Comprehensive Profiling of Cytokines and Growth Factors: Pathogenic Roles and Clinical Applications in Autoimmune Diseases
Abstract
1. Introduction
1.1. Rheumatoid Arthritis
1.2. Systemic Lupus Erythematosus
1.3. Psoriatic Arthritis
1.4. Ankylosing Spondylitis
1.5. Systemic Sclerosis
1.6. Cytokines and Growth Factors in Autoimmune Diseases
2. Pro-Inflammatory Cytokines in Autoimmune Diseases
2.1. Tumor Necrosis Factor Alpha (TNF-α)
2.1.1. TNF-α Protein and Physiological Role
2.1.2. TNF-α in Autoimmune Diseases
2.2. Interleukin-1β (IL-1β)
2.2.1. IL-1β Protein and Physiological Role
2.2.2. IL-1β in Autoimmune Diseases
2.3. Interleukin-6 (IL-6)
2.3.1. IL-6 Protein and Physiological Role
2.3.2. IL-6 in Autoimmune Diseases
2.4. Interleukin-17 (IL-17)
2.4.1. IL-17 Protein and Physiological Role
2.4.2. IL-17 in Autoimmune Diseases
2.5. Interferon-Gamma (IFN-γ)
2.5.1. IFN-γ Protein and Physiological Role
2.5.2. IFN-γ in Autoimmune Diseases
3. Anti-Inflammatory Cytokines as Biomarkers in ADs
3.1. Interleukin 10 (IL-10)
3.1.1. IL-10 Protein and Physiological Role
3.1.2. IL-10 in Autoimmune Diseases
3.2. Interleukin-4 (IL-4)
3.2.1. IL-4 Protein and Its Physiological Role
3.2.2. IL-4 in Autoimmune Diseases
4. Growth Factors as Biomarkers in ADs
4.1. Transforming Growth Factor Beta (TGF-β)
4.1.1. TGF-β Protein and Physiological Role
4.1.2. TGF-β in Autoimmune Diseases
4.2. Other Growth Factors Involved in Autoimmune Diseases
5. Challenges in Biomarker Development
6. Therapeutic Implications
6.1. Targeting Secreted Immune Mediators in Autoimmune Therapy
6.2. Targeting Cell Surface Receptors in Autoimmune Therapy
6.3. Targeting Intracellular Signaling Pathways in Autoimmune Therapy
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RA | Rheumatoid Arthritis |
SLE | Systemic Lupus Erythematosus |
PsA | Psoriatic Arthritis |
SS | Sjögren’s Syndrome |
AS | Ankylosing Spondylitis |
SSc | Systemic Sclerosis |
References
- Messina, J.M.; Luo, M.; Hossan, M.S.; Gadelrab, H.A.; Yang, X.; John, A.; Wilmore, J.R.; Luo, J. Unveiling Cytokine Charge Disparity as a Potential Mechanism for Immune Regulation. Cytokine Growth Factor Rev. 2024, 77, 1–14. [Google Scholar] [CrossRef]
- Yasmeen, F.; Pirzada, R.H.; Ahmad, B.; Choi, B.; Choi, S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. Int. J. Mol. Sci. 2024, 25, 7666. [Google Scholar] [CrossRef]
- Gregersen, P.K.; Olsson, L.M. Recent Advances in the Genetics of Autoimmune Disease. Annu. Rev. Immunol. 2009, 27, 363–391. [Google Scholar] [CrossRef] [PubMed]
- Gawda, A.; Majka, G.; Nowak, B.; Marcinkiewicz, J. Air Pollution, Oxidative Stress, and Exacerbation of Autoimmune Diseases. Cent. Eur. J. Immunol. 2017, 3, 305–312. [Google Scholar] [CrossRef]
- Jang, D.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Radu, A.-F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef]
- Dai, X.; Fan, Y.; Zhao, X. Systemic Lupus Erythematosus: Updated Insights on the Pathogenesis, Diagnosis, Prevention and Therapeutics. Signal Transduct. Target. Ther. 2025, 10, 102. [Google Scholar] [CrossRef]
- Karmacharya, P.; Chakradhar, R.; Ogdie, A. The Epidemiology of Psoriatic Arthritis: A Literature Review. Best Pract. Res. Clin. Rheumatol. 2021, 35, 101692. [Google Scholar] [CrossRef] [PubMed]
- Azuaga, A.B.; Ramírez, J.; Cañete, J.D. Psoriatic Arthritis: Pathogenesis and Targeted Therapies. Int. J. Mol. Sci. 2023, 24, 4901. [Google Scholar] [CrossRef] [PubMed]
- Baldini, C.; Chatzis, L.G.; Fulvio, G.; La Rocca, G.; Pontarini, E.; Bombardieri, M. Pathogenesis of Sjögren’s Disease: One Year in Review 2024. Clin. Exp. Rheumatol. 2024, 42, 2336–2343. [Google Scholar] [CrossRef]
- Alexander, M. Ankylosing Spondylitis Pathogenesis and Pathophysiology. In Ankylosing Spondylitis—Recent Concepts; IntechOpen: London, UK, 2023. [Google Scholar]
- Jimenez, S.A.; Mendoza, F.A.; Piera-Velazquez, S. A Review of Recent Studies on the Pathogenesis of Systemic Sclerosis: Focus on Fibrosis Pathways. Front. Immunol. 2025, 16, 1551911. [Google Scholar] [CrossRef]
- Takahashi, T.; Asano, Y. The Evolving Landscape of Systemic Sclerosis Pathogenesis: From Foundational Mechanisms to Organ-Specific Modifiers. Sclerosis 2025, 3, 20. [Google Scholar] [CrossRef]
- Mercogliano, M.F.; Bruni, S.; Mauro, F.; Elizalde, P.V.; Schillaci, R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers 2021, 13, 564. [Google Scholar] [CrossRef] [PubMed]
- Richter, P.; Macovei, L.A.; Mihai, I.R.; Cardoneanu, A.; Burlui, M.A.; Rezus, E. Cytokines in Systemic Lupus Erythematosus—Focus on TNF-α and IL-17. Int. J. Mol. Sci. 2023, 24, 14413. [Google Scholar] [CrossRef]
- Li, Y.; Ye, R.; Dai, H.; Lin, J.; Cheng, Y.; Zhou, Y.; Lu, Y. Exploring TNFR1: From Discovery to Targeted Therapy Development. J. Transl. Med. 2025, 23, 71. [Google Scholar] [CrossRef] [PubMed]
- Alshevskaya, A.; Zhukova, J.; Lopatnikova, J.; Vasilyev, F.; Khutornoy, I.; Golikova, E.; Kireev, F.; Sennikov, S. Nonlinear Dynamics of TNFR1 and TNFR2 Expression on Immune Cells: Genetic and Age-Related Aspects of Inflamm-Aging Mechanisms. Biomedicines 2025, 13, 852. [Google Scholar] [CrossRef]
- Lo, C.H. TNF Receptors: Structure-Function Relationships and Therapeutic Targeting Strategies. Biochim. Biophys. Acta (BBA)—Biomembr. 2025, 1867, 184394. [Google Scholar] [CrossRef]
- Kaye, A.D.; Perilloux, D.M.; Hawkins, A.M.; Wester, G.C.; Ragaland, A.R.; Hebert, S.V.; Kim, J.; Heisler, M.; Kelkar, R.A.; Chami, A.A.; et al. Tumor Necrosis Factor and Interleukin Modulators for Pathologic Pain States: A Narrative Review. Pain Ther. 2024, 13, 481–493. [Google Scholar] [CrossRef]
- Kondo, N.; Kuroda, T.; Kobayashi, D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 10922. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. Pathogenetic Insights from the Treatment of Rheumatoid Arthritis. Lancet 2017, 389, 2328–2337. [Google Scholar] [CrossRef]
- Lee, A.; Qiao, Y.; Grigoriev, G.; Chen, J.; Park-Min, K.; Park, S.H.; Ivashkiv, L.B.; Kalliolias, G.D. Tumor Necrosis Factor α Induces Sustained Signaling and a Prolonged and Unremitting Inflammatory Response in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis Rheum 2013, 65, 928–938. [Google Scholar] [CrossRef]
- Jang, S.; Kwon, E.-J.; Lee, J.J. Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. Int. J. Mol. Sci. 2022, 23, 905. [Google Scholar] [CrossRef]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF Biology, Pathogenic Mechanisms and Emerging Therapeutic Strategies. Nat. Rev. Rheumatol. 2015, 12, 49–62. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. The Pathogenesis of Rheumatoid Arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef]
- Clemens, M.J.; van Venrooij, W.J.; van de Putte, L.B.A. Apoptosis and Autoimmunity. Cell Death Differ. 2000, 7, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Postal, M.; Appenzeller, S. The Role of Tumor Necrosis Factor-Alpha (TNF-α) in the Pathogenesis of Systemic Lupus Erythematosus. Cytokine 2011, 56, 537–543. [Google Scholar] [CrossRef]
- Habib, H.M.; Taher, T.E.; Isenberg, D.A.; Mageed, R.A. Enhanced Propensity of T Lymphocytes in Patients with Systemic Lupus Erythematosus to Apoptosis in the Presence of Tumour Necrosis Factor Alpha. Scand. J. Rheumatol. 2009, 38, 112–120. [Google Scholar] [CrossRef]
- Postal, M.; Peliçari, K.O.; Sinicato, N.A.; Marini, R.; Costallat, L.T.; Appenzeller, S. Th1/Th2 cytokine profile in childhood-onset systemic lupus erythematosus. Cytokine 2013, 61, 785–791. [Google Scholar] [CrossRef]
- Ghorbaninezhad, F.; Leone, P.; Alemohammad, H.; Najafzadeh, B.; Nourbakhsh, N.; Prete, M.; Malerba, E.; Saeedi, H.; Tabrizi, N.; Racanelli, V.; et al. Tumor Necrosis Factor-α in Systemic Lupus Erythematosus: Structure, Function and Therapeutic Implications (Review). Int. J. Mol. Med. 2022, 49, 43. [Google Scholar] [CrossRef]
- Gómez, D.; Correa, P.A.; Gómez, L.M.; Cadena, J.; Molina, J.F.; Anaya, J.-M. Th1/Th2 Cytokines in Patients with Systemic Lupus Erythematosus: Is Tumor Necrosis Factor α Protective? Semin. Arthritis Rheum. 2004, 33, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Jinshan, Z.; Yong, Q.; Fangqi, C.; Juanmei, C.; Min, L.; Changzheng, H. The Role of TNF-α as a Potential Marker for Acute Cutaneous Lupus Erythematosus in Patients with Systemic Lupus Erythematosus. J. Dermatol. 2024, 51, 1481–1491. [Google Scholar] [CrossRef]
