS | Total: 37 IVS4: 25 Classic FD: 12 | NR |
|
Ries 2006 [51] | 24 pediatric patients | 24 weeks |
|
Thofehrn 2009 [60] | 9 | 36 months |
|
Agalsidase beta single-arm studies | |||
Cabrera 2017 [30] | 39 (switching owing to treatment shortage was allowed) | ≥12 months |
|
Dutra-Clarke 2021 [71] | Total: 26 Adults Female: 13 (50%) Male: 11 (42%) Children Male: 2 (8%) | 2–20 years |
|
Pisani 2005 [148] | 9 | 24 months |
|
Weidemann 2013 [80] | 40 | Median [IQR]: 6 (5.1, 7.2) years |
|
(B) | |||
Author, Year | N | Treatment Duration | Key Results |
Comparator studies | |||
Banikazemi 2007 [177] | Agalsidase beta: 51 Placebo: 31 | Mean (SD): 18.4 (8.8) months |
|
Fellgiebel 2014 [178] | Agalsidase beta: 25 Placebo: 16 | Mean [range]: 27 [12, 33] months |
|
Lenders 2015 [179] | ERT: 187 No ERT: 117 | Mean [range]: 6.1 [1, 12] |
|
Madsen 2017 [37] | Agalsidase alfa or beta (switching allowed): 47 No ERT: 19 | Median [range]: ERT: 8 [0, 12] years; No ERT: 6 [0, 13] years |
|
Mignani 2008 [163] | Dialysis: 17 Kidney transplant: 17 | Mean (SD): Dialysis: 45.1 (19.8) months; Transplant: 48.4 (13.2) months |
|
Skuban 2017 * [108] FACETS ATTRACT | FACETS Migalastat or placebo: 67 OLE, migalastat: 60 | FACETS: 6-month double-blind followed by open-label migalastat from 6 to 12 months (stage 2) plus an additional year ATTRACT: Migalastat or ERT: 53 18 months |
|
Van der Veen 2022 [33] | Treated Agalsidase beta: 3 Agalsidase alfa: 4 Untreated: 23 | Median [range]: 10.4 [9.5, 10.7] years |
|
Wilcox 2004 [126] | Agalsidase beta: 29 Placebo: 29 | 30–36 months |
|
3.4. Disease Severity
(A) | |||
---|---|---|---|
Author, Year Study Identifier | N | Treatment Duration | Key Results |
Agalsidase alfa single-arm studies | |||
Concolino 2017 [182] | 85 | Mean [range]: 1.9 years [3 months, 4.5 years] |
|
Parini 2008 [181] | 30 | Median [range]: 2.9 [1.0, 6.2] years |
|
Whybra 2004 [180] | 39 | 1 year |
|
Whybra 2009 [63] | 40 | 4 years |
|
Mixed ERT single-arm studies | |||
Vedder 2007 [28] | 34 | 2 years |
|
Migalastat single-arm studies | |||
Camporeale 2023 [159] MAIORA | 16 | 18 months |
|
Pegunigalsidase alfa single-arm studies | |||
Schiffmann 2019 [107] NCT01678898, NCT01769001 | 19 | 12 months |
|
(B) | |||
Author, year Study Identifier | Treatment Groups, n | Key Results | |
Comparator studies | |||
Biegstraaten 2010 [183] | ERT: 30 No ERT: 18 |
| |
Chen 2016 [184], Chen 2017 [186] | ERT: 25 | MSSI CV score from baseline to 12 months, mean (SD) ERT baseline: 13.8 (2.8) ERT follow-up: 12.4 (2.3); p < 0.05 vs. baseline | |
Cybulla 2008 [113] FOS | Kidney transplant + ERT: 20 Kidney transplant + no ERT: 7 |
| |
Rosa 2021 [185] | ERT: 22 No ERT: NR |
| |
Switch studies | |||
Kramer 2018 [131] | Regular dose agalsidase beta: 37 Switch group to agalsidase alfa: 38 Re-switch group to agalsidase beta after 12 months agalsidase alfa: 37 |
| |
Lenders 2021 [133] | Agalsidase beta regular dose: 17 Switch: 22 (patients treated with agalsidase beta for ≥12 months, then dose-reduced and subsequently switched to agalsidase alfa) Re-switch: 39 (patients treated with agalsidase beta for ≥12 months, then dose-reduced or switched to agalsidase alfa for ≥24 months and then re-switched to agalsidase beta) |
| |
Ripeau 2017 [187] | Agalsidase beta switch to agalsidase alfa: 33 |
| |
Tsuboi 2012 [136], Tsuboi 2014 [137] | Agalsidase beta switch to agalsidase alfa: 11 |
|
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Germain, D.P. Fabry disease. Orphanet J. Rare Dis. 2010, 5, 30–79. [Google Scholar] [CrossRef] [PubMed]
- Biegstraaten, M.; Arngrímsson, R.; Barbey, F.; Boks, L.; Cecchi, F.; Deegan, P.B.; Feldt-Rasmussen, U.; Geberhiwot, T.; Germain, D.P.; Hendriksz, C.; et al. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: The European Fabry Working Group consensus document. Orphanet J. Rare Dis. 2015, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- MacDermot, K.D.; Holmes, A.; Miners, A.H. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J. Med. Genet. 2001, 38, 750–760. [Google Scholar] [CrossRef] [PubMed]
- MacDermot, K.D.; Holmes, A.; Miners, A.H. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J. Med. Genet. 2001, 38, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Altarescu, G.; Barriales-Villa, R.; Mignani, R.; Pawlaczyk, K.; Pieruzzi, F.; Terryn, W.; Vujkovac, B.; Ortiz, A. An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Mol. Genet. Metab. 2022, 137, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Hughes, D.A. Fabry disease. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; Updated 11 April 2024; University of Washington: Seattle, WA, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1292/pdf/Bookshelf_NBK1292.pdf (accessed on 14 October 2024).
- Arends, M.; Wanner, C.; Hughes, D.; Mehta, A.; Oder, D.; Watkinson, O.T.; Elliott, P.M.; Linthorst, G.E.; Wijburg, F.A.; Biegstraaten, M.; et al. Characterization of classical and nonclassical Fabry disease: A multicenter study. J. Am. Soc. Nephrol. 2017, 28, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Replagal. Summary of Product Characteristics 2022. Available online: https://www.ema.europa.eu/en/documents/product-information/replagal-epar-product-information_en.pdf (accessed on 14 October 2024).
- European Medicines Agency. Fabrazyme. Summary of Product Characteristics 2024. Available online: https://www.ema.europa.eu/en/documents/product-information/fabrazyme-epar-product-information_en.pdf (accessed on 14 October 2024).
- Food and Drug Administration. Fabrazyme. Prescribing Information 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/103979s5313lbl.pdf (accessed on 14 October 2024).
- European Medicines Agency. Elfabrio. Summary of Product Characteristics 2023. Available online: https://www.ema.europa.eu/en/documents/product-information/elfabrio-epar-product-information_en.pdf (accessed on 14 October 2024).
- Food and Drug Administration. Elfabrio. Prescribing Information 2023. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761161s000lbl.pdf (accessed on 14 October 2024).
- European Medicines Agency. Galafold. Summary of Product Characteristics 2023. Available online: https://www.ema.europa.eu/en/documents/product-information/galafold-epar-product-information_en.pdf (accessed on 14 October 2024).
- Food and Drug Administration. Galafold. Prescribing Information 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208623s008lbl.pdf (accessed on 14 October 2024).