- Zelová, H.; Hošek, J. TNF-α Signalling and Inflammation: Interactions between Old Acquaintances. Inflamm. Res. 2013, 62, 641–651. [Google Scholar] [CrossRef]
- Ewert, P.; Aguilera, S.; Alliende, C.; Kwon, Y.; Albornoz, A.; Molina, C.; Urzúa, U.; Quest, A.F.G.; Olea, N.; Pérez, P.; et al. Disruption of Tight Junction Structure in Salivary Glands from Sjögren’s Syndrome Patients Is Linked to Proinflammatory Cytokine Exposure. Arthritis Rheum. 2010, 62, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liang, Y.; Zhang, Z.; Zhang, Z.; Yang, Z. Relationships between Increased Circulating YKL-40, IL-6 and TNF-α Levels and Phenotypes and Disease Activity of Primary Sjögren’s Syndrome. Int. Immunopharmacol. 2020, 88, 106878. [Google Scholar] [CrossRef]
- Limaye, A.; Hall, B.E.; Zhang, L.; Cho, A.; Prochazkova, M.; Zheng, C.; Walker, M.; Adewusi, F.; Burbelo, P.D.; Sun, Z.J.; et al. Targeted TNF-α Overexpression Drives Salivary Gland Inflammation. J. Dent. Res. 2019, 98, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Russell, T.; Bridgewood, C.; Rowe, H.; Altaie, A.; Jones, E.; McGonagle, D. Cytokine “Fine Tuning” of Enthesis Tissue Homeostasis as a Pointer to Spondyloarthritis Pathogenesis with a Focus on Relevant TNF and IL-17 Targeted Therapies. Semin. Immunopathol. 2021, 43, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; David, J.-P. The Multiple Faces of Autoimmune-Mediated Bone Loss. Nat. Rev. Endocrinol. 2010, 6, 698–706. [Google Scholar] [CrossRef]
- Jo, S.; Nam, B.; Lee, Y.L.; Park, H.; Weon, S.; Choi, S.-H.; Park, Y.-S.; Kim, T.-H. The TNF-NF-κB-DKK1 Axis Promoted Bone Formation in the Enthesis of Ankylosing Spondylitis. J. Rheum. Dis. 2021, 28, 216–224. [Google Scholar] [CrossRef]
- Schinocca, C.; Rizzo, C.; Fasano, S.; Grasso, G.; La Barbera, L.; Ciccia, F.; Guggino, G. Role of the IL-23/IL-17 Pathway in Rheumatic Diseases: An Overview. Front. Immunol. 2021, 12, 637829. [Google Scholar] [CrossRef]
- Kosałka-Węgiel, J.; Lichołai, S.; Pacholczak-Madej, R.; Dziedzina, S.; Milewski, M.; Kuszmiersz, P.; Korona, A.; Gąsior, J.; Matyja-Bednarczyk, A.; Kwiatkowska, H.; et al. Serum IL-17 and TNFα as Prognostic Biomarkers in Systemic Sclerosis Patients: A Prospective Study. Rheumatol. Int. 2023, 44, 119–128. [Google Scholar] [CrossRef]
- da Silva, S.O.; da Paz, A.S.; Farias, I.M.V.C.; Moreira, D.S.; Ribeiro, M.A.F.; Alves, T.S.G.N.; Lemos, A.C.M.; Santiago, M.B. Bronchoalveolar Lavage in Systemic Sclerosis Patients: A Systematic Review. Curr. Rheumatol. Rev. 2021, 17, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Wijdan, S.A.; Bokhari, S.M.N.A.; Alvares, J.; Latif, V. The Role of Interleukin-1 Beta in Inflammation and the Potential of Immune-Targeted Therapies. Pharmacol. Res.-Rep. 2025, 3, 100027. [Google Scholar] [CrossRef]
- Bent, R.; Moll, L.; Grabbe, S.; Bros, M. Interleukin-1 Beta—A Friend or Foe in Malignancies? Int. J. Mol. Sci. 2018, 19, 2155. [Google Scholar] [CrossRef]
- Tőzsér, J.; Benkő, S. Natural Compounds as Regulators of NLRP3 Inflammasome-Mediated IL-1βProduction. Mediat. Inflamm. 2016, 2016, 5460302. [Google Scholar] [CrossRef]
- Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The Role of Interleukin-1 in General Pathology. Inflamm. Regen. 2019, 39, 12. [Google Scholar] [CrossRef]
- Pyrillou, K.; Burzynski, L.C.; Clarke, M.C.H. Alternative Pathways of IL-1 Activation, and Its Role in Health and Disease. Front. Immunol. 2020, 11, 613170. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome Activation and Regulation: Toward a Better Understanding of Complex Mechanisms. Cell Discov. 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Matarazzo, L.; Hernandez Santana, Y.E.; Walsh, P.T.; Fallon, P.G. The IL-1 Cytokine Family as Custodians of Barrier Immunity. Cytokine 2022, 154, 155890. [Google Scholar] [CrossRef] [PubMed]
- Bottini, N.; Firestein, G.S. Duality of Fibroblast-like Synoviocytes in RA: Passive Responders and Imprinted Aggressors. Nat. Rev. Rheumatol. 2012, 9, 24–33. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid Arthritis: Pathological Mechanisms and Modern Pharmacologic Therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef]
- Takeshita, A.; Nishida, K.; Yoshida, A.; Nasu, Y.; Nakahara, R.; Kaneda, D.; Ohashi, H.; Ozaki, T. RANKL Expression in Chondrocytes and Its Promotion by Lymphotoxin-α in the Course of Cartilage Destruction during Rheumatoid Arthritis. PLoS ONE 2021, 16, e0254268. [Google Scholar] [CrossRef]
- Mende, R.; Vincent, F.B.; Kandane-Rathnayake, R.; Koelmeyer, R.; Lin, E.; Chang, J.; Hoi, A.Y.; Morand, E.F.; Harris, J.; Lang, T. Analysis of Serum Interleukin (IL)-1β and IL-18 in Systemic Lupus Erythematosus. Front Immunol. 2018, 9, 1250. [Google Scholar] [CrossRef] [PubMed]
- Caielli, S.; Balasubramanian, P.; Rodriguez-Alcazar, J.; Balaji, U.; Robinson, L.; Wan, Z.; Baisch, J.; Smitherman, C.; Walters, L.; Sparagana, P.; et al. Type I IFN Drives Unconventional IL-1β Secretion in Lupus Monocytes. Immunity 2024, 57, 2497–2513.e12. [Google Scholar] [CrossRef] [PubMed]
- Rzeszotarska, E.; Sowinska, A.; Stypinska, B.; Lutkowska, A.; Felis-Giemza, A.; Olesinska, M.; Puszczewicz, M.; Majewski, D.; Jagodzinski, P.P.; Haładyj, E.; et al. IL-1β, IL-10 and TNF-α Polymorphisms May Affect Systemic Lupus Erythematosus Risk and Phenotype. Clin. Exp. Rheumatol. 2021, 40, 1708–1717. [Google Scholar] [CrossRef]
- Lai, J.-H.; Wu, D.-W.; Huang, C.-Y.; Hung, L.-F.; Wu, C.-H.; Ka, S.-M.; Chen, A.; Huang, J.-L.; Ho, L.-J. Induction of LY6E Regulates Interleukin-1β Production, Potentially Contributing to the Immunopathogenesis of Systemic Lupus Erythematosus. Cell Commun. Signal. 2025, 23, 146. [Google Scholar] [CrossRef]
- Lovato, B.H.; Fogagnolo, L.; Souza, E.M.; de Silva, L.J.B.; da Velho, P.E.N.F.; Cintra, M.L.; Teixeira, F. IL-1β and IL-17 in Cutaneous Lupus Erythematous Skin Biopsies: Could Immunohistochemicals Indicate a Tendency towards Systemic Involvement? An. Bras. Dermatol. 2024, 99, 66–71. [Google Scholar] [CrossRef]
- Lopalco, G.; Cantarini, L.; Vitale, A.; Iannone, F.; Anelli, M.G.; Andreozzi, L.; Lapadula, G.; Galeazzi, M.; Rigante, D. Interleukin-1 as a Common Denominator from Autoinflammatory to Autoimmune Disorders: Premises, Perils, and Perspectives. Mediat. Inflamm. 2015, 2015, 194864. [Google Scholar] [CrossRef]
- Zeng, W.; Zhou, X.; Yu, S.; Liu, R.; Quek, C.W.N.; Yu, H.; Tay, R.Y.K.; Lin, X.; Feng, Y. The Future of Targeted Treatment of Primary Sjögren’s Syndrome: A Focus on Extra-Glandular Pathology. Int. J. Mol. Sci. 2022, 23, 14135. [Google Scholar] [CrossRef]
- Fox, R.I.; Kang, H.I.; Ando, D.; Abrams, J.; Pisa, E. Cytokine mRNA Expression in Salivary Gland Biopsies of Sjögren’s Syndrome. J. Immunol. 1994, 152, 5532–5539. [Google Scholar] [CrossRef]
- Blokland, S.L.M.; Flessa, C.-M.; van Roon, J.A.G.; Mavragani, C.P. Emerging Roles for Chemokines and Cytokines as Orchestrators of Immunopathology in Sjögren’s Syndrome. Rheumatology 2019, 60, 3072–3087. [Google Scholar] [CrossRef] [PubMed]
- Willeke, P.; Schotte, H.; Schlüter, B.; Erren, M.; Becker, H.; Dyong, A.; Mickholz, E.; Domschke, W.; Gaubitz, M. Interleukin 1β and Tumour Necrosis Factor α Secreting Cells Are Increased in the Peripheral Blood of Patients with Primary Sjögren’s Syndrome. Ann. Rheum. Dis. 2003, 62, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Liu, Z.; Li, X. Tear Cytokine Levels in Sjogren’s Syndrome-Related Dry Eye Disease Compared with Non-Sjogren’s Syndrome-Related Dry Eye Disease Patients: A Meta-Analysis. Medicine 2024, 103, e40669. [Google Scholar] [CrossRef]
- Martín-Nares, E.; Hernández-Molina, G.; Lima, G.; Hernández-Ramírez, D.F.; Chan-Campos, I.; Saavedra-González, V.; Llorente, L. Tear Levels of IL-7, IL-1α, and IL-1β May Differentiate between IgG4-Related Disease and Sjögren’s Syndrome. Clin. Rheumatol. 2023, 42, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Vakrakou, A.G.; Boiu, S.; Ziakas, P.D.; Xingi, E.; Boleti, H.; Manoussakis, M.N. Systemic Activation of NLRP3 Inflammasome in Patients with Severe Primary Sjögren’s Syndrome Fueled by Inflammagenic DNA Accumulations. J. Autoimmun. 2018, 91, 23–33. [Google Scholar] [CrossRef]
- Ren, W.; Sun, Y.; Zhao, L.; Shi, X. NLRP3 Inflammasome and Its Role in Autoimmune Diseases: A Promising Therapeutic Target. Biomed. Pharmacother. 2024, 175, 116679. [Google Scholar] [CrossRef]
- Baldini, C.; Rossi, C.; Ferro, F.; Santini, E.; Seccia, V.; Donati, V.; Solini, A. The P2X7 Receptor–Inflammasome Complex Has a Role in Modulating the Inflammatory Response in Primary Sjögren’s Syndrome. J. Intern. Med. 2013, 274, 480–489. [Google Scholar] [CrossRef]
- Conti, P.; Stellin, L.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Kritas, S.K.; Frydas, I.; Younes, A.; Emidio, P.D.; Ronconi, G. Advances in Mast Cell Activation by IL-1 and IL-33 in Sjögren’s Syndrome: Promising Inhibitory Effect of IL-37. Int. J. Mol. Sci. 2020, 21, 4297. [Google Scholar] [CrossRef]
- Al-Hwas, Z.S.; Ali, N.H.; Al-Hamdi, K.I. Distinct Inflammasome IL-1β Gene Expression Profile in Patients with Psoriatic Arthritis in Basra City. Int. J. Health Sci. 2022, 6 (Suppl. S4), 4570–4577. [Google Scholar] [CrossRef]
- Juneblad, K.; Kastbom, A.; Johansson, L.; Rantapää-Dahlqvist, S.; Söderkvist, P.; Alenius, G.-M. Association between Inflammasome-Related Polymorphisms and Psoriatic Arthritis. Scand. J. Rheumatol. 2020, 50, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Stoeckman, A.K.; Baechler, E.C.; Ortmann, W.A.; Behrens, T.W.; Michet, C.J.; Peterson, E.J. A Distinct Inflammatory Gene Expression Profile in Patients with Psoriatic Arthritis. Genes Immun. 2006, 7, 583–591. [Google Scholar] [CrossRef]
- Dilek, G.; Kalcik Unan, M.; Nas, K. Immune Response and Cytokine Pathways in Psoriatic Arthritis: A Systematic Review. Arch. Rheumatol. 2025, 40, 144–156. [Google Scholar] [CrossRef]
- Hussein, M.R.; Hassan, H.I.; Hofny, E.R.M.; Elkholy, M.; Fatehy, N.A.; Abd Elmoniem, A.E.A.; Ezz El-Din, A.M.; Afifi, O.A.; Rashed, H.G. Alterations of Mononuclear Inflammatory Cells, CD4/CD8+ T Cells, Interleukin 1β, and Tumour Necrosis Factor α in the Bronchoalveolar Lavage Fluid, Peripheral Blood, and Skin of Patients with Systemic Sclerosis. J. Clin. Pathol. 2005, 58, 178–184. [Google Scholar] [CrossRef]
- Maleszewska, M.; Moonen, J.-R.A.J.; Huijkman, N.; van de Sluis, B.; Krenning, G.; Harmsen, M.C. IL-1β and TGFβ2 Synergistically Induce Endothelial to Mesenchymal Transition in an NFκB-Dependent Manner. Immunobiology 2013, 218, 443–454. [Google Scholar] [CrossRef]
- Laurent, P.; Lapoirie, J.; Leleu, D.; Levionnois, E.; Grenier, C.; Jurado-Mestre, B.; Lazaro, E.; Duffau, P.; Richez, C.; Seneschal, J.; et al. Interleukin-1β-Activated Microvascular Endothelial Cells Promote DC-SIGN-Positive Alternatively Activated Macrophages as a Mechanism of Skin Fibrosis in Systemic Sclerosis. Arthritis Rheumatol. 2022, 74, 1013–1026. [Google Scholar] [CrossRef]
- Grebenciucova, E.; VanHaerents, S. Interleukin 6: At the Interface of Human Health and Disease. Front. Immunol. 2023, 14, 1255533. [Google Scholar] [CrossRef] [PubMed]
- Rose-John, S.; Jenkins, B.J.; Garbers, C.; Moll, J.M.; Scheller, J. Targeting IL-6 Trans-Signalling: Past, Present and Future Prospects. Nat. Rev. Immunol. 2023, 23, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Wallenius, V.; Wallenius, K.; Ahrén, B.; Rudling, M.; Carlsten, H.; Dickson, S.L.; Ohlsson, C.; Jansson, J.-O. Interleukin-6-Deficient Mice Develop Mature-Onset Obesity. Nat. Med. 2002, 8, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Wuestefeld, T.; Klein, C.; Streetz, K.L.; Betz, U.; Lauber, J.; Buer, J.; Manns, M.P.; Müller, W.; Trautwein, C. Interleukin-6/Glycoprotein 130-Dependent Pathways Are Protective during Liver Regeneration. J. Biol. Chem. 2003, 278, 11281–11288. [Google Scholar] [CrossRef]
- Zhu, S.; He, H.; Gao, C.; Luo, G.; Xie, Y.; Wang, H.; Tian, L.; Chen, X.; Yu, X.; He, C. Ovariectomy-Induced Bone Loss in TNFα and IL6 Gene Knockout Mice Is Regulated by Different Mechanisms. J. Mol. Endocrinol. 2018, 60, 185–198. [Google Scholar] [CrossRef]
- Alonzi, T.; Fattori, E.; Lazzaro, D.; Costa, P.; Probert, L.; Kollias, G.; De Benedetti, F.; Poli, V.; Ciliberto, G. Interleukin 6 Is Required for the Development of Collagen-Induced Arthritis. J. Exp. Med. 1998, 187, 461–468. [Google Scholar] [CrossRef]
- Okuda, Y. IL-6-Deficient Mice Are Resistant to the Induction of Experimental Autoimmune Encephalomyelitis Provoked by Myelin Oligodendrocyte Glycoprotein. Int. Immunol. 1998, 10, 703–708. [Google Scholar] [CrossRef]
- Pandolfi, F.; Franza, L.; Carusi, V.; Altamura, S.; Andriollo, G.; Nucera, E. Interleukin-6 in Rheumatoid Arthritis. Int. J. Mol. Sci. 2020, 21, 5238. [Google Scholar] [CrossRef] [PubMed]
- Chomarat, P.; Banchereau, J.; Davoust, J.; Karolina Palucka, A. IL-6 Switches the Differentiation of Monocytes from Dendritic Cells to Macrophages. Nat. Immunol. 2000, 1, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Martynova, E.; Rizvanov, A.; Urbanowicz, R.A.; Khaiboullina, S. Inflammasome Contribution to the Activation of Th1, Th2, and Th17 Immune Responses. Front. Microbiol. 2022, 13, 851835. [Google Scholar] [CrossRef]
- Srirangan, S.; Choy, E.H. The Role of Interleukin 6 in the Pathophysiology of Rheumatoid Arthritis. Ther. Adv. Musculoskelet. Dis. 2010, 2, 247–256. [Google Scholar] [CrossRef]
- Woś, I.; Tabarkiewicz, J. Effect of Interleukin-6, -17, -21, -22, and -23 and STAT3 on Signal Transduction Pathways and Their Inhibition in Autoimmune Arthritis. Immunol. Res. 2021, 69, 26–42. [Google Scholar] [CrossRef]
- Tong, Y.; Li, X.; Deng, Q.; Shi, J.; Feng, Y.; Bai, L. Advances of the Small Molecule Drugs Regulating Fibroblast-like Synovial Proliferation for Rheumatoid Arthritis. Front. Pharmacol. 2023, 14, 1230293. [Google Scholar] [CrossRef]
- Carbone, G.; Wilson, A.; Diehl, S.A.; Bunn, J.; Cooper, S.M.; Rincon, M. Interleukin-6 Receptor Blockade Selectively Reduces IL-21 Production by CD4 T Cells and IgG4 Autoantibodies in Rheumatoid Arthritis. Int. J. Biol. Sci. 2013, 9, 279–288. [Google Scholar] [CrossRef]
- Dienz, O.; Rincon, M. The Effects of IL-6 on CD4 T Cell Responses. Clin. Immunol. 2009, 130, 27–33. [Google Scholar] [CrossRef]
- Favalli, E.G. Understanding the Role of Interleukin-6 (IL-6) in the Joint and Beyond: A Comprehensive Review of IL-6 Inhibition for the Management of Rheumatoid Arthritis. Rheumatol. Ther. 2020, 7, 473–516. [Google Scholar] [CrossRef]
- Idborg, H.; Oke, V. Cytokines as Biomarkers in Systemic Lupus Erythematosus: Value for Diagnosis and Drug Therapy. Int. J. Mol. Sci. 2021, 22, 11327. [Google Scholar] [CrossRef]
- Parodis, I.; Lindblom, J.; Toro-Domínguez, D.; Beretta, L.; Borghi, M.O.; Castillo, J.; Carnero-Montoro, E.; Enman, Y.; Mohan, C.; Alarcón-Riquelme, M.E.; et al. Interferon and B-Cell Signatures Inform Precision Medicine in Lupus Nephritis. Kidney Int. Rep. 2024, 9, 1817–1835. [Google Scholar] [CrossRef]
- Sawaf, M.; Dumortier, H.; Monneaux, F. Follicular Helper T Cells in Systemic Lupus Erythematosus: Why Should They Be Considered as Interesting Therapeutic Targets? J. Immunol. Res. 2016, 2016, 5767106. [Google Scholar] [CrossRef] [PubMed]
- López-Villalobos, E.F.; Muñoz-Valle, J.F.; Palafox-Sánchez, C.A.; García-Arellano, S.; Martínez-Fernández, D.E.; Orozco-Barocio, G.; García-Espinoza, J.A.; Oregon-Romero, E. Cytokine Profiles and Clinical Characteristics in Primary Sjögren’s Syndrome Patient Groups. J. Clin. Lab. Anal. 2020, 35, e23629. [Google Scholar] [CrossRef]
- Sisto, M.; Tamma, R.; Ribatti, D.; Lisi, S. IL-6 Contributes to the TGF-Β1-Mediated Epithelial to Mesenchymal Transition in Human Salivary Gland Epithelial Cells. Arch. Immunol. Et Ther. Exp. 2020, 68, 27. [Google Scholar] [CrossRef]
- Sarrand, J.; Soyfoo, M.S. Involvement of Epithelial-Mesenchymal Transition (EMT) in Autoimmune Diseases. Int. J. Mol. Sci. 2023, 24, 14481. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Feng, Y.; Lin, X. Immune and Non-Immune Mediators in the Fibrosis Pathogenesis of Salivary Gland in Sjögren’s Syndrome. Front. Immunol. 2024, 15, 1421436. [Google Scholar] [CrossRef] [PubMed]
- Chisălău, B.A.; Vreju, F.A.; Firulescu, S.C.; Dinescu, Ș.C.; Ciobanu, D.A.; Tica, A.A.; Sandu, R.E.; Siloși, I.; Boldeanu, M.V.; Poenariu, I.S.; et al. New Insights into IL-17/IL-23 Signaling in Ankylosing Spondylitis (Review). Exp. Ther. Med. 2020, 20, 3493–3497. [Google Scholar] [CrossRef]