- Lenders, M.; Brand, E. Fabry disease: The current treatment landscape. Drugs 2021, 81, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Van der Veen, S.J.; Hollak, C.E.M.; van Kuilenburg, A.B.P.; Langeveld, M. Developments in the treatment of Fabry disease. J. Inherit. Metab. Dis. 2020, 43, 908–921. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Bierer, G.; Balfe, D.; Wilcox, W.R.; Mosenifar, Z. Improvement in serial cardiopulmonary exercise testing following enzyme replacement therapy in Fabry disease. J. Inherit. Metab. Dis. 2006, 29, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Bodensteiner, D.; Scott, C.R.; Sims, K.B.; Shepherd, G.M.; Cintron, R.D.; Germain, D.P. Successful reinstitution of agalsidase beta therapy in Fabry disease patients with previous IgE-antibody or skin-test reactivity to the recombinant enzyme. Genet. Med. 2008, 10, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.; Linhart, A.; Gurevich, A.; Kalampoki, V.; Jazukeviciene, D.; Feriozzi, S. Prompt initiation of agalsidase alfa therapy is associated with improved cardiovascular and renal outcomes in the Fabry Outcome Survey (FOS). Mol. Genet. Metab. 2020, 129 (Suppl. S2), S77. [Google Scholar] [CrossRef]
- Beck, M.; Hughes, D.; Kampmann, C.; Pintos-Morell, G.; Ramaswami, U.; West, M.L.; Giugliani, R. Long-term outcomes with agalsidase alfa enzyme replacement therapy: Analysis using deconstructed composite events. Mol. Genet. Metab. Rep. 2018, 14, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Feriozzi, S.; Linhart, A.; Ramaswami, U.; Kalampoki, V.; Gurevich, A.; Hughes, D. Effects of baseline left ventricular hypertrophy and decreased renal function on cardiovascular and renal outcomes in patients with Fabry disease treated with agalsidase alfa: A Fabry Outcome Survey study. Clin. Ther. 2020, 42, 2321–2330.e0. [Google Scholar] [CrossRef] [PubMed]
- Hopkin, R.J.; Cabrera, G.H.; Jefferies, J.L.; Yang, M.; Ponce, E.; Brand, E.; Feldt-Rasmussen, U.; Germain, D.P.; Guffon, N.; Jovanovic, A.; et al. Clinical outcomes among young patients with Fabry disease who initiated agalsidase beta treatment before 30 years of age: An analysis from the Fabry Registry. Mol. Genet. Metab. 2023, 138, 106967. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.; Linhart, A.; Gurevich, A.; Kalampoki, V.; Jazukeviciene, D.; Feriozzi, S. Prompt agalsidase alfa therapy initiation is associated with improved renal and cardiovascular outcomes in a Fabry Outcome Survey analysis. Drug Des. Dev. Ther. 2021, 15, 3561–3572. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Abiose, A.; Bichet, D.G.; Cabrera, G.; Charrow, J.; Germain, D.P.; Hopkin, R.J.; Jovanovic, A.; Linhart, A.; Maruti, S.S.; et al. Time to treatment benefit for adult patients with Fabry disease receiving agalsidase beta: Data from the Fabry Registry. J. Med. Genet. 2016, 53, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Parini, R.; Pintos-Morell, G.; Hennermann, J.B.; Hsu, T.-R.; Karabul, N.; Kalampoki, V.; Gurevich, A.; Ramaswami, U. Analysis of renal and cardiac outcomes in male participants in the Fabry Outcome Survey starting agalsidase alfa enzyme replacement therapy before and after 18 years of age. Drug Des. Dev. Ther. 2020, 14, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Sirrs, S.M.; Bichet, D.G.; Iwanochko, R.M.; Khan, A.; Doucette, S.; Lemoine, K. Differential effects of agalsidase alfa and agalsidase beta in Fabry out-comes: 10 year outcomes from the Canadian Fabry Disease Initiative. J. Inherit. Metab. Dis. 2018, 41 (Suppl. S1), S188. [Google Scholar]
- Vedder, A.C.; Linthorst, G.E.; Houge, G.; Groener, J.E.; Ormel, E.E.; Bouma, B.J.; Aerts, J.M.; Hirth, A.; Hollak, C.E.; Schiffmann, R. Treatment of Fabry disease: Outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS ONE 2007, 2, e598. [Google Scholar] [CrossRef] [PubMed]
- Arends, M.; Biegstraaten, M.; Wanner, C.; Sirrs, S.; Mehta, A.; Elliott, P.M.; Oder, D.; Watkinson, O.T.; Bichet, D.G.; Khan, A.; et al. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: An international cohort study. J. Med. Genet. 2018, 55, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, G.; Politei, J.; Antongiovani, N.; Amartino, H. Effectiveness of enzyme replacement therapy in Fabry disease: Long term experience in Argentina. Mol. Genet. Metab. Rep. 2017, 11, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Arends, M.; Biegstraaten, M.; Hughes, D.A.; Mehta, A.; Elliott, P.M.; Oder, D.; Watkinson, O.T.; Vaz, F.M.; van Kuilenburg, A.B.P.; Wanner, C.; et al. Retrospective study of long-term outcomes of enzyme replacement therapy in Fabry disease: Analysis of prognostic factors. PLoS ONE 2017, 12, e0182379. [Google Scholar] [CrossRef] [PubMed]
- Arends, M.; Wijburg, F.A.; Wanner, C.; Vaz, F.M.; van Kuilenburg, A.B.; Hughes, D.A.; Biegstraaten, M.; Mehta, A.; Hollak, C.E.; Langeveld, M. Favourable effect of early versus late start of enzyme replacement therapy on plasma globotriaosylsphingosine levels in men with classical Fabry disease. Mol. Genet. Metab. 2017, 121, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Van der Veen, S.; Körver, S.; Hirsch, A.; Hollak, C.; Wijburg, F.; Brands, M.; Tøndel, C.; van Kuilenburg, A.; Langeveld, M. Early start of enzyme replacement therapy in pediatric male patients with classical Fabry disease is associated with attenuated disease progression. Mol. Genet. Metab. 2022, 135, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Koch, G.; Huynh-Do, U.; Siegenthaler, M.; Marti, H.P.; Pfister, M. Disease progression modeling to evaluate the effects of enzyme replacement therapy on kidney function in adult patients with the classic phenotype of Fabry disease. Kidney Blood Press. Res. 2017, 42, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, K.; Henley, W.; Anderson, L.; Anderson, R.; Nikolaou, V.; Stein, K.; Klinger, L.; Hughes, D.; Waldek, S.; Lachmann, R.; et al. The effectiveness and cost-effectiveness of enzyme and substrate replacement therapies: A longitudinal cohort study of people with lysosomal storage disorders. Health Technol. Assess. 2012, 16, 1–543. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.J.; Wyatt, K.M.; Henley, W.; Nikolaou, V.; Waldek, S.; Hughes, D.A.; Pastores, G.M.; Logan, S. Long-term effectiveness of enzyme replacement therapy in Fabry disease: Results from the NCS-LSD cohort study. J. Inherit. Metab. Dis. 2014, 37, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.V.; Bundgaard, H.; Rasmussen, Å.K.; Sørensen, S.S.; Petersen, J.H.; Køber, L.; Feldt-Rasmussen, U.; Petri, H. Echocardiographic and clinical findings in patients with Fabry disease during long-term enzyme replacement therapy: A nationwide Danish cohort study. Scand. Cardiovasc. J. 2017, 51, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.A.B.; Moura-Neto, J.A.; Reis, M.A.D.; Neto, O.M.V.; Barreto, F.C. Renal manifestations of Fabry disease: A narrative review. Can. J. Kidney Health Dis. 2021, 8, 2054358120985627. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.; Ricci, R.; Widmer, U.; Dehout, F.; De Lorenzo, A.G.; Kampmann, C.; Linhart, A.; Sunder-Plassmann, G.; Houge, G.; Ramaswami, U.; et al. Fabry disease: Overall effects of agalsidase alfa treatment. Eur. J. Clin. Investig. 2004, 34, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Giugliani, R.; Hughes, D.; Nicholls, K.; Niu, D.-M.; Reisin, R.C.; Botha, J.; Anagnostopoulou, C.; West, M.L. Long-term outcomes in patients with Fabry disease who were treated with agalsidase alfa for more than nineteen years: The Fabry Outcome Survey. Mol. Genet. Metab. 2023, 138, 107118. [Google Scholar] [CrossRef]
- Pintos-Morell, G.; Kampmann, C.; Botha, J.; Anagnostopoulou, C.; West, M.L.; Ramaswami, U. Early initiation of agalsidase alfa treatment improves clinical outcomes in male patients with classical Fabry disease: A Fabry Outcome Survey (FOS) analysis. Mol. Genet. Metab. 2023, 138, 107273. [Google Scholar] [CrossRef]
- Ramaswami, U.; Beck, M.; Hughes, D.; Kampmann, C.; Botha, J.; Pintos-Morell, G.; West, M.L.; Niu, D.M.; Nicholls, K.; Giugliani, R.; et al. Cardio-renal outcomes with long-term agalsidase alfa enzyme replacement therapy: A 10-year Fabry Outcome Survey (FOS) analysis. Drug Des. Dev. Ther. 2019, 13, 3705–3715. [Google Scholar] [CrossRef] [PubMed]