- Du, J.; Sun, J.; Wen, Z.; Wu, Z.; Li, Q.; Xia, Y.; Yang, Q.; Yang, C. Serum IL-6 and TNF-α Levels Are Correlated with Disease Severity in Patients with Ankylosing Spondylitis. Lab. Med. 2021, 53, 149–155. [Google Scholar] [CrossRef]
- Yokota, K.; Sato, K.; Miyazaki, T.; Aizaki, Y.; Tanaka, S.; Sekikawa, M.; Kozu, N.; Kadono, Y.; Oda, H.; Mimura, T. Characterization and Function of Tumor Necrosis Factor and Interleukin-6–Induced Osteoclasts in Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 1145–1154. [Google Scholar] [CrossRef]
- Batko, B. Exploring the Diverse Immune and Genetic Landscape of Psoriatic Arthritis. J Clin Med. 2021, 10, 5926. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Hayami, Y.; Naniwa, T.; Ueda, R. The Th17/IL-23 Axis and Natural Immunity in Psoriatic Arthritis. Int. J. Rheumatol. 2012, 2012, 539683. [Google Scholar] [CrossRef]
- Gravallese, E.M.; Schett, G. Effects of the IL-23–IL-17 Pathway on Bone in Spondyloarthritis. Nat. Rev. Rheumatol. 2018, 14, 631–640. [Google Scholar] [CrossRef]
- Ibrahim-Achi, Z.; de Vera-González, A.; González-Delgado, A.; López-Mejías, R.; González-Gay, M.Á.; Ferraz-Amaro, I. Interleukin-6 Serum Levels Are Associated with Disease Features and Cardiovascular Risk in Patients with Systemic Sclerosis. Clin. Exp. Rheumatol. 2023, 1, 1564–1570. [Google Scholar] [CrossRef]
- Cardoneanu, A.; Burlui, A.M.; Macovei, L.A.; Bratoiu, I.; Richter, P.; Rezus, E. Targeting Systemic Sclerosis from Pathogenic Mechanisms to Clinical Manifestations: Why IL-6? Biomedicines 2022, 10, 318. [Google Scholar] [CrossRef]
- Yoshizaki, K. Pathogenic Role of IL-6 Combined with TNF-α or IL-1 in the Induction of Acute Phase Proteins SAA and CRP in Chronic Inflammatory Diseases. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2010; pp. 141–150. [Google Scholar]
- Saito, F.; Tasaka, S.; Inoue, K.; Miyamoto, K.; Nakano, Y.; Ogawa, Y.; Yamada, W.; Shiraishi, Y.; Hasegawa, N.; Fujishima, S.; et al. Role of Interleukin-6 in Bleomycin-Induced Lung Inflammatory Changes in Mice. Am. J. Respir. Cell Mol. Biol. 2008, 38, 566–571. [Google Scholar] [CrossRef]
- Huangfu, L.; Li, R.; Huang, Y.; Wang, S. The IL-17 Family in Diseases: From Bench to Bedside. Signal Transduct. Target. Ther. 2023, 8, 402. [Google Scholar] [CrossRef]
- Sieper, J.; Poddubnyy, D.; Miossec, P. The IL-23–IL-17 Pathway as a Therapeutic Target in Axial Spondyloarthritis. Nat. Rev. Rheumatol. 2019, 15, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shen, M. The Role of IL-17 in Systemic Autoinflammatory Diseases: Mechanisms and Therapeutic Perspectives. Clin. Rev. Allergy Immunol. 2025, 68, 27. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ouyang, Y.; You, W.; Liu, W.; Cheng, Y.; Mai, X.; Shen, Z. Physiological Roles of Human Interleukin-17 Family. Exp. Dermatol. 2023, 33, e14964. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Amatya, N.; Revu, S.; Jawale, C.V.; Wu, D.; Rittenhouse, N.; Menk, A.; Kupul, S.; Du, F.; Raphael, I.; et al. IL-17 Metabolically Reprograms Activated Fibroblastic Reticular Cells for Proliferation and Survival. Nat. Immunol. 2019, 20, 534–545. [Google Scholar] [CrossRef]
- Moran, E.M.; Mullan, R.; McCormick, J.; Connolly, M.; Sullivan, O.; FitzGerald, O.; Bresnihan, B.; Veale, D.J.; Fearon, U. Human Rheumatoid Arthritis Tissue Production of IL-17A Drives Matrix and Cartilage Degradation: Synergy with Tumour Necrosis Factor-α, Oncostatin M and Response to Biologic Therapies. Arthritis Res. Ther. 2009, 11, R113. [Google Scholar] [CrossRef] [PubMed]
- Gaffen, S.L. The Role of Interleukin-17 in the Pathogenesis of Rheumatoid Arthritis. Curr. Rheumatol. Rep. 2009, 11, 365–370. [Google Scholar] [CrossRef]
- Talaat, R.M.; Mohamed, S.F.; Bassyouni, I.H.; Raouf, A.A. Th1/Th2/Th17/Treg Cytokine Imbalance in Systemic Lupus Erythematosus (SLE) Patients: Correlation with Disease Activity. Cytokine 2015, 72, 146–153. [Google Scholar] [CrossRef]
- Shin, M.S.; Lee, N.; Kang, I. Effector T-Cell Subsets in Systemic Lupus Erythematosus. Curr. Opin. Rheumatol. 2011, 23, 444–448. [Google Scholar] [CrossRef]
- Yin, R.; Xu, R.; Ding, L.; Sui, W.; Niu, M.; Wang, M.; Xu, L.; Wang, H.; Srirat, C. Circulating IL-17 Level Is Positively Associated with Disease Activity in Patients with Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2021, 2021, 9952463. [Google Scholar] [CrossRef]
- Zhan, Q.; Zhang, J.; Lin, Y.; Chen, W.; Fan, X.; Zhang, D. Pathogenesis and Treatment of Sjogren’s Syndrome: Review and Update. Front. Immunol. 2023, 14, 1127417. [Google Scholar] [CrossRef]
- Sisto, M.; Lisi, S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J. Clin. Med. 2023, 13, 164. [Google Scholar] [CrossRef] [PubMed]
- Sisto, M.; Lorusso, L.; Ingravallo, G.; Ribatti, D.; Lisi, S. TGFβ1-Smad Canonical and -Erk Noncanonical Pathways Participate in Interleukin-17-Induced Epithelial–Mesenchymal Transition in Sjögren’s Syndrome. Lab. Investig. 2020, 100, 824–836. [Google Scholar] [CrossRef]
- Nguyen, C.Q.; Yin, H.; Lee, B.H.; Chiorini, J.A.; Peck, A.B. IL17: Potential Therapeutic Target in Sjögren’s Syndrome Using Adenovirus-Mediated Gene Transfer. Lab. Investig. 2011, 91, 54–62. [Google Scholar] [CrossRef]
- Park, J.-S.; Kim, S.-M.; Choi, J.; Jung, K.-A.; Hwang, S.-H.; Yang, S.; Kwok, S.-K.; Cho, M.-L.; Park, S.-H. Interleukin-21-Mediated Suppression of the Pax3-Id3 Pathway Exacerbates the Development of Sjögren’s Syndrome via Follicular Helper T Cells. Cytokine 2020, 125, 154834. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.T.; Kollnberger, S.D.; Wedderburn, L.R.; Bowness, P. Expansion and Enhanced Survival of Natural Killer Cells Expressing the Killer Immunoglobulin-like Receptor KIR3DL2 in Spondylarthritis. Arthritis Rheum. 2005, 52, 3586–3595. [Google Scholar] [CrossRef]
- Harrison, S.R.; Marzo-Ortega, H. Have Therapeutics Enhanced Our Knowledge of Axial Spondyloarthritis? Curr. Rheumatol. Rep. 2023, 25, 56–67. [Google Scholar] [CrossRef]
- Colbert, R.A.; DeLay, M.L.; Klenk, E.I.; Layh-Schmitt, G. From HLA-B27 to Spondyloarthritis: A Journey through the ER. Immunol. Rev. 2009, 233, 181–202. [Google Scholar] [CrossRef]
- Wilson, N.J.; Boniface, K.; Chan, J.R.; McKenzie, B.S.; Blumenschein, W.M.; Mattson, J.D.; Basham, B.; Smith, K.; Chen, T.; Morel, F.; et al. Development, Cytokine Profile and Function of Human Interleukin 17–Producing Helper T Cells. Nat. Immunol. 2007, 8, 950–957. [Google Scholar] [CrossRef]
- Steel, K.J.A.; Srenathan, U.; Ridley, M.; Durham, L.E.; Wu, S.; Ryan, S.E.; Hughes, C.D.; Chan, E.; Kirkham, B.W.; Taams, L.S. Polyfunctional, Proinflammatory, Tissue-Resident Memory Phenotype and Function of Synovial Interleukin-17A+CD8+ T Cells in Psoriatic Arthritis. Arthritis Rheumatol. 2020, 72, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Seki, N.; Tsujimoto, H.; Tanemura, S.; Ishigaki, S.; Takei, H.; Sugahara, K.; Yoshimoto, K.; Akiyama, M.; Kaneko, Y.; Chiba, K.; et al. Th17/IL-17A Axis Is Critical for Pulmonary Arterial Hypertension (PAH) in Systemic Sclerosis (SSc): SSc Patients with High Levels of Serum IL-17A Exhibit Reduced Lung Functions and Increased Prevalence of PAH. Cytokine 2024, 176, 156534. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Xing, X.; Wan, L.; Li, M. Increased Frequency of Th17 Cells in Systemic Sclerosis Is Related to Disease Activity and Collagen Overproduction. Arthritis Res. Ther. 2014, 16, R4. [Google Scholar] [CrossRef]
- Lin, C.M.A.; Isaacs, J.D.; Cooles, F.A.H. Role of IFN-α in Rheumatoid Arthritis. Curr. Rheumatol. Rep. 2023, 26, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Kato, M. New Insights into IFN-γ in Rheumatoid Arthritis: Role in the Era of JAK Inhibitors. Immunol. Med. 2020, 43, 72–78. [Google Scholar] [CrossRef]
- Puigdevall, L.; Michiels, C.; Stewardson, C.; Dumoutier, L. JAK/STAT: Why Choose a Classical or an Alternative Pathway When You Can Have Both? J. Cell. Mol. Med. 2022, 26, 1865–1875. [Google Scholar] [CrossRef]
- Alspach, E.; Lussier, D.M.; Schreiber, R.D. Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb. Perspect. Biol. 2018, 11, a028480. [Google Scholar] [CrossRef] [PubMed]
- Ivashkiv, L.B. IFNγ: Signalling, Epigenetics and Roles in Immunity, Metabolism, Disease and Cancer Immunotherapy. Nat. Rev. Immunol. 2018, 18, 545–558. [Google Scholar] [CrossRef]