- Cybulla, M.; Nicholls, K.; Feriozzi, S.; Linhart, A.; Torras, J.; Vujkovac, B.; Botha, J.; Anagnostopoulou, C.; West, M.L. Renoprotective effect of agalsidase alfa: A long-term follow-up of patients with Fabry disease. J. Clin. Med. 2022, 11, 4810. [Google Scholar] [CrossRef] [PubMed]
- Feriozzi, S.; Schwarting, A.; Sunder-Plassmann, G.; West, M.; Cybulla, M.I.; International Fabry Outcome Survey Investigators. Agalsidase alfa slows the decline in renal function in patients with Fabry disease. Am. J. Nephrol. 2008, 29, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Feriozzi, S.; Torras, J.; Cybulla, M.; Nicholls, K.; Sunder-Plassmann, G.; West, M.; FOS Investigators. The effectiveness of long-term agalsidase alfa therapy in the treatment of Fabry nephropathy. Clin. J. Am. Soc. Nephrol. 2012, 7, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Goker-Alpan, O.; Longo, N.; McDonald, M.; Shankar, S.P.; Schiffmann, R.; Chang, P.; Shen, Y.; Pano, A. An open-label clinical trial of agalsidase alfa enzyme replacement therapy in children with Fabry disease who are naive to enzyme replacement therapy. Drug Des. Dev. Ther. 2016, 10, 1771–1781. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, C.; Perrin, A.; Beck, M. Effectiveness of agalsidase alfa enzyme replacement in Fabry disease: Cardiac outcomes after 10 years’ treatment. Orphanet J. Rare Dis. 2015, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.A.; Romero, M.A.B.; Hollak, C.E.M.; Giugliani, R.; Deegan, P.B. Response of women with Fabry disease to enzyme replacement therapy: Comparison with men, using data from FOS—the Fabry Outcome Survey. Mol. Genet. Metab. 2011, 103, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Pastores, G.M.; Boyd, E.; Crandall, K.; Whelan, A.; Piersall, L.; Barnett, N. Safety and pharmacokinetics of agalsidase alfa in patients with Fabry disease and end-stage renal disease. Nephrol. Dial. Transplant. 2007, 22, 1920–1925. [Google Scholar] [CrossRef] [PubMed]
- Ramaswami, U.; Parini, R.; Kampmann, C.; Beck, M. Safety of agalsidase alfa in patients with Fabry disease under 7 years. Acta Paediatr. 2010, 100, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Ries, M.; Clarke, J.T.; Whybra, C.; Timmons, M.; Robinson, C.; Schlaggar, B.L.; Pastores, G.; Lien, Y.H.; Kampmann, C.; Brady, R.O.; et al. Enzyme-replacement therapy with agalsidase alfa in children with Fabry disease. Pediatrics 2006, 118, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Sasa, H.; Nagao, M.; Kino, K. Safety and effectiveness of enzyme replacement therapy with agalsidase alfa in patients with Fabry disease: Post-marketing surveillance in Japan. Mol. Genet. Metab. 2019, 126, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Askari, H.; Timmons, M.; Robinson, C.; Benko, W.; Brady, R.O.; Ries, M. Weekly enzyme replacement therapy may slow decline of renal function in patients with Fabry disease who are on long-term biweekly dosing. J. Am. Soc. Nephrol. 2007, 18, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Ries, M.; Timmons, M.; Flaherty, J.T.; Brady, R.O. Long-term therapy with agalsidase alfa for Fabry disease: Safety and effects on renal function in a home infusion setting. Nephrol. Dial. Transplant. 2006, 21, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Pastores, G.M.; Lien, Y.-H.H.; Castaneda, V.; Chang, P.; Martin, R.; Wijatyk, A. Agalsidase alfa in pediatric patients with Fabry disease: A 6.5-year open-label follow-up study. Orphanet J. Rare Dis. 2014, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Ries, M.; Blankenship, D.; Nicholls, K.; Mehta, A.; Clarke, J.T.R.; Steiner, R.D.; Beck, M.; Barshop, B.A.; Rhead, W.; et al. Changes in plasma and urine globotriaosylceramide levels do not predict Fabry disease progression over 1 year of agalsidase alfa. Genet. Med. 2013, 15, 983–989. [Google Scholar]
- Schiffmann, R.; Swift, C.; Wang, X.; Blankenship, D.; Ries, M. A prospective 10-year study of individualized, intensified enzyme replacement therapy in advanced Fabry disease. J. Inherit. Metab. Dis. 2015, 38, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Schwarting, A.; Dehout, F.; Beck, M.; Mehta, A.; Sunder-Plassmann, G.; Bodamer, O.; European FOS Investigators. Enzyme replacement therapy and renal function in 201 patients with Fabry disease. Clin. Nephrol. 2006, 66, 77–84. [Google Scholar] [PubMed]
- Schwarting, A.; Sunder-Plassmann, G.; Mehta, A.; Beck, M. Effect of enzyme replacement therapy with agalsidase alfa on renal function in patients with Fabry disease: Data from FOS—The Fabry Outcome Survey. In Fabry Disease: Perspectives from 5 Years of FOS; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; Oxford PharmaGenesis: Oxford, UK, 2006; p. 38. [Google Scholar]
- Thofehrn, S.; Netto, C.; Cecchin, C.; Burin, M.; Matte, U.; Brustolin, S.; Nunes, A.C.F.; Coelho, J.; Tsao, M.; Jardim, L.; et al. Kidney function and 24-hour proteinuria in patients with Fabry disease during 36 months of agalsidase alfa enzyme replacement therapy: A Brazilian experience. Ren. Fail. 2009, 31, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, K.; Yamamoto, H. Efficacy and safety of enzyme-replacement-therapy with agalsidase alfa in 36 treatment-naive Fabry disease patients. BMC Pharmacol. Toxicol. 2017, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- West, M.; Nicholls, K.; Mehta, A.; Clarke, J.T.; Steiner, R.; Beck, M.; Barshop, B.A.; Rhead, W.; Mensah, R.; Ries, M.; et al. Agalsidase alfa and kidney dysfunction in Fabry disease. J. Am. Soc. Nephrol. 2009, 20, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Whybra, C.; Miebach, E.; Mengel, E.; Gal, A.; Baron, K.; Beck, M.; Kampmann, C. A 4-year study of the efficacy and tolerability of enzyme replacement therapy with agalsidase alfa in 36 women with Fabry disease. Genet. Med. 2009, 11, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Kleinert, J.; Dehout, F.; Schwarting, A.; de Lorenzo, A.; Ricci, R.; Kampmann, C.; Beck, M.; Ramaswami, U.; Linhart, A.; Gal, A.; et al. Prevalence of uncontrolled hypertension in patients with Fabry disease. Am. J. Hypertens. 2006, 19, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Beck, M.; Elliott, P.; Giugliani, R.; Linhart, A.; Sunder-Plassmann, G.; Schiffmann, R.; Barbey, F.; Ries, M.; Clarke, J. Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: An analysis of registry data. Lancet 2009, 374, 1986–1996. [Google Scholar] [CrossRef] [PubMed]
- Ramaswami, U.; Parini, R.; Pintos-Morell, G.; Kalkum, G.; Kampmann, C.; Beck, M. Fabry disease in children and response to enzyme replacement therapy: Results from the Fabry Outcome Survey. Clin. Genet. 2011, 81, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Benichou, B.; Goyal, S.; Sung, C.; Norfleet, A.M.; O’Brien, F. A retrospective analysis of the potential impact of IgG antibodies to agalsidase beta on efficacy during enzyme replacement therapy for Fabry disease. Mol. Genet. Metab. 2009, 96, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Breunig, F.; Weidemann, F.; Strotmann, J.; Knoll, A.; Wanner, C. Clinical benefit of enzyme replacement therapy in Fabry disease. Kidney Int. 2006, 69, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Veloso, V.S.P.; Veloso, M.; Pereira, E.; Barreto, F.; Hagemann, R. Algalsidase-beta stabilizes renal and cardiac involvement: A follow-up study of a Brazilian Fabry disease family. Nephrol. Dial. Transplant. 2023, 38 (Suppl. S1), 5209. [Google Scholar] [CrossRef]
- Burlina, A.P.; Mauer, M.; Cabrera, G.H.; Jefferies, J.L.; Yang, M.; Ponce, E.; Brand, E.; Feldt-Rasmussen, U.; Germain, P. Clinical outcomes in young patients with Fabry disease who initiated agalsidase beta treatment before 30 years of age. J. Inherit. Metab. Dis. 2019, 42 (Suppl. S1), 233–234. [Google Scholar]
- Dutra-Clarke, M.; Tapia, D.; Curtin, E.; Ruenger, D.; Lakatos, A.; Alandy-Dy, Z.; Freedkin, L.; Hall, K.; Ercelen, N.; Alandy-Dy, J.; et al. Variable clinical features of patients with Fabry disease and outcome of enzyme replacement therapy. Mol. Genet. Metab. 2021, 132 (Suppl. S2), S36. [Google Scholar] [CrossRef]
- Goicoechea, M.; Gomez-Preciado, F.; Benito, S.; Torras, J.; Torra, R.; Huerta, A.; Restrepo, A.; Ugalde, J.; Astudillo, D.; Agraz, I.; et al. Predictors of long-term outcome in a Spanish cohort of patients with Fabry disease on enzyme replacement therapy. Nephrol. Dial. Transplant. 2020, 35 (Suppl. S3), iii363. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, B.H.; Kim, W.-S.; Kim, D.-S.; Cheon, C.K.; Lee, C.H.; Choi, Y.; Choi, J.-H.; Kim, J.H.; Yoo, H.-W. A phase II, multicenter, open-label trial to evaluate the safety and efficacy of ISU303 (Agalsidase beta) in patients with Fabry disease. Medicine 2022, 101, e30345. [Google Scholar] [CrossRef] [PubMed]
- Lubanda, J.C.; Anijalg, E.; Bzduch, V.; Thurberg, B.L.; Benichou, B.; Tylki-Szymanska, A. Evaluation of a low dose, after a standard therapeutic dose, of agalsidase beta during enzyme replacement therapy in patients with Fabry disease. Genet. Med. 2009, 11, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Mauer, M.; Ponce, E.; Yang, M.; Gudigava, B.; Hong, G.R. Stabilization of kidney function decline and cardiomyopathy in male patients with classic Fabry disease: A pre-vs. post-agalsidase beta treatment Fabry Registry analysis. Nephrol. Dial. Transplant. 2021, 36 (Suppl. S1), i110–i111. [Google Scholar] [CrossRef]
- Ramaswami, U.; Bichet, D.G.; Clarke, L.A.; Dostalova, G.; Fainboim, A.; Fellgiebel, A.; Forcelini, C.M.; Haack, K.A.; Hopkin, R.J.; Mauer, M.; et al. Low-dose agalsidase beta treatment in male pediatric patients with Fabry disease: A 5-year randomized controlled trial. Mol. Genet. Metab. 2019, 127, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Feldt-Rasmussen, U.; Jovanovic, A.; Linhart, A.; Yang, M.; Ponce, E.; Brand, E.; Germain, D.P.; Hughes, D.A.; Jefferies, J.L.; et al. Cardiomyopathy and kidney function in agalsidase beta-treated female Fabry patients: A pre-treatment vs. post-treatment analysis. ESC Heart Fail. 2020, 7, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Warnock, D.G.; Ortiz, A.; Mauer, M.; Linthorst, G.E.; Oliveira, J.P.; Serra, A.L.; Maródi, L.; Mignani, R.; Vujkovac, B.; Beitner-Johnson, D.; et al. Renal outcomes of agalsidase beta treatment for Fabry disease: Role of proteinuria and timing of treatment initiation. Nephrol. Dial. Transplant. 2012, 27, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Warnock, D.G.; Thomas, C.P.; Vujkovac, B.; Campbell, R.C.; Charrow, J.; A Laney, D.; Jackson, L.L.; Wilcox, W.R.; Wanner, C. Antiproteinuric therapy and Fabry nephropathy: Factors associated with preserved kidney function during agalsidase-beta therapy. J. Med. Genet. 2015, 52, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Niemann, M.; Störk, S.; Breunig, F.; Beer, M.; Sommer, C.; Herrmann, S.; Ertl, G.; Wanner, C. Long-term outcome of enzyme-replacement therapy in advanced Fabry disease: Evidence for disease progression towards serious complications. J. Intern. Med. 2013, 274, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Wraith, J.E.; Tylki-Szymanska, A.; Guffon, N.; Lien, Y.H.; Tsimaratos, M.; Vellodi, A.; Germain, D.P. Safety and efficacy of enzyme replacement therapy with agalsidase beta: An international, open-label study in pediatric patients with Fabry disease. J. Pediatr. 2008, 152, 563–570.e1. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Charrow, J.; Desnick, R.J.; Guffon, N.; Kempf, J.; Lachmann, R.H.; Lemay, R.; E Linthorst, G.; Packman, S.; Scott, C.R.; et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J. Med. Genet. 2015, 52, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Ren, H.; Zhang, W.; Ouyang, Y.; Xu, H.; Li, B.; Feng, Q. A phase 4, open-label, multicenter prospective study of the safety and efficacy of agalsidase beta in Chinese patients with Fabry disease. Nephrol. Dial. Transplant. 2024, 39 (Suppl. S1), 636. [Google Scholar] [CrossRef]
- Goicoechea, M.; Gomez-Preciado, F.; Benito, S.; Torras, J.; Torra, R.; Huerta, A.; Restrepo, A.; Ugalde, J.; Astudillo, D.E.; Agraz, I.; et al. Predictors of outcome in a Spanish cohort of patients with Fabry disease on enzyme replacement therapy. Nefrologia 2021, 41, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Huang, Y.-H.; Liao, H.-C.; Liu, H.-C.; Hsu, T.-R.; Shen, C.-I.; Li, S.-T.; Li, C.-F.; Lee, L.-H.; Lee, P.-C.; et al. Clinical observations on enzyme replacement therapy in patients with Fabry disease and the switch from agalsidase beta to agalsidase alfa. J. Chin. Med Assoc. 2014, 77, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Liu, H.-C.; Huang, Y.-H.; Liao, H.-C.; Hsu, T.-R.; Shen, C.-I.; Li, S.-T.; Li, C.-F.; Lee, L.-H.; Lee, P.-C.; et al. Effects of enzyme replacement therapy i for cardiac-type Fabry patients with a Chinese hotspot late-onset Fabry mutation (IVS4+919G>A). BMJ Open 2013, 3, e003146. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.V.; Granqvist, H.; Petersen, J.H.; Rasmussen, Å.K.; Lund, A.M.; Oturai, P.; Sørensen, S.S.; Feldt-Rasmussen, U. Age-related renal function decline in Fabry disease patients on enzyme replacement therapy: A longitudinal cohort study. Nephrol. Dial. Transplant. 2019, 34, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Miwa, K.; Sakai, N.; Yagita, Y.; Takeuchi, M.; Todo, K.; Sakaguchi, M.; Mochizuki, H. Basilar artery diameter is associated with cerebral small vessel disease and the duration of enzyme-replacement therapy in Fabry disease. Stroke. 2018, 49 (Suppl. 1), WP388. [Google Scholar] [CrossRef]
- Miwa, K.; Yagita, Y.; Sakaguchi, M.; Kitagawa, K.; Sakai, N.; Mochizuki, H. Effect of enzyme replacement therapy on basilar artery diameter in male patients with Fabry disease. Stroke 2019, 50, 1010–1012. [Google Scholar] [CrossRef] [PubMed]
- Rombach, S.M.; Smid, B.E.; Bouwman, M.G.; Linthorst, G.E.; Dijkgraaf, M.G.; Hollak, C.E. Long term enzyme replacement therapy for Fabry disease: Effectiveness on kidney, heart and brain. Orphanet J. Rare Dis. 2013, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Sirrs, S.; Bichet, D.; Casey, R.; Clarke, J.; Lemoine, K.; Doucette, S.; West, M. Outcomes of patients treated through the Canadian Fabry disease initiative. Mol. Genet. Metab. 2014, 111, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Skrunes, R.; Tøndel, C.; Leh, S.; Larsen, K.K.; Houge, G.; Davidsen, E.S.; Hollak, C.; van Kuilenburg, A.B.; Vaz, F.M.; Svarstad, E. Long-term dose-dependent agalsidase effects on kidney histology in Fabry disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Talbot, A.S.; Lewis, N.T.; Nicholls, K.M. Cardiovascular outcomes in Fabry disease are linked to severity of chronic kidney disease. Heart 2015, 101, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Bernat, J.; Holida, M.D.; Longo, N.; Goker-Alpan, O.; Wallace, E.; Deegan, P.B.; Tøndel, C.; Eyskens, F.J.; Feldt-Rasmussen, U.; Hughes, D.; et al. Long-term safety and efficacy of pegunigalsidase alfa administered every 4 weeks in patients with Fabry disease: Two-year interim results from the ongoing phase 3 BRIGHT51 open-label extension study. Mol. Genet. Metab. 2023, 138, 107027. [Google Scholar] [CrossRef]
- Hughes, D.; Gonzalez, D.; Maegawa, G.; Bernat, J.A.; Holida, M.; Giraldo, P.; Atta, M.G.; Chertkoff, R.; Alon, S.; Almon, E.B.; et al. Long-term safety and efficacy of pegunigalsidase alfa: A multicenter 6-year study in adult patients with Fabry disease. Genet. Med. 2023, 25, 100968. [Google Scholar] [CrossRef] [PubMed]
- Bernat, J.; Holida, M.; Longo, N.; Goker-Alpan, O.; Wallace, E.; Deegan, P.; Nedd, K.; Tondel, C.; Eyskens, F.; Feldt-Rasmussen, U.; et al. eP149: Safety and efficacy of pegunigalsidase alfa, every 4 weeks, in Fabry disease: Results from the phase 3, open-label, BRIGHT study. Genet. Med. 2022, 24 (Suppl. S3), S91–S92. [Google Scholar] [CrossRef]
- West, M.L.; Hughes, D.; Sunder-Plassmann, G.; Jovanovic, A.; Brand, E.; Bichet, D.G.; Pisani, A.; Nowak, A.; Torra, R.; Khan, A.; et al. FollowME Fabry Pathfinders Registry: Renal effectiveness in a cohort of patients on migalastat treatment for at least three years. J. Am. Soc. Nephrol. 2023, 34 (Suppl. S11), 952. [Google Scholar] [CrossRef]
- Germain, D.P.; Hughes, D.A.; Nicholls, K.; Bichet, D.G.; Giugliani, R.; Wilcox, W.R.; Feliciani, C.; Shankar, S.P.; Ezgu, F.; Amartino, H.; et al. Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N. Engl. J. Med. 2016, 375, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Nicholls, K.; Giugliani, R.; Bichet, D.G.; Hughes, D.A.; Barisoni, L.M.; Colvin, R.B.; Jennette, J.C.; Skuban, N.; Castelli, J.P.; et al. Efficacy of the pharmacologic chaperone migalastat in a subset of male patients with the classic phenotype of Fabry disease and migalastat-amenable variants: Data from the phase 3 randomized, multicenter, double-blind clinical trial and extension study. Genet. Med. 2019, 21, 1987–1997. [Google Scholar] [CrossRef] [PubMed]