- Kim, E.Y.; Moudgil, K.D. Immunomodulation of Autoimmune Arthritis by Pro-Inflammatory Cytokines. Cytokine 2017, 98, 87–96. [Google Scholar] [CrossRef]
- Heo, J.; Heo, S.; Kang, J.R.; Kweon, J.; Lee, Y.; Baek, J.-H. Rheumatoid Arthritis: A Complex Tale of Autoimmune Hypersensitivity. Explor. Immunol. 2024, 4, 358–375. [Google Scholar] [CrossRef]
- Lee, K.; Min, H.K.; Koh, S.-H.; Lee, S.-H.; Kim, H.-R.; Ju, J.H.; Kim, H.-Y. Prognostic Signature of Interferon-γ and Interleurkin-17A in Early Rheumatoid Arthritis. Clin. Exp. Rheumatol. 2021, 40, 999–1005. [Google Scholar] [CrossRef]
- Lee, S.H.; Kwon, J.Y.; Kim, S.-Y.; Jung, K.; Cho, M.-L. Interferon-Gamma Regulates Inflammatory Cell Death by Targeting Necroptosis in Experimental Autoimmune Arthritis. Sci. Rep. 2017, 7, 10133. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, B. IFN-γ Promotes the Development of Systemic Lupus Erythematosus through the IFNGR1/2-PSTAT1-TBX21 Signaling Axis. Am. J. Transl. Res. 2022, 14, 6874. [Google Scholar]
- Lee, Y.H.; Song, G.G. Association between the Interferon-γ +874 T/A Polymorphism and Susceptibility to Systemic Lupus Erythematosus and Rheumatoid Arthritis: A Meta-analysis. Int. J. Immunogenet. 2022, 49, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Madej, M.; Gajdanowicz, P.; Sebastian, M.; Łuczak, A.; Zemelka-Wiącek, M.; Jutel, M.; Wiland, P. Interferon Gamma Targeted Therapy: Is It Justified in Primary Sjögren’s Syndrome? J. Clin. Med. 2022, 11, 5405. [Google Scholar] [CrossRef]
- Aljohani, S.; Jazzar, A. Tear Cytokine Levels in Sicca Syndrome-Related Dry Eye: A Meta-Analysis. Diagnostics 2023, 13, 2184. [Google Scholar] [CrossRef]
- Cao, T.; Zhou, J.; Liu, Q.; Mao, T.; Chen, B.; Wu, Q.; Wang, L.; Pathak, J.L.; Watanabe, N.; Li, J. Interferon-γ Induces Salivary Gland Epithelial Cell Ferroptosis in Sjogren’s Syndrome via JAK/STAT1-Mediated Inhibition of System Xc. Free. Radic. Biol. Med. 2023, 205, 116–128. [Google Scholar] [CrossRef]
- Zhou, J.; Pathak, J.L.; Cao, T.; Chen, B.; Wei, W.; Hu, S.; Mao, T.; Wu, X.; Watanabe, N.; Li, X.; et al. CD4 T Cell-Secreted IFN-γ in Sjögren’s Syndrome Induces Salivary Gland Epithelial Cell Ferroptosis. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2024, 1870, 167121. [Google Scholar] [CrossRef] [PubMed]
- Finotti, G.; Tamassia, N.; Cassatella, M.A. Interferon-Λs and Plasmacytoid Dendritic Cells: A Close Relationship. Front. Immunol. 2017, 8, 1015. [Google Scholar] [CrossRef]
- Hu, Y.; Lou, B.; Jiang, Z.; Yu, C. Predictive Values of Blood Type I and Type II Interferon Production for Disease Activity and Clinical Response to TNF-α Blocking Therapy in Patients with Ankylosing Spondylitis. Tohoku J. Exp. Med. 2023, 260, 263–271. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, G.; Guan, Y.; Zhao, X.; Wang, Q.; Li, H.; Qi, J. Association of IFN-γ Polymorphisms with Ankylosing Spondylitis Risk. J. Cell. Mol. Med. 2020, 24, 10615–10620. [Google Scholar] [CrossRef]
- Dai, H.; Adamopoulos, I.E. Psoriatic Arthritis under the Influence of IFNγ. Clin. Immunol. 2020, 218, 108513. [Google Scholar] [CrossRef] [PubMed]
- Fragoulis, G.E.; Ntouros, P.A.; Nezos, A.; Vlachogiannis, N.I.; McInnes, I.B.; Tektonidou, M.G.; Skarlis, C.; Souliotis, V.L.; Mavragani, C.P.; Sfikakis, P.P. Type-I Interferon Pathway and DNA Damage Accumulation in Peripheral Blood of Patients with Psoriatic Arthritis. Front. Immunol. 2023, 14, 1274060. [Google Scholar] [CrossRef]
- Terao, C.; Kawaguchi, T.; Dieude, P.; Varga, J.; Kuwana, M.; Hudson, M.; Kawaguchi, Y.; Matucci-Cerinic, M.; Ohmura, K.; Riemekasten, G.; et al. Transethnic Meta-Analysis Identifies GSDMA and PRDM1 as Susceptibility Genes to Systemic Sclerosis. Ann. Rheum. Dis. 2017, 76, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Gorlova, O.; Martin, J.-E.; Rueda, B.; Koeleman, B.P.C.; Ying, J.; Teruel, M.; Diaz-Gallo, L.-M.; Broen, J.C.; Vonk, M.C.; Simeon, C.P.; et al. Identification of Novel Genetic Markers Associated with Clinical Phenotypes of Systemic Sclerosis through a Genome-Wide Association Strategy. PLoS Genet. 2011, 7, e1002178. [Google Scholar] [CrossRef]
- Ip, W.K.E.; Hoshi, N.; Shouval, D.S.; Snapper, S.; Medzhitov, R. Anti-Inflammatory Effect of IL-10 Mediated by Metabolic Reprogramming of Macrophages. Science 2017, 356, 513–519. [Google Scholar] [CrossRef]
- Fiorentino, D.F.; Bond, M.W.; Mosmann, T.R. Two Types of Mouse T Helper Cell. IV. Th2 Clones Secrete a Factor That Inhibits Cytokine Production by Th1 Clones. J. Exp. Med. 1989, 170, 2081–2095. [Google Scholar] [CrossRef]
- Biswas, S.; Bieber, K.; Manz, R.A. IL-10 Revisited in Systemic Lupus Erythematosus. Front. Immunol. 2022, 13, 970906. [Google Scholar] [CrossRef]
- Sabat, R.; Grütz, G.; Warszawska, K.; Kirsch, S.; Witte, E.; Wolk, K.; Geginat, J. Biology of Interleukin-10. Cytokine Growth Factor Rev. 2010, 21, 331–344. [Google Scholar] [CrossRef]
- Mittal, S.K.; Roche, P.A. Suppression of Antigen Presentation by IL-10. Curr. Opin. Immunol. 2015, 34, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Nagata, K.; Nishiyama, C. IL-10 in Mast Cell-Mediated Immune Responses: Anti-Inflammatory and Proinflammatory Roles. Int. J. Mol. Sci. 2021, 22, 4972. [Google Scholar] [CrossRef]
- Ahmed, I.; Ismail, N. M1 and M2 Macrophages Polarization via mTORC1 Influences Innate Immunity and Outcome of Ehrlichia Infection. J. Cell. Immunol. 2020, 2, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Paschalidi, P.; Gkouveris, I.; Soundia, A.; Kalfarentzos, E.; Vardas, E.; Georgaki, M.; Kostakis, G.; Erovic, B.M.; Tetradis, S.; Perisanidis, C.; et al. The Role of M1 and M2 Macrophage Polarization in Progression of Medication-Related Osteonecrosis of the Jaw. Clin. Oral Investig. 2020, 25, 2845–2857. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Kunkel, S.L.; Chang, C.-H. Negative Regulation of MyD88-Dependent Signaling by IL-10 in Dendritic Cells. Proc. Natl. Acad. Sci. USA 2009, 106, 18327–18332. [Google Scholar] [CrossRef]
- Greenhill, C.J.; Jones, G.W.; Nowell, M.A.; Newton, Z.; Harvey, A.K.; Moideen, A.N.; Collins, F.L.; Bloom, A.C.; Coll, R.C.; Robertson, A.A.; et al. Interleukin-10 Regulates the Inflammasome-Driven Augmentation of Inflammatory Arthritis and Joint Destruction. Arthritis Res. Ther. 2014, 16, 419. [Google Scholar] [CrossRef] [PubMed]
- Cush, J.J.; Splawski, J.B.; Thomas, R.; Mcfarlin, J.E.; Schulze-Koops, H.; Davis, L.S.; Fujita, K.; Lipsky, P.E. Elevated Interleukin-10 Levels in Patients with Rheumatoid Arthritis. Arthritis Rheum. 1995, 38, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.G.-K.; Sugiyama, E.; Shinoda, K.; Taki, H.; Hounoki, H.; Abdel-Aziz, H.O.; Maruyama, M.; Kobayashi, M.; Ogawa, H.; Miyahara, T. Interleukin-10 Inhibits RANKL-Mediated Expression of NFATc1 in Part via Suppression of c-Fos and c-Jun in RAW264.7 Cells and Mouse Bone Marrow Cells. Bone 2007, 41, 592–602. [Google Scholar] [CrossRef]
- Moreno-Torres, V.; Castejón, R.; Martínez-Urbistondo, M.; Gutiérrez-Rojas, Á.; Vázquez-Comendador, J.; Tutor, P.; Durán-del Campo, P.; Mellor-Pita, S.; Rosado, S.; Vargas-Núñez, J. Serum Cytokines to Predict Systemic Lupus Erythematosus Clinical and Serological Activity. Clin. Transl. Sci. 2022, 15, 1676–1686. [Google Scholar] [CrossRef] [PubMed]
- Richter, P.; Macovei, L.A.; Rezus, C.; Boiculese, V.L.; Buliga-Finis, O.N.; Rezus, E. IL-10 in Systemic Lupus Erythematosus: Balancing Immunoregulation and Autoimmunity. Int. J. Mol. Sci. 2025, 26, 3290. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, Z.; Tang, X.; Li, W.; Chen, W.; Yao, G. IL-27 Regulated CD4+IL-10+ T Cells in Experimental Sjögren Syndrome. Front. Immunol. 2020, 11, 1699. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, J.; Cui, J.; Gu, Y.; Shan, Y. Subpopulation Dynamics of T and B Lymphocytes in Sjögren’s Syndrome: Implications for Disease Activity and Treatment. Front. Immunol. 2024, 15, 1468469. [Google Scholar] [CrossRef]
- Lin, X.; Wang, X.; Xiao, F.; Ma, K.; Liu, L.; Wang, X.; Xu, D.; Wang, F.; Shi, X.; Liu, D.; et al. IL-10-Producing Regulatory B Cells Restrain the T Follicular Helper Cell Response in Primary Sjögren’s Syndrome. Cell. Mol. Immunol. 2019, 16, 921–931. [Google Scholar] [CrossRef]