- Giugliani, R.; Waldek, S.; Germain, D.; Nicholls, K.; Bichet, D.; Simosky, J.; Bragat, A.; Castelli, J.; Benjamin, E.; Boudes, P. A Phase 2 study of migalastat hydrochloride in females with Fabry disease: Selection of population, safety and pharmacodynamic effects. Mol. Genet. Metab. 2013, 109, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Hopkin, R.J.; Bichet, D.G.; Sunder-Plassmann, G.; Nicholls, K.; Olivotto, I.; Giugliani, R.; Krusinska, E.; Veleva-Rotse, B.; Hughes, D. Long-term multisystemic efficacy with migalastat in ERT-naive and ERT-experienced patients with amenable GLA variants. Mol. Genet. Metab. 2022, 135 (Suppl. S2), S56. [Google Scholar]
- Khan, A.; Barber, D.L.; Huang, J.; Rupar, C.A.; Rip, J.W.; Auray-Blais, C.; Boutin, M.; O’Hoski, P.; Gargulak, K.; McKillop, W.M.; et al. Lentivirus-mediated gene therapy for Fabry disease. Nat. Commun. 2021, 12, 1178. [Google Scholar] [CrossRef] [PubMed]
- Lenders, M.; Nordbeck, P.; Kurschat, C.; Eveslage, M.; Karabul, N.; Kaufeld, J.; Hennermann, J.B.; Patten, M.; Cybulla, M.; Müntze, J.; et al. Treatment of Fabry disease management with migalastat—outcome from a prospective 24 months observational multicenter study (FAMOUS). Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Lenders, M.; Nordbeck, P.; Kurschat, C.; Karabul, N.; Kaufeld, J.; Hennermann, J.B.; Patten, M.; Cybulla, M.; Müntze, J.; Üçeyler, N.; et al. Treatment of Fabry’s disease with migalastat: Outcome from a prospective observational multicenter study (FAMOUS). Clin. Pharmacol. Ther. 2020, 108, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Orsborne, C.; Thompson, L.; Jovanovic, A. A retrospective outcome analysis of chaperone therapy in Fabry disease: Clinical outcomes after the first year of therapy—A single centre experience. Mol. Genet. Metab. 2020, 129 (Suppl. S2), S123. [Google Scholar] [CrossRef]
- Ramaswami, U.; Wilcox, W.; Hopkin, R.J.; Yang, H.; Jiang, H.; Lengoc, V. Migalastat HCl 150mg every other day is well-tolerated and efficacious in adolescent patients with Fabry disease. Mol. Genet. Metab. 2022, 135 (Suppl. S2), S104. [Google Scholar] [CrossRef]
- Schiffmann, R.; Goker-Alpan, O.; Holida, M.; Giraldo, P.; Barisoni, L.; Colvin, R.B.; Jennette, C.J.; Maegawa, G.; Boyadjiev, S.A.; Gonzalez, D.; et al. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease, provides sustained plasma concentrations and favorable pharmacodynamics: A 1-year Phase 1/2 clinical trial. J. Inherit. Metab. Dis. 2019, 42, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Skuban, N.; Feldt-Rasmussen, U.; Giugliani, R.; Germain, D.P.; Hughes, D.A.; Wilcox, W.R.; Schiffmann, R.; Bichet, D.G.; Jovanovic, A.; Bratkovic, D.; et al. Efficacy and safety of migalastat, an oral pharmacologic chaperone for Fabry disease: Results from two randomized phase 3 studies, FACETS and ATTRACT. Nephron 2017, 136, 175. [Google Scholar]
- Hughes, D.; Sunder-Plassmann, G.; Jovanovic, A.; Brand, E.; West, M.L.; Bichet, D.G.; Pisani, A.; Nowak, A.; Torra, R.; Khan, A.; et al. FollowME Fabry Pathfinders registry: Renal effectiveness in a multi-national, multi-center cohort of patients on migalastat treatment for at least three years. Mol. Genet. Metab. 2023, 138, 107159. [Google Scholar] [CrossRef]
- Bichet, D.G.; Torra, R.; Wallace, E.; Hughes, D.; Giugliani, R.; Skuban, N.; Krusinska, E.; Feldt-Rasmussen, U.; Schiffmann, R.; Nicholls, K. Long-term follow-up of renal function in patients treated with migalastat for Fabry disease. Mol. Genet. Metab. Rep. 2021, 28, 100786. [Google Scholar] [CrossRef] [PubMed]
- Torra, R.; Germain, D.; Bichet, D.; Schiffmann, R.; Yu, J.; Castelli, J.; Skuban, N.; Barth, J. Clinical outcomes with migalastat in patients with Fabry disease based on degree of renal impairment: Results from phase 3 trials. Nephrol. Dial. Transplant. 2018, 33 (Suppl. S1), i346–i356. [Google Scholar] [CrossRef]
- Beck, M.; Hughes, D.; Kampmann, C.; Larroque, S.; Mehta, A.; Pintos-Morell, G.; Ramaswami, U.; West, M.; Wijatyk, A.; Giugliani, R. Long-term effectiveness of agalsidase alfa enzyme replacement in Fabry disease: A Fabry Outcome Survey analysis. Mol. Genet. Metab. Rep. 2015, 3, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Cybulla, M.; Walter, K.N.; Schwarting, A.; Divito, R.; Feriozzi, S.; Sunder-Plassmann, G. Kidney transplantation in patients with Fabry disease. Transpl. Int. 2009, 22, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Cybulla, M.; West, M.; Nicholls, K.; Torras, J.; Neumann, P.; Sunder-Plassmann, G.; Feriozzi, S.; on behalf of the Fabry Outcome Survey Renal Working Group. Efficacy and safety of enzyme replacement therapy (ERT) in a cohort of kidney transplant recipients with Fabry disease. Nephrol. Dial. Transplant. 2014, 29 (Suppl. S3), iii349. [Google Scholar]
- Cybulla, M.; West, M.; Nicholls, K.; Torras, J.; Sunder-Plassmann, G.; Feriozzi, S. Effectiveness and safety of enzyme replacement therapy (ERT) in a cohort of kidney transplant recipients with Fabry disease. Nephrol. Dial. Transplant. 2013, 28 (Suppl. S1), i287. [Google Scholar]
- Dehout, F.; Schwarting, A.; Beck, M.; Mehta, A.; Ricci, R.; Widmer, U. Effects of enzyme replacement therapy with agalsidase alfa on glomerular filtration rate in patients with Fabry disease: Preliminary data. Acta Paediatr. 2003, 92 (Suppl. S443), 14–15. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.M.; Banikazemi, M.; Gordon, R.E.; Goldman, M.; Phelps, R.; Kim, L.; Gass, A.; Winston, J.; Dikman, S.; Fallon, J.T.; et al. A phase 1/2 clinical trial of enzyme replacement in Fabry disease: Pharmacokinetic, substrate clearance, and safety studies. Am. J. Hum. Genet. 2001, 68, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Goláň, L.; Goker-Alpan, O.; Holida, M.; Kantola, I.; Klopotowski, M.; Kuusisto, J.; Linhart, A.; Musial, J.; Nicholls, K.; Rodríguez, D.G.; et al. Evaluation of the efficacy and safety of three dosing regimens of agalsidase alfa enzyme replacement therapy in adults with Fabry disease. Drug Des. Dev. Ther. 2015, 9, 3435–3444. [Google Scholar] [CrossRef] [PubMed]
- Guérard, N.; Oder, D.; Nordbeck, P.; Zwingelstein, C.; Morand, O.; Welford, R.W.; Dingemanse, J.; Wanner, C. Lucerastat, an iminosugar for substrate reduction therapy: Tolerability, pharmacodynamics, and pharmacokinetics in patients with Fabry disease on enzyme replacement. Clin. Pharmacol. Ther. 2018, 103, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.; Romero, M.B.; Gurevich, A.; Engrand, P.; Giugliani, R. Menarche, menopause, and pregnancy data in untreated/agalsidase alfa-treated females in the Fabry Outcome Survey. Twin Res. Hum. Genet. 2019, 21, 439. [Google Scholar] [CrossRef]
- Hughes, D.A.; Elliott, P.M.; Shah, J.; Zuckerman, J.; Coghlan, G.; Brookes, J.; Mehta, A.B. Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: A randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart 2008, 94, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Jovanovich, A.; Schiffmann, R.; Nicholls, K.; Bichet, D.; Feldt-Rasmussen, U.; Jovanovic, A.; Hughes, D.; Jain, V.; Castelli, J.; Skuban, N.; et al. Efficacy and safety of migalastat, an oral pharmacological chaperone for Fabry disease: Renal findings from two randomized phase 3 studies (facets and attract). J. Inborn Errors Metab. Screen. 2017, 5, 356. [Google Scholar]
- Prabakaran, T.; Birn, H.; Bibby, B.M.; Regeniter, A.; Sørensen, S.S.; Feldt-Rasmussen, U.; Nielsen, R.; Christensen, E.I. Long-term enzyme replacement therapy is associated with reduced proteinuria and preserved proximal tubular function in women with Fabry disease. Nephrol. Dial. Transplant. 2014, 29, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Bichet, D.; Germain, D.; Giugliani, R.; Hughes, D.; Nicholls, K.; Wilcox, W.; Williams, H.; Yu, J.; Castelli, J.; et al. Effects of long-term migalastat treatment on renal function by baseline proteinuria in patients (PTS) with Fabry disease. Nephrol. Dial. Transplant. 2018, 33 (Suppl. S1), i346–i347. [Google Scholar] [CrossRef]
- Wallace, E.; Goker-Alpan, O.; Alon, S.; Chertkoff, R.; Almon, E.; Rocco, R.; Warnock, D.G.; Longo, N. Safety and efficacy of pegunigalsidase alfa vs agalsidase beta on renal function in Fabry disease: 24-month results from the phase III randomized, double-blind, BALANCE study. Nephron 2022, 146 (Suppl. S1), 39. [Google Scholar]