- Braga, M.; Lara-Armi, F.F.; Neves, J.S.F.; Rocha-Loures, M.A.; Terron-Monich, M.d.S.; Bahls-Pinto, L.D.; de Lima Neto, Q.A.; Zacarias, J.M.V.; Sell, A.M.; Visentainer, J.E.L. Influence of IL10 (Rs1800896) Polymorphism and TNF-α, IL-10, IL-17A, and IL-17F Serum Levels in Ankylosing Spondylitis. Front. Immunol. 2021, 12, 653611. [Google Scholar] [CrossRef]
- Shehata, L.; Thouvenel, C.D.; Hondowicz, B.D.; Pew, L.A.; Pritchard, G.H.; Rawlings, D.J.; Choi, J.; Pepper, M. Interleukin-4 Downregulates Transcription Factor BCL6 to Promote Memory B Cell Selection in Germinal Centers. Immunity 2024, 57, 843–858.e5. [Google Scholar] [CrossRef]
- Duan, L.; Liu, D.; Chen, H.; Mintz, M.A.; Chou, M.Y.; Kotov, D.I.; Xu, Y.; An, J.; Laidlaw, B.J.; Cyster, J.G. Follicular Dendritic Cells Restrict Interleukin-4 Availability in Germinal Centers and Foster Memory B Cell Generation. Immunity 2021, 54, 2256–2272.e6. [Google Scholar] [CrossRef]
- Pan, K.; Li, Q.; Guo, Z.; Li, Z. Healing Action of Interleukin-4 (IL-4) in Acute and Chronic Inflammatory Conditions: Mechanisms and Therapeutic Strategies. Pharmacol. Ther. 2025, 265, 108760. [Google Scholar] [CrossRef]
- Allen, J.E. IL-4 and IL-13: Regulators and Effectors of Wound Repair. Annu. Rev. Immunol. 2023, 41, 229–254. [Google Scholar] [CrossRef]
- Shen, L.; Zhou, Y.; Gong, J.; Fan, H.; Liu, L. The Role of Macrophages in Hypertrophic Scarring: Molecular to Therapeutic Insights. Front Immunol. 2025, 16, 1503985. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-C.; Hwang, Y.-S.; Chen, Y.-Y.; Liu, C.-L.; Shen, C.-N.; Hong, W.-H.; Lo, S.-M.; Shen, C.-R. Interleukin-4 Supports the Suppressive Immune Responses Elicited by Regulatory T Cells. Front. Immunol. 2017, 8, 1508. [Google Scholar] [CrossRef]
- Iwaszko, M.; Biały, S.; Bogunia-Kubik, K. Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis. Cells 2021, 10, 3000. [Google Scholar] [CrossRef]
- Panda, S.K.; Wigerblad, G.; Jiang, L.; Jiménez-Andrade, Y.; Iyer, V.S.; Shen, Y.; Boddul, S.V.; Guerreiro-Cacais, A.O.; Raposo, B.; Kasza, Z.; et al. IL-4 Controls Activated Neutrophil FcγR2b Expression and Migration into Inflamed Joints. Proc. Natl. Acad. Sci. USA 2020, 117, 3103–3113. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, W.; Liao, Y.; Sun, T.; Liu, Y.; Liu, Y. Immune Cell Aberrations in Systemic Lupus Erythematosus: Navigating the Targeted Therapies toward Precision Management. Cell. Mol. Biol. Lett. 2025, 30, 73. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Aqrawi, L.A.; Utheim, T.P.; Tashbayev, B.; Utheim, Ø.A.; Reppe, S.; Hove, L.H.; Herlofson, B.B.; Singh, P.B.; Palm, Ø.; et al. Elevated Cytokine Levels in Tears and Saliva of Patients with Primary Sjögren’s Syndrome Correlate with Clinical Ocular and Oral Manifestations. Sci Rep. 2019, 9, 7319. [Google Scholar] [CrossRef]
- Wirth, T.; Balandraud, N.; Boyer, L.; Lafforgue, P.; Pham, T. Biomarkers in Psoriatic Arthritis: A Meta-Analysis and Systematic Review. Front. Immunol. 2022, 13, 1054539. [Google Scholar] [CrossRef] [PubMed]
- Onderdijk, A.J.; Baerveldt, E.M.; Kurek, D.; Kant, M.; Florencia, E.F.; Debets, R.; Prens, E.P. IL-4 Downregulates IL-1β and IL-6 and Induces GATA3 in Psoriatic Epidermal Cells: Route of Action of a Th2 Cytokine. J. Immunol. 2015, 195, 1744–1752. [Google Scholar] [CrossRef]
- Guenova, E.; Skabytska, Y.; Hoetzenecker, W.; Weindl, G.; Sauer, K.; Tham, M.; Kim, K.-W.; Park, J.-H.; Seo, J.H.; Ignatova, D.; et al. IL-4 Abrogates T H 17 Cell-Mediated Inflammation by Selective Silencing of IL-23 in Antigen-Presenting Cells. Proc. Natl. Acad. Sci. USA 2015, 112, 2163–2168. [Google Scholar] [CrossRef]
- Sanjabi, S.; Oh, S.A.; Li, M.O. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb. Perspect. Biol. 2017, 9, a022236. [Google Scholar] [CrossRef]
- Soudja, S.; Zhang, N. Editorial: TGF-β and T Cell Biology. Front Immunol. 2023, 14, 1282656. [Google Scholar] [CrossRef]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β Signaling in Health, Disease and Therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef]
- Zhu, Y.; Qian, A.; Cheng, Y.; Li, M.; Huang, C. Comprehensive Systematic Review and Meta-Analysis of the TGF-Β1 T869C Gene Polymorphism and Autoimmune Disease Susceptibility. Front. Genet. 2025, 16, 1502921. [Google Scholar] [CrossRef] [PubMed]
- Susianti, H.; Handono, K.; Purnomo, B.B.; Widodo, N.; Gunawan, A.; Kalim, H. Changes to Signal Peptide and the Level of Transforming Growth Factor- Β1 Due to T869C Polymorphism of TGF Β1 Associated with Lupus Renal Fibrosis. SpringerPlus 2014, 3, 514. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Han, S.; Kim, G.; Lee, J.; Kang, Y. TGF-SS1 Polymorphism Determines the Progression of Joint Damage in Rheumatoid Arthritis. Scand. J. Rheumatol. 2004, 33, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Chen, W.; Song, H.; Long, X.; Zhang, Z.; Tang, X.; Chen, H.; Lin, H.; Sun, L. Tofacitinib Ameliorates Lupus Through Suppression of T Cell Activation Mediated by TGF-Beta Type I Receptor. Front. Immunol. 2021, 12, 675542. [Google Scholar] [CrossRef]
- Lauraine, M.; de Taffin de Tilques, M.; Melamed-Kadosh, D.; Cherqaoui, B.; Rincheval, V.; Prevost, E.; Rincheval-Arnold, A.; Cela, E.; Admon, A.; Guénal, I.; et al. TGFβ Signaling Pathway Is Altered by HLA-B27 Expression, Resulting in Pathogenic Consequences Relevant for Spondyloarthritis. Arthritis Res. Ther. 2024, 26, 131. [Google Scholar] [CrossRef]
- Truchetet, M.E.; Brembilla, N.C.; Chizzolini, C. Current Concepts on the Pathogenesis of Systemic Sclerosis. Clin. Rev. Allergy Immunol. 2021, 64, 262–283. [Google Scholar] [CrossRef]
- Leask, A. Targeting the TGFβ, Endothelin-1 and CCN2 Axis to Combat Fibrosis in Scleroderma. Cell. Signal. 2008, 20, 1409–1414. [Google Scholar] [CrossRef]
- Chen, B.; Mu, C.; Zhang, Z.; He, X.; Liu, X. The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Front Immunol. 2022, 13. [Google Scholar] [CrossRef]
- Dantas, A.T.; Gonçalves, S.M.C.; Almeida, A.R.d.; Gonçalves, R.S.G.; Sampaio, M.C.P.D.; Vilar, K.d.M.; Pereira, M.C.; Rêgo, M.J.B.d.M.; Pitta, I.d.R.; Marques, C.D.L.; et al. Reassessing the Role of the Active TGF-Β1 as a Biomarker in Systemic Sclerosis: Association of Serum Levels with Clinical Manifestations. Dis. Markers 2016, 2016, 6064830. [Google Scholar] [CrossRef]
- Fuentelsaz-Romero, S.; Cuervo, A.; Estrada-Capetillo, L.; Celis, R.; García-Campos, R.; Ramírez, J.; Sastre, S.; Samaniego, R.; Puig-Kröger, A.; Cañete, J.D. GM-CSF Expression and Macrophage Polarization in Joints of Undifferentiated Arthritis Patients Evolving to Rheumatoid Arthritis or Psoriatic Arthritis. Front. Immunol. 2021, 11, 613975. [Google Scholar] [CrossRef] [PubMed]
- Becher, B.; Tugues, S.; Greter, M. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity 2016, 45, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.D.; Braine, E.L.; Campbell, I.K.; Rich, M.J.; Hamilton, J.A. Blockade of Collagen-Induced Arthritis Post-Onset by Antibody to Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF): Requirement for GM-CSF in the Effector Phase of Disease. Arthritis Res. 2001, 3, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-R.; Kim, K.-W.; Kim, B.-M.; Cho, M.-L.; Lee, S.-H. The Effect of Vascular Endothelial Growth Factor on Osteoclastogenesis in Rheumatoid Arthritis. PLoS ONE 2015, 10, e0124909. [Google Scholar] [CrossRef]
- Yoo, S.-A.; Kwok, S.-K.; Kim, W.-U. Proinflammatory Role of Vascular Endothelial Growth Factor in the Pathogenesis of Rheumatoid Arthritis: Prospects for Therapeutic Intervention. Mediat. Inflamm. 2008, 2008, 129873. [Google Scholar] [CrossRef]
- Bilgi, P.T.; Cetin, E.; Ozgonenel, L.; Aslan, A.; Aral, H.; Inal, B.B.; Guvenen, G. Elevated Levels of Serum Vascular Endothelial Growth Factor in Patients with Rheumatoid Arthritis. Clin. Biochem. 2009, 42, 343. [Google Scholar] [CrossRef]
- Di Lorenzo, B.; Zoroddu, S.; Mangoni, A.A.; Paliogiannis, P.; Erre, G.L.; Satta, R.; Carru, C.; Zinellu, A. VEGF in Psoriatic Arthritis: Systematic Review and Meta-Analysis. Clin. Chim. Acta 2025, 567, 120084. [Google Scholar] [CrossRef]
- Anaya, J.-M.; Shoenfeld, Y.; Rojas-Villarraga, A.; Levy, R.A.; Cervera, R. Autoimmunity: From Bench to Bedside; El Rosario University Press: Bogotá, Colombia, 2013; ISBN 9587383761. [Google Scholar]
- Kaushik, D.; Xu, B.; Kumar, M. Biomarkers in Immunology: Their Impact on Immune Function and Response. Adv. Biomark. Sci. Technol. 2025, 7, 95–110. [Google Scholar] [CrossRef]
- Decker, M.-L.; Gotta, V.; Wellmann, S.; Ritz, N. Cytokine Profiling in Healthy Children Shows Association of Age with Cytokine Concentrations. Sci. Rep. 2017, 7, 17842. [Google Scholar] [CrossRef]
- Hofmann, J.N.; Yu, K.; Bagni, R.K.; Lan, Q.; Rothman, N.; Purdue, M.P. Intra-Individual Variability over Time in Serum Cytokine Levels among Participants in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cytokine 2011, 56, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, e2004433. [Google Scholar] [CrossRef]
- Tarrant, J.M. Blood Cytokines as Biomarkers of In Vivo Toxicity in Preclinical Safety Assessment: Considerations for Their Use. Toxicol. Sci. 2010, 117, 4–16. [Google Scholar] [CrossRef]
- Angrish, M.M.; Pleil, J.D.; Stiegel, M.A.; Madden, M.C.; Moser, V.C.; Herr, D.W. Taxonomic Applicability of Inflammatory Cytokines in Adverse Outcome Pathway (AOP) Development. J. Toxicol. Environ. Health Part A 2016, 79, 184–196. [Google Scholar] [CrossRef]
- Chetaille Nézondet, A.-L.; Poubelle, P.E.; Pelletier, M. The Evaluation of Cytokines to Help Establish Diagnosis and Guide Treatment of Autoinflammatory and Autoimmune Diseases. J. Leukoc. Biol. 2020, 108, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, D.; Yang, Y.; Gimple, R.C.; Zhou, S. Integrative Multi-Omics Approaches to Explore Immune Cell Functions: Challenges and Opportunities. iScience 2023, 26, 106359. [Google Scholar] [CrossRef] [PubMed]
- Sha, H.; Zhu, W. Unveiling Causal Pathways in Autoimmune Diseases: A Multi-Omics Approach. Autoimmunity 2025, 58, 2480594. [Google Scholar] [CrossRef]
- Papadopoulos, C.G.; Gartzonikas, I.K.; Pappa, T.K.; Markatseli, T.E.; Migkos, M.P.; Voulgari, P.V.; Drosos, A.A. Eight-Year Survival Study of First-Line Tumour Necrosis Factor α Inhibitors in Rheumatoid Arthritis: Real-World Data from a University Centre Registry. Rheumatol. Adv. Pract. 2019, 3, rkz007. [Google Scholar] [CrossRef] [PubMed]
- Gossec, L.; Smolen, J.S.; Ramiro, S.; de Wit, M.; Cutolo, M.; Dougados, M.; Emery, P.; Landewé, R.; Oliver, S.; Aletaha, D.; et al. European League Against Rheumatism (EULAR) Recommendations for the Management of Psoriatic Arthritis with Pharmacological Therapies: 2015 Update. Ann. Rheum. Dis. 2016, 75, 499–510. [Google Scholar] [CrossRef]
- Garcia-Montoya, L.; Emery, P. Disease Modification in Ankylosing Spondylitis with TNF Inhibitors: Spotlight on Early Phase Clinical Trials. Expert Opin. Investig. Drugs 2021, 30, 1109–1124. [Google Scholar] [CrossRef]
- Mariette, X.; Ravaud, P.; Steinfeld, S.; Baron, G.; Goetz, J.; Hachulla, E.; Combe, B.; Puéchal, X.; Pennec, Y.; Sauvezie, B.; et al. Inefficacy of Infliximab in Primary Sjögren’s Syndrome: Results of the Randomized, Controlled Trial of Remicade in Primary Sjögren’s Syndrome (TRIPSS). Arthritis Rheum. 2004, 50, 1270–1276. [Google Scholar] [CrossRef]
- Sankar, V.; Brennan, M.T.; Kok, M.R.; Leakan, R.A.; Smith, J.A.; Manny, J.; Baum, B.J.; Pillemer, S.R. Etanercept in Sjögren’s Syndrome: A Twelve-week Randomized, Double-blind, Placebo-controlled Pilot Clinical Trial. Arthritis Rheum. 2004, 50, 2240–2245. [Google Scholar] [CrossRef]
- Murdaca, G.; Spanò, F.; Contatore, M.; Guastalla, A.; Puppo, F. Potential use of TNF-α inhibitors in systemic sclerosis. Immunotherapy 2014, 6, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Shovman, O.; Tamar, S.; Amital, H.; Watad, A.; Shoenfeld, Y. Diverse Patterns of Anti-TNF-α-Induced Lupus: Case Series and Review of the Literature. Clin. Rheumatol. 2017, 37, 563–568. [Google Scholar] [CrossRef]
- Rovin, B.H.; van Vollenhoven, R.F.; Aranow, C.; Wagner, C.; Gordon, R.; Zhuang, Y.; Belkowski, S.; Hsu, B. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Treatment with Sirukumab (CNTO 136) in Patients with Active Lupus Nephritis. Arthritis Rheumatol. 2016, 68, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Su, D.; Liu, K.; Liu, B.; Wang, S.; Zhang, X. The Effects of IL-17/IL-17R Inhibitors on Atherosclerosis in Psoriasis and Psoriatic Arthritis. Medicine 2021, 100, e24549. [Google Scholar] [CrossRef]
- Ramiro, S.; Nikiphorou, E.; Sepriano, A.; Ortolan, A.; Webers, C.; Baraliakos, X.; Landewé, R.B.M.; Van den Bosch, F.E.; Boteva, B.; Bremander, A.; et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann. Rheum. Dis. 2023, 82, 19–34. [Google Scholar] [CrossRef]
- Sambataro, D.; Sambataro, G.; Dal Bosco, Y.; Polosa, R. Present and future of biologic drugs in primary Sjögren’s syndrome. Expert Opin. Biol. Ther. 2017, 17, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Hou, S.-Y.; Zhao, S.; Hou, L.-X.; Jiao, T.; Xu, N.-N.; Zhang, N. Meta-Analysis of IL-17 Inhibitors in Two Populations of Rheumatoid Arthritis Patients: Biologic-Naïve or Tumor Necrosis Factor Inhibitor Inadequate Responders. Clin. Rheumatol. 2019, 38, 2747–2756. [Google Scholar] [CrossRef]
- van Vollenhoven, R.F.; Hahn, B.H.; Tsokos, G.C.; Wagner, C.L.; Lipsky, P.; Touma, Z.; Werth, V.P.; Gordon, R.M.; Zhou, B.; Hsu, B.; et al. Efficacy and Safety of Ustekinumab, an IL-12 and IL-23 Inhibitor, in Patients with Active Systemic Lupus Erythematosus: Results of a Multicentre, Double-Blind, Phase 2, Randomised, Controlled Study. Lancet 2018, 392, 1330–1339. [Google Scholar] [CrossRef]
- Shao, Q. Biologic therapy in Sjögren’s syndrome. Clin. Rheumatol. 2021, 40, 2143–2154. [Google Scholar] [CrossRef]
- Danve, A.; Deodhar, A. Treatment of axial spondyloarthritis: An update. Nat. Rev. Rheumatol. 2022, 18, 205–216. [Google Scholar] [CrossRef]
- Yavari, K.; Grisanti, J. Case Report on the Use of Canakinumab for Treatment of Recurrent Fevers and Proteinuria in Refractory Systemic Lupus Erythematosus. Ther. Adv. Rare Dis. 2023, 4, 26330040231191141. [Google Scholar] [CrossRef]
- Arnold, D.D.; Yalamanoglu, A.; Boyman, O. Systematic Review of Safety and Efficacy of IL-1-Targeted Biologics in Treating Immune-Mediated Disorders. Front. Immunol. 2022, 13, 888392. [Google Scholar] [CrossRef]
- Wang, X.; Wong, K.; Ouyang, W.; Rutz, S. Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harb. Perspect. Biol. 2017, 11, a028548. [Google Scholar] [CrossRef]
- DiDonato, M.; Simpson, C.T.; Vo, T.; Knuth, M.; Geierstanger, B.; Jamontt, J.; Jones, D.H.; Fathman, J.W.; DeLarosa, D.; Junt, T.; et al. A Novel Interleukin-10 Antibody Graft to Treat Inflammatory Bowel Disease. Structure 2025, 33, 475–488.e7. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.K.; Singh, S.P.; Egwuagu, C.E. IL-6/IL-12 Superfamily of Cytokines and Regulatory Lymphocytes Play Critical Roles in the Etiology and Suppression of CNS Autoimmune Diseases. Front. Immunol. 2025, 16, 1514080. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J. Correction to: Tocilizumab: A Review in Rheumatoid Arthritis. Drugs 2018, 78, 285. [Google Scholar] [CrossRef] [PubMed]
- Kastrati, K.; Aletaha, D.; Burmester, G.R.; Chwala, E.; Dejaco, C.; Dougados, M.; McInnes, I.B.; Ravelli, A.; Sattar, N.; Stamm, T.A.; et al. A systematic literature review informing the consensus statement on efficacy and safety of pharmacological treatment with interleukin-6 pathway inhibition with biological DMARDs in immune-mediated inflammatory diseases. RMD Open 2022, 8, e002359. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Lin, C.J.F.; Furst, D.E.; Goldin, J.; Kim, G.; Kuwana, M.; Allanore, Y.; Matucci-Cerinic, M.; Distler, O.; Shima, Y.; et al. Tocilizumab in systemic sclerosis: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2020, 8, 963–974, Correction to Lancet Respir. Med. 2020, 8, 963–974. https://doi.org/10.1016/S2213-2600(21)00107-7. [Google Scholar] [CrossRef]
- Del Galdo, F.; Lescoat, A.; Conaghan, P.G.; Bertoldo, E.; Čolić, J.; Santiago, T.; Suliman, Y.A.; Matucci-Cerinic, M.; Gabrielli, A.; Distler, O.; et al. EULAR recommendations for the treatment of systemic sclerosis: 2023 update. Ann. Rheum. Dis. 2025, 84, 29–40. [Google Scholar] [CrossRef]
- Felten, R.; Giannini, M.; Nespola, B.; Lannes, B.; Levy, D.; Seror, R.; Vittecoq, O.; Hachulla, E.; Perdriger, A.; Dieude, P.; et al. Refining Myositis Associated with Primary Sjögren’s Syndrome: Data from the Prospective Cohort ASSESS. Rheumatology 2020, 60, 675–681. [Google Scholar] [CrossRef]