- Wilcox, W.R.; Banikazemi, M.; Guffon, N.; Waldek, S.; Lee, P.; Linthorst, G.E.; Desnick, R.J.; Germain, D.P.; International Fabry Disease Study Group. Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am. J. Hum. Genet. 2004, 75, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Wallace, E.L.; Goker-Alpan, O.; Wilcox, W.R.; Holida, M.; Bernat, J.; Longo, N.; Linhart, A.; A Hughes, D.; Hopkin, R.J.; Tøndel, C.; et al. Head-to-head trial of pegunigalsidase alfa versus agalsidase beta in patients with Fabry disease and deteriorating renal function: Results from the 2-year randomised phase III BALANCE study. J. Med. Genet. 2023, 61, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Goker-Alpan, O.; Nedd, K.; Shankar, S.P.; Lien, Y.-H.H.; Weinreb, N.; Wijatyk, A.; Chang, P.; Martin, R. Effect and tolerability of agalsidase alfa in patients with Fabry disease who were treatment naive or formerly treated with agalsidase beta or agalsidase alfa. JIMD Rep. 2015, 23, 7–15. [Google Scholar] [PubMed]
- Hughes, D.A.; Nicholls, K.; Shankar, S.P.; Sunder-Plassmann, G.; Koeller, D.; Nedd, K.; Vockley, G.; Hamazaki, T.; Lachmann, R.; Ohashi, T.; et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J. Med. Genet. 2017, 54, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Narita, I.; Ohashi, T.; Sakai, N.; Hamazaki, T.; Skuban, N.; Castelli, J.P.; Lagast, H.; Barth, J.A. Efficacy and safety of migalastat in a Japanese population: A subgroup analysis of the ATTRACT study. Clin. Exp. Nephrol. 2020, 24, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Krämer, J.; Lenders, M.; Canaan-Kühl, S.; Nordbeck, P.; Üçeyler, N.; Blaschke, D.; Duning, T.; Reiermann, S.; Stypmann, J.; Brand, S.-M.; et al. Fabry disease under enzyme replacement therapy—new insights in efficacy of different dosages. Nephrol. Dial. Transplant. 2018, 33, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- Lenders, M.; Canaan-Kühl, S.; Krämer, J.; Duning, T.; Reiermann, S.; Sommer, C.; Stypmann, J.; Blaschke, D.; Üçeyler, N.; Hense, H.-W.; et al. Patients with Fabry disease after enzyme replacement therapy dose reduction and switch-2-year follow-up. J. Am. Soc. Nephrol. 2016, 27, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Lenders, M.; Nordbeck, P.; Canaan-Kühl, S.; Kreul, L.; Duning, T.; Lorenz, L.; Pogoda, C.; Brand, S.-M.; Wanner, C.; Brand, E. Treatment switch in Fabry disease—a matter of dose? J. Med. Genet. 2021, 58, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Muentze, J.; Gensler, D.; Salinger, T.; Oder, D.; Wanner, C.; Frantz, S.; Nordbeck, P. Treatment of cardiac manifestations in Fabry disease with the oral drug migalastat: First 12 months results from a cohort of amenable all-comers. Eur. Heart J. 2018, 39 (Suppl. S1), 460. [Google Scholar] [CrossRef]
- Müntze, J.; Gensler, D.; Maniuc, O.; Liu, D.; Cairns, T.; Oder, D.; Hu, K.; Lorenz, K.; Frantz, S.; Wanner, C.; et al. Oral chaperone therapy migalastat for treating Fabry disease: Enzymatic response and serum biomarker changes after 1 year. Clin. Pharmacol. Ther. 2019, 105, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, K.; Yamamoto, H. Clinical observation of patients with Fabry disease after switching from agalsidase beta (Fabrazyme) to agalsidase alfa (Replagal). Genet. Med. 2012, 14, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, K.; Yamamoto, H. Clinical course of patients with Fabry disease who were switched from agalsidase-beta to agalsidase-alpha. Genet. Med. 2014, 16, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Krämer, J.; Duning, T.; Lenders, M.; Canaan-Kühl, S.; Krebs, A.; González, H.G.; Sommer, C.; Üçeyler, N.; Niemann, M.; et al. Patients with Fabry disease after enzyme replacement therapy dose reduction versus treatment switch. J. Am. Soc. Nephrol. 2014, 25, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Linhart, A.; Dostálová, G.; Nicholls, K.; West, M.L.; Tøndel, C.; Jovanovic, A.; Giraldo, P.; Vujkovac, B.; Geberhiwot, T.; Brill-Almon, E.; et al. Safety and efficacy of pegunigalsidase alfa in patients with Fabry disease who were previously treated with agalsidase alfa: Results from BRIDGE, a phase 3 open-label study. Orphanet J. Rare Dis. 2023, 18, 332. [Google Scholar] [CrossRef] [PubMed]
- Riccio, E.; Zanfardino, M.; Ferreri, L.; Santoro, C.; Cocozza, S.; Capuano, I.; Imbriaco, M.; Feriozzi, S.; Pisani, A.; AFFIINITY Group. Switch from enzyme replacement therapy to oral chaperone migalastat for treating Fabry disease: Real-life data. Eur. J. Hum. Genet. 2020, 28, 1662–1668. [Google Scholar] [CrossRef] [PubMed]
- Baehner, F.; Kampmann, C.; Whybra, C.; Miebach, E.; Wiethoff, C.M.; Beck, M. Enzyme replacement therapy in heterozygous females with Fabry disease: Results of a phase IIIB study. J. Inherit. Metab. Dis. 2003, 26, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.A.; Deegan, P.B.; Romero, M.B.; Giugliani, R. Responses of females with Fabry disease to ERT: Comparison with males, using data from FOS—The Fabry outcome survey. Mol. Genet. Metab. 2009, 98, 81. [Google Scholar]
- Kampmann, C.; Linhart, A.; Devereux, R.B.; Schiffmann, R. Effect of agalsidase alfa replacement therapy on Fabry disease-related hypertrophic cardiomyopathy: A 12- to 36-month, retrospective, blinded echocardiographic pooled analysis. Clin. Ther. 2009, 31, 1966–1976. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.M.; Kindler, H.; Shah, J.S.; Sachdev, B.; Rimoldi, O.E.; Thaman, R.; Tome, M.T.; McKenna, W.J.; Lee, P.; Camici, P.G. Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart 2006, 92, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Kalliokoski, R.J.; Kantola, I.; Kalliokoski, K.K.; Engblom, E.; Sundell, J.; Hannukainen, J.C.; Janatuinen, T.; Raitakari, O.T.; Knuuti, J.; Penttinen, M.; et al. The effect of 12-month enzyme replacement therapy on myocardial perfusion in patients with Fabry disease. J. Inherit. Metab. Dis. 2006, 29, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Messalli, G.; Imbriaco, M.; Avitabile, G.; Russo, R.; Iodice, D.; Spinelli, L.; Dellegrottaglie, S.; Cademartiri, F.; Salvatore, M.; Pisani, A. Role of cardiac MRI in evaluating patients with Anderson-Fabry disease: Assessing cardiac effects of long-term enzyme replacement therapy. Radiol. Med. 2012, 117, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Motwani, M.; Banypersad, S.; Woolfson, P.; Waldek, S. Enzyme replacement therapy improves cardiac features and severity of Fabry disease. Mol. Genet. Metab. 2012, 107, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Pisani, A.; Spinelli, L.; Sabbatini, M.; Andreucci, M.V.; Procaccini, D.; Abbaterusso, C.; Pasquali, S.; Savoldi, S.; Comotti, C.; Cianciaruso, B. Enzyme replacement therapy in Fabry disease patients undergoing dialysis: Effects on quality of life and organ involvement. Am. J. Kidney Dis. 2005, 46, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Wuest, W.; Machann, W.; Breunig, F.; Weidemann, F.; Koestler, H.; Hahn, D.; Wanner, C.; Beer, M. Right ventricular involvement in patients with Fabry disease and the effect of enzyme replacement therapy. Rofo 2011, 183, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Pietilä-Effati, P.; Saarinen, J.T.; Loyttyniemi, E.; Saarenhovi, M.; Autio, R.; Kantola, I. Long-term effectiveness of enzyme replacement therapy in Fabry disease with the p.Arg227Ter (R227*) mutation. Mol. Genet. Metab. 2023, 138, 107270. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Zhang, W.; Gao, F.; Chen, Y.; Shui, W.; Xing, X.; Chen, S.; Mu, Y. Clinical study of left ventricular structure and function in patients with Anderson-Fabry disease before and after enzyme replacement therapy. J. Clin. Ultrasound 2024, 52, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Hongo, K.; Ito, K.; Date, T.; Anan, I.; Inoue, Y.; Morimoto, S.; Ogawa, K.; Kawai, M.; Kobayashi, H.; Kobayashi, M.; et al. The beneficial effects of long-term enzyme replacement therapy on cardiac involvement in Japanese Fabry patients. Mol. Genet. Metab. 2018, 124, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic-Preradovic, T.; Zuber, M.; Jost, C.A.; Widmer, U.; Seifert, B.; Schulthess, G.; Fischer, A.; Jenni, R. Anderson-Fabry disease: Long-term echocardiographic follow-up under enzyme replacement therapy. Eur. J. Echocardiogr. 2008, 9, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Lenders, M.; Stypmann, J.; Duning, T.; Schmitz, B.; Brand, S.M.; Brand, E. Serum-mediated inhibition of enzyme replacement therapy in Fabry disease. J. Am. Soc. Nephrol. 2016, 27, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-C.; Lin, H.-Y.; Yang, C.-F.; Liao, H.-C.; Hsu, T.-R.; Lo, C.-W.; Chang, F.-P.; Huang, C.-K.; Lu, Y.-H.; Lin, S.-P.; et al. Globotriaosylsphingosine (lyso-Gb3) might not be a reliable marker for monitoring the long-term therapeutic outcomes of enzyme replacement therapy for late-onset Fabry patients with the Chinese hotspot mutation (IVS4+919G>A). Orphanet J. Rare Dis. 2014, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Nordin, S.; Kozor, R.; Vijapurapu, R.; Augusto, J.B.; Knott, K.D.; Captur, G.; Treibel, T.A.; Ramaswami, U.; Tchan, M.; Geberhiwot, T.; et al. Myocardial storage, inflammation, and cardiac phenotype in Fabry disease after one year of enzyme replacement therapy. Circ. Cardiovasc. Imaging 2019, 12, e009430. [Google Scholar] [CrossRef] [PubMed]
- Schmied, C.; Nowak, A.; Gruner, C.; Olinger, E.; Debaix, H.; Brauchlin, A.; Frank, M.; Reidt, S.; Monney, P.; Barbey, F.; et al. The value of ECG parameters as markers of treatment response in Fabry cardiomyopathy. Heart 2016, 102, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Niemann, M.; Breunig, F.; Herrmann, S.; Beer, M.; Störk, S.; Voelker, W.; Ertl, G.; Wanner, C.; Strotmann, J. Long-term effects of enzyme replacement therapy on Fabry cardiomyopathy: Evidence for a better outcome with early treatment. Circulation 2009, 119, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Camporeale, A.; Bandera, F.; Pieroni, M.; Pieruzzi, F.; Spada, M.; Bersano, A.; Econimo, L.; Lanzillo, C.; Rubino, M.; Mignani, R.; et al. Effect of Migalastat on cArdiac InvOlvement in FabRry DiseAse: MAIORA study. J. Med. Genet. 2023, 60, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, A.; Schiffmann, R.; Nicholls, K.; Feldt-Rasmussen, U.; Bichet, D.G.; Hughes, D.; Jain, V.; Yu, J.; Castelli, J.; Skuban, N.; et al. Improvements in cardiac mass with long-term migalastat treatment in patients with Fabry disease: Results from phase 3 trials. J. Inborn Errors Metab. Screen. 2017, 5, Abstract LBN 02. [Google Scholar] [CrossRef]
- Krämer, J.; Niemann, M.; Störk, S.; Frantz, S.; Beer, M.; Ertl, G.; Wanner, C.; Weidemann, F. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease. Am. J. Cardiol. 2014, 114, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Lin, S.P.; Niu, D.M.; Lin, H.Y. Fabry disease and the effectiveness of enzyme replacement therapy (ERT) in left ventricular hypertrophy (LVH) improvement: A review and meta-analysis. Int. J. Med Sci. 2022, 19, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Mignani, R.; Feriozzi, S.; Pisani, A.; Cioni, A.; Comotti, C.; Cossu, M.; Foschi, A.; Giudicissi, A.; Gotti, E.; Lozupone, V.A.; et al. Agalsidase therapy in patients with Fabry disease on renal replacement therapy: A nationwide study in Italy. Nephrol. Dial. Transplant. 2008, 23, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Figliozzi, S.; Georgiopoulos, G.; Stankowski, K.M.; Camporeale, A.; Pieroni, M. Effects of enzyme replacement therapy on CMR parameters in patients with Fabry disease: A systematic review and meta-analysis. Eur. Heart. J. Suppl. 2022, 24 (Suppl. K), K219–K220. [Google Scholar] [CrossRef]
- Pogoda, C.; Brand, S.-M.; Duning, T.; Schmidt-Pogoda, A.; Sindermann, J.; Lenders, M.; Brand, E. Impact of enzyme replacement therapy and migalastat on left atrial strain and cardiomyopathy in patients with Fabry disease. Front. Cardiovasc. Med. 2023, 10, 1223635. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Weidemann, F.; Abiose, A.; Patel, M.R.; Cizmarik, M.; Cole, J.A.; Beitner-Johnson, D.; Benistan, K.; Cabrera, G.; Charrow, J.; et al. Analysis of left ventricular mass in untreated men and in men treated with agalsidase-beta: Data from the Fabry Registry. Genet. Med. 2013, 15, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Veldman, B.C.F.; Schoenmakers, D.H.; van Dussen, L.; Datema, M.R.; Langeveld, M. Establishing treatment effectiveness in Fabry disease: Observation-based recommendations for improvement. Int. J. Mol. Sci. 2024, 25, 9752. [Google Scholar] [CrossRef] [PubMed]
- Imbriaco, M.; Pisani, A.; Spinelli, L.; Cuocolo, A.; Messalli, G.; Capuano, E.; Marmo, M.; Liuzzi, R.; Visciano, B.; Cianciaruso, B.; et al. Effects of enzyme-replacement therapy in patients with Anderson-Fabry disease: A prospective long-term cardiac magnetic resonance imaging study. Heart 2009, 95, 1103–1107. [Google Scholar] [CrossRef] [PubMed]
- Niemann, M.; Breunig, F.; Beer, M.; Herrmann, S.; Strotmann, J.; Hu, K.; Emmert, A.; Voelker, W.; Ertl, G.; Wanner, C.; et al. The right ventricle in Fabry disease: Natural history and impact of enzyme replacement therapy. Heart 2010, 96, 1915–1919. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Breunig, F.; Beer, M.; Knoll, A.; Turschner, O.; Wanner, C.; Sandstede, J.; Voelker, W.; Ertl, G.; Strotmann, J. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: A prospective strain rate imaging study. Circulation 2003, 108, 1299–1301. [Google Scholar] [CrossRef] [PubMed]
- Jardim, L.B.; Aesse, F.; Vedolin, L.M.; Pitta-Pinheiro, C.; Marconato, J.; Burin, M.G.; Cecchin, C.; Netto, C.B.; Matte, U.S.; Pereira, F.; et al. White matter lesions in Fabry disease before and after enzyme replacement therapy: A 2-year follow-up. Arq. Neuro-Psiquiatria 2006, 64, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Hsu, T.-R.; Hung, S.-C.; Yu, W.-C.; Chu, T.-H.; Yang, C.-F.; Bizjajeva, S.; Tiu, C.-M.; Niu, D.-M. A comparison of central nervous system involvement in patients with classical Fabry disease or the later-onset subtype with the IVS4 + 919G > A mutation. BMC Neurol. 2017, 17, 25. [Google Scholar] [CrossRef] [PubMed]
- Korver, S.; Vergouwe, M.; Hollak, C.E.M.; van Schaik, I.N.; Langeveld, M. Development and clinical consequences of white matter lesions in Fabry disease: A systematic review. Mol. Genet. Metab. 2018, 125, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Korver, S.; Longo, M.G.F.; Lima, M.R.; Hollak, C.E.M.; El Sayed, M.; van Schaik, I.N.; Vedolin, L.; Dijkgraaf, M.G.W.; Langeveld, M. Determinants of cerebral radiological progression in Fabry disease. J. Neurol. Neurosurg. Psychiatry 2020, 91, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Lulla, D.S.; Higuita, L.; Shukla-Parekh, S.; Lau, H. Survey assessing the prevalence and severity of neuropsychiatric manifestations in patients living with Fabry disease. Mol. Genet. Metab. 2020, 129 (Suppl. S2), S103. [Google Scholar] [CrossRef]
- Sunder-Plassmann, G.; Shankar, S.; Wilcox, W.; Nicholls, K.; Giugliani, R.; Lagast, H.; Skuban, N.; Germain, D.P. Occurrence of cerebrovascular events during long-term treatment with migalastat in patients with Fabry disease. J. Inherit. Metab. Dis. 2019, 42 (Suppl. S1), 233. [Google Scholar]
- Banikazemi, M.; Bultas, J.; Waldek, S.; Wilcox, W.R.; Whitley, C.B.; McDonald, M.; Finkel, R.; Packman, S.; Bichet, D.G.; Warnock, D.G.; et al. Agalsidase-beta therapy for advanced Fabry disease: A randomized trial. Ann. Intern. Med. 2007, 146, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Fellgiebel, A.; Gartenschlager, M.; Wildberger, K.; Scheurich, A.; Desnick, R.J.; Sims, K. Enzyme replacement therapy stabilized white matter lesion progression in Fabry disease. Cerebrovasc. Dis. 2014, 38, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Lenders, M.; Karabul, N.; Duning, T.; Schmitz, B.; Schelleckes, M.; Mesters, R.; Hense, H.-W.; Beck, M.; Brand, S.-M.; Brand, E. Thromboembolic events in Fabry disease and the impact of factor v Leiden. Neurology 2015, 84, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Whybra, C.; Kampmann, C.; Krummenauer, F.; Ries, M.; Mengel, E.; Miebach, E.; Baehner, F.; Kim, K.; Bajbouj, M.; Schwarting, A.; et al. The Mainz Severity Score Index: A new instrument for quantifying the Anderson-Fabry disease phenotype, and the response of patients to enzyme replacement therapy. Clin. Genet. 2004, 65, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Parini, R.; Rigoldi, M.; Santus, F.; Furlan, F.; De Lorenzo, P.; Valsecchi, G.; Concolino, D.; Strisciuglio, P.; Feriozzi, S.; Di Vito, R.; et al. Enzyme replacement therapy with agalsidase alfa in a cohort of Italian patients with Anderson-Fabry disease: Testing the effects with the Mainz Severity Score Index. Clin. Genet. 2008, 74, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Concolino, D.; Amico, L.; Cappellini, M.D.; Cassinerio, E.; Conti, M.; Donati, M.; Falvo, F.; Fiumara, A.; Maccarone, M.; Manna, R.; et al. Home infusion program with enzyme replacement therapy for Fabry disease: The experience of a large Italian collaborative group. Mol. Genet. Metab. Rep. 2017, 12, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Biegstraaten, M.; van Schaik, I.N.; Wieling, W.; Wijburg, F.A.; Hollak, C.E. Autonomic neuropathy in Fabry disease: A prospective study using the Autonomic Symptom Profile and cardiovascular autonomic function tests. BMC Neurol. 2010, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-H.; Chien, Y.; Wang, K.-L.; Leu, H.-B.; Hsiao, C.-Y.; Lai, Y.-H.; Wang, C.-Y.; Chang, Y.-L.; Lin, S.-J.; Niu, D.-M.; et al. Evaluation of proinflammatory prognostic biomarkers for Fabry cardiomyopathy with enzyme replacement therapy. Can. J. Cardiol. 2016, 32, 1221.e1221–1221.e1229. [Google Scholar] [CrossRef] [PubMed]