- Illei, G.G.; Shirota, Y.; Yarboro, C.H.; Daruwalla, J.; Tackey, E.; Takada, K.; Fleisher, T.; Balow, J.E.; Lipsky, P.E. Tocilizumab in Systemic Lupus Erythematosus: Data on Safety, Preliminary Efficacy, and Impact on Circulating Plasma Cells from an Open-label Phase I Dosage-escalation Study. Arthritis Rheum. 2010, 62, 542–552. [Google Scholar] [CrossRef]
- Marinho, A.; Delgado Alves, J.; Fortuna, J.; Faria, R.; Almeida, I.; Alves, G.; Araújo Correia, J.; Campar, A.; Brandão, M.; Crespo, J.; et al. Biological therapy in systemic lupus erythematosus, antiphospholipid syndrome, and Sjögren’s syndrome: Evidence- and practice-based guidance. Front. Immunol. 2023, 14, 1117699. [Google Scholar] [CrossRef]
- Fleischmann, R.M.; Schechtman, J.; Bennett, R.; Handel, M.L.; Burmester, G.; Tesser, J.; Modafferi, D.; Poulakos, J.; Sun, G. Anakinra, a Recombinant Human Interleukin-1 Receptor Antagonist (r-metHuIL-1ra), in Patients with Rheumatoid Arthritis: A Large, International, Multicenter, Placebo-controlled Trial. Arthritis Rheum. 2003, 48, 927–934. [Google Scholar] [CrossRef]
- Norheim, K.B.; Harboe, E.; Gøransson, L.G.; Omdal, R. Interleukin-1 inhibition and fatigue in primary Sjögren’s syndrome—A double blind, randomised clinical trial. PLoS ONE 2012, 7, e30123. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.; Sharifian, H.; Newcombe, P.J.; Gavin, P.G.; Lazarus, M.N.; Ramaswamy, M.; White, W.I.; Ferrari, N.; Muthas, D.; Tummala, R.; et al. Type I Interferon Blockade with Anifrolumab in Patients with Systemic Lupus Erythematosus Modulates Key Immunopathological Pathways in a Gene Expression and Proteomic Analysis of Two Phase 3 Trials. Ann. Rheum. Dis. 2024, 83, 1018–1027. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Andersen, J.; Aringer, M.; Arnaud, L.; Bae, S.C.; Boletis, J.; Bruce, I.N.; Cervera, R.; Doria, A.; et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. 2024, 83, 15–29. [Google Scholar] [CrossRef]
- Blagov, A.V.; Kashtalap, V.V.; Lapshina, K.O.; Karimova, A.E.; Asoyan, A.Z.; Orekhov, A. New strategies for treating Sjogren’s syndrome. Cell. Mol. Biol. 2025, 71, 111–119. [Google Scholar] [CrossRef]
- Kiełbowski, K.; Plewa, P.; Bratborska, A.W.; Bakinowska, E.; Pawlik, A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int. J. Mol. Sci. 2024, 25, 8327. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; et al. EULAR Recommendations for the Management of Rheumatoid Arthritis with Synthetic and Biological Disease-Modifying Antirheumatic Drugs: 2019 Update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef]
- Megna, M.; Potestio, L.; Ruggiero, A.; Cacciapuoti, S.; Maione, F.; Tasso, M.; Caso, F.; Costa, L. JAK Inhibitors in Psoriatic Disease. Clin. Cosmet. Investig. Dermatol. 2023, 16, 3129–3145. [Google Scholar] [CrossRef]
- Gossec, L.; Kerschbaumer, A.; Ferreira, R.J.O.; Aletaha, D.; Baraliakos, X.; Bertheussen, H.; Boehncke, W.-H.; Esbensen, B.A.; McInnes, I.B.; McGonagle, D.; et al. EULAR Recommendations for the Management of Psoriatic Arthritis with Pharmacological Therapies: 2023 Update. Ann. Rheum. Dis. 2024, 83, 706–719. [Google Scholar] [CrossRef]
- Ahmed, S.; Yesudian, R.; Ubaide, H.; Coates, L.C. Rationale and Concerns for Using JAK Inhibitors in Axial Spondyloarthritis. Rheumatol. Adv. Pract. 2024, 8, rkae141. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, A.; Mease, P.; Gossec, L.; Ranza, R.; Tsuji, S.; Douglas, K.; Lane, M.; Lippe, R.; Mittal, M.; Gao, T.; et al. Association Between Achievement of Clinical Disease Control and Improvement in Patient-Reported Outcomes and Quality of Life in Patients with Psoriatic Arthritis in the Phase 3 SELECT-PsA 1 and 2 Randomized Controlled Trials. ACR Open Rheumatol. 2024, 6, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Hasni, S.A.; Gupta, S.; Davis, M.; Poncio, E.; Temesgen-Oyelakin, Y.; Carlucci, P.M.; Wang, X.; Naqi, M.; Playford, M.P.; Goel, R.R.; et al. Phase 1 Double-Blind Randomized Safety Trial of the Janus Kinase Inhibitor Tofacitinib in Systemic Lupus Erythematosus. Nat. Commun. 2021, 12, 3391. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ma, L.; Duan, X.; Huo, Y.; Liu, S.; Zhao, C.; Wang, Q.; Tian, X.; Chen, Y.; Li, M. Tofacitinib Versus Methotrexate in Treating Mucocutaneous and Musculoskeletal Lesions of Systemic Lupus Erythematosus: Real-World Results From the CSTAR Cohort XXXII. Int. J. Rheum. Dis. 2025, 28, e70283. [Google Scholar] [CrossRef]
- Wallace, D.J.; Furie, R.A.; Tanaka, Y.; Kalunian, K.C.; Mosca, M.; Petri, M.A.; Dörner, T.; Cardiel, M.H.; Bruce, I.N.; Gomez, E.; et al. Baricitinib for Systemic Lupus Erythematosus: A Double-Blind, Randomised, Placebo-Controlled, Phase 2 Trial. Lancet 2018, 392, 222–231, Erratum in Lancet 2018, 392, 476. https://doi.org/10.1016/S0140-6736(18)31741-0. [Google Scholar] [CrossRef]
- Ceobanu, G.; Edwards, C.J. JAK Inhibitors in Systemic Lupus Erythematosus: Translating Pathogenesis into Therapy. Lupus 2024, 33, 1403–1415. [Google Scholar] [CrossRef]
- Merrill, J.T.; Tanaka, Y.; D’Cruz, D.; Vila-Rivera, K.; Siri, D.; Zeng, X.; Saxena, A.; Aringer, M.; D’Silva, K.M.; Cheng, L.; et al. Efficacy and Safety of Upadacitinib or Elsubrutinib Alone or in Combination for Patients with Systemic Lupus Erythematosus: A Phase 2 Randomized Controlled Trial. Arthritis Rheumatol. 2024, 76, 1518–1529. [Google Scholar] [CrossRef]
- Baker, M.; Chaichian, Y.; Genovese, M.; Derebail, V.; Rao, P.; Chatham, W.; Bubb, M.; Lim, S.; Hajian, H.; Gurtovaya, O.; et al. Phase II, Randomised, Double-Blind, Multicentre Study Evaluating the Safety and Efficacy of Filgotinib and Lanraplenib in Patients with Lupus Membranous Nephropathy. RMD Open 2020, 6, e001490. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zeng, Y.; Xing, X.; Huang, B.; Feng, R.; Wang, Y.; Wang, N.; Zhang, X.; Li, Y.; Su, L.; et al. Evaluating the Therapeutic Potential of Tofacitinib in Sjögren’s Disease: A Comprehensive Clinical and Immunological Assessment. Rheumatology 2025, keaf173. [Google Scholar] [CrossRef]
- Bai, W.; Liu, H.; Dou, L.; Yang, Y.; Leng, X.; Li, M.; Zhang, W.; Zhao, Y.; Zeng, X. Pilot Study of Baricitinib for Active Sjogren’s Syndrome. Ann. Rheum. Dis. 2022, 81, 1050–1052. [Google Scholar] [CrossRef] [PubMed]
- Price, E.; Bombardieri, M.; Kivitz, A.; Matzkies, F.; Gurtovaya, O.; Pechonkina, A.; Jiang, W.; Downie, B.; Mathur, A.; Mozaffarian, A.; et al. Safety and Efficacy of Filgotinib, Lanraplenib and Tirabrutinib in Sjögren’s Syndrome: A Randomized, Phase 2, Double-Blind, Placebo-Controlled Study. Rheumatology 2022, 61, 4797–4808. [Google Scholar] [CrossRef]
- Sener, S.; Sener, Y.Z.; Batu, E.D.; Sari, A.; Akdogan, A. A Systematic Literature Review of Janus Kinase Inhibitors for the Treatment of Systemic Sclerosis. J. Scleroderma Relat. Disord. 2025. [Google Scholar] [CrossRef] [PubMed]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef]
- Salinas, C.A.; Louder, A.; Polinski, J.; Zhang, T.C.; Bower, H.; Phillips, S.; Song, Y.; Rashidi, E.; Bosan, R.; Chang, H.-C.; et al. Evaluation of VTE, MACE, and Serious Infections Among Patients with RA Treated with Baricitinib Compared to TNFi: A Multi-Database Study of Patients in Routine Care Using Disease Registries and Claims Databases. Rheumatol. Ther. 2022, 10, 201–223. [Google Scholar] [CrossRef]
- Weng, C.; Zhou, Y.; Zhang, L.; Wang, G.; Ding, Z.; Xue, L.; Liu, Z. Efficacy and safety of pharmacological treatments for autoimmune disease-associated interstitial lung disease: A systematic review and network meta-analysis. Semin. Arthritis Rheum. 2024, 68, 152500. [Google Scholar] [CrossRef]
- Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.F.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N. Engl. J. Med. 2019, 38, 1718–1727. [Google Scholar] [CrossRef]
- Atienza-Mateo, B.; Serrano-Combarro, A.; Loarce Martos, J.; Vegas-Revenga, N.; Martín López, M.; Castañeda, S.; Melero-González, R.B.; Mena Vázquez, N.; Carrasco-Cubero, C.; Díez Morrondo, C.; et al. Real-world evidence of the antifibrotic nintedanib in rheumatoid arthritis-interstitial lung disease. National multicenter study of 74 patients. Semin. Arthritis Rheum. 2025, 72, 152710. [Google Scholar] [CrossRef]
- Sebastiani, M.; Lepri, G.; Iannone, C.; Cassione, E.B.; Guggino, G.; Lo Monaco, A.; Foti, R.; Fornaro, M.; Chimenti, M.S.; Fassio, A.; et al. Nintedanib in Rheumatoid