- Neto, N.S.R.; Bento, J.C.B.; Caparbo, V.F.; Pereira, R.M.R. Increased serum interleukin-6 and tumor necrosis factor alpha levels in Fabry disease: Correlation with disease burden. Clinics 2021, 76, e2643. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-H.; Chou, Y.-C.; Hsiao, C.-Y.; Chien, Y.; Wang, K.-L.; Lai, Y.-H.; Chang, Y.-L.; Niu, D.-M.; Yu, W.-C. Amelioration of serum 8-OHdG level by enzyme replacement therapy in patients with Fabry cardiomyopathy. Biochem. Biophys. Res. Commun. 2017, 486, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Ripeau, D.; Amartino, H.; Cedrolla, M.; Urtiaga, L.; Urdaneta, B.; Cano, M.; Valdez, R.; Antongiovanni, N.; Masllorens, F. Cambio de agalsidasa beta por agalsidasa alfa en la terapia de reemplazo enzimatica de pacientes con enfermedad de Fabry en Latinoamerica. Medicina 2017, 77, 173–179. [Google Scholar] [PubMed]
- Orsborne, C.; Black, N.; Naish, J.H.; Woolfson, P.; Reid, A.B.; Schmitt, M.; Jovanovic, A.; A Miller, C. Disease-specific therapy for the treatment of the cardiovascular manifestations of Fabry disease: A systematic review. Heart 2023, 110, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Besekar, S.M.; Jogdand, S.D.; Naqvi, W.M. Fabry disease and its management: A literature analysis. Cureus 2023, 15, e37048. [Google Scholar] [CrossRef] [PubMed]
- Riccio, E.; Pisani, A. New insights in efficacy of different enzyme replacement therapy dosages in Fabry disease: Switch studies data following agalsidase beta shortage. Clin. Genet. 2023, 103, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Riccio, E.; de Marco, O.; Pisani, A. Medication adherence in Fabry patients treated with migalastat: Real world experience. Mol. Genet. Metab. Rep. 2023, 35, 100976. [Google Scholar] [CrossRef] [PubMed]
- Ramaswami, U.; Pintos-Morell, G.; Kampmann, C.; Nicholls, K.; Niu, D.-M.; Reisin, R.; West, M.L.; Anagnostopoulou, C.; Botha, J.; Jazukeviciene, D.; et al. Two decades of experience of the Fabry Outcome Survey provides further confirmation of the long-term effectiveness of agalsidase alfa enzyme replacement therapy. Mol. Genet. Metab. Rep. 2025, 43, 101215. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R.; Soska, R.; Lun, Y.; Feng, J.; Frascella, M.; Young, B.; Brignol, N.; Pellegrino, L.; A Sitaraman, S.; Desnick, R.J.; et al. The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease. Mol. Ther. 2010, 18, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Burlina, A.; Al-Shaar, L.; Germain, D.P.; Banikazemi, M.; Ponce, E.; Crespo, A.; Lawson, V.; Politei, J. Reduced incidence of stroke in patients with Fabry disease treated with agalsidase beta: A matched analysis from the Fabry Registry. Mol. Genet. Metab. 2025, 144, 16. [Google Scholar] [CrossRef]
- Feriozzi, S.; Chimenti, C.; Reisin, R.C. Updated evaluation of agalsidase alfa enzyme replacement therapy for patients with Fabry disease: Insights from real-world data. Drug Des. Dev. Ther. 2024, 18, 1083–1101. [Google Scholar] [CrossRef] [PubMed]
- Batista, J.L.; Hariri, A.; Maski, M.; Richards, S.; Gudivada, B.; A Raynor, L.; Ponce, E.; Wanner, C.; Desnick, R.J. Reduction in kidney function decline and risk of severe clinical events in agalsidase beta-treated Fabry disease patients: A matched analysis from the Fabry Registry. Clin. Kidney J. 2024, 17, sfae194. [Google Scholar] [CrossRef] [PubMed]
- Pisani, A.; Wilson, K.M.; Batista, J.L.; Kantola, I.; Ortiz, A.; Politei, J.; Al-Shaar, L.; Maski, M.; Crespo, A.; Ponce, E.; et al. Clinical outcomes in patients switching from agalsidase beta to migalastat: A Fabry Registry analysis. J. Inherit. Metab. Dis. 2024, 47, 1080–1095. [Google Scholar] [CrossRef] [PubMed]
- Lenders, M.; Nowak, A.; Cybulla, M.; Kaufeld, J.; Köhn, A.F.; Muschol, N.M.; Kurschat, C.; Brand, E. Impact of enzyme replacement therapy and migalastat on disease progression in females with Fabry disease. Orphanet J. Rare Dis. 2025, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.A.; Sunder-Plassmann, G.; Jovanovic, A.; Brand, E.; West, M.L.; Bichet, D.G.; Pisani, A.; Nowak, A.; Torra, R.; Khan, A.; et al. Renal and multisystem effectiveness of 3.9 years of migalastat in a global real-world cohort: Results from the followME Fabry Pathfinders registry. J. Inherit. Metab. Dis. 2025, 48, e12771. [Google Scholar] [CrossRef] [PubMed]
- Ramaswami, U.; Font-Montgomery, E.; Goker-Alpan, O.; Ortiz, D.; Sanchez-Valle, A.; Whitley, C.B.; Wilcox, W.R.; Jiang, H.; Lawson, L.A.; Vosk, J.; et al. Safety and efficacy of migalastat in adolescent patients with Fabry disease: Results from ASPIRE, a phase 3b, open-label, single-arm, 12-month clinical trial, and its open-label extension. Mol. Genet. Metab. 2025, 145, 109102. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Botha, J.; Anagnostopoulou, C.; Hughes, D.A. Clinical outcomes in elderly patients receiving agalsidase alfa treatment in the Fabry Outcome Survey. Mol. Genet. Metab. 2024, 143, 108561. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, M.; Ikeda, Y.; Otaka, H.; Iwashiro, S. Long-term safety of enzyme replacement therapy with agalsidase alfa in patients with Fabry disease: Post-marketing extension surveillance in Japan. Mol. Genet. Metab. Rep. 2024, 40, 101122. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Li, P.; Zhang, S.; Zhiqing, Z. Effectiveness and safety of enzyme replacement therapy in the treatment of Fabry disease: A Chinese monocentric real-world study. Orphanet J. Rare Dis. 2024, 19, 422. [Google Scholar] [CrossRef] [PubMed]
- Holida, M.; Linhart, A.; Pisani, A.; Longo, N.; Eyskens, F.; Goker-Alpan, O.; Wallace, E.; Deegan, P.; Tøndel, C.; Feldt-Rasmussen, U.; et al. A phase III, open-label clinical trial evaluating pegunigalsidase alfa administered every 4 weeks in adults with Fabry disease previously treated with other enzyme replacement therapies. J. Inherit. Metab. Dis. 2025, 48, e12795. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanovic, A.; Miller-Hodges, E.; Castriota, F.; Evuarherhe, O.; Ayodele, O.; Hughes, D.; Pintos-Morell, G.; Giugliani, R.; Feriozzi, S.; Siffel, C. Clinical Efficacy and Real-World Effectiveness of Fabry Disease Treatments: A Systematic Literature Review. J. Clin. Med. 2025, 14, 5131. https://doi.org/10.3390/jcm14145131
Jovanovic A, Miller-Hodges E, Castriota F, Evuarherhe O, Ayodele O, Hughes D, Pintos-Morell G, Giugliani R, Feriozzi S, Siffel C. Clinical Efficacy and Real-World Effectiveness of Fabry Disease Treatments: A Systematic Literature Review. Journal of Clinical Medicine. 2025; 14(14):5131. https://doi.org/10.3390/jcm14145131
Chicago/Turabian StyleJovanovic, Ana, Eve Miller-Hodges, Felicia Castriota, Obaro Evuarherhe, Olulade Ayodele, Derralynn Hughes, Guillem Pintos-Morell, Roberto Giugliani, Sandro Feriozzi, and Csaba Siffel. 2025. "Clinical Efficacy and Real-World Effectiveness of Fabry Disease Treatments: A Systematic Literature Review" Journal of Clinical Medicine 14, no. 14: 5131. https://doi.org/10.3390/jcm14145131
APA StyleJovanovic, A., Miller-Hodges, E., Castriota, F., Evuarherhe, O., Ayodele, O., Hughes, D., Pintos-Morell, G., Giugliani, R., Feriozzi, S., & Siffel, C. (2025). Clinical Efficacy and Real-World Effectiveness of Fabry Disease Treatments: A Systematic Literature Review. Journal of Clinical Medicine, 14(14), 5131. https://doi.org/10.3390/jcm14145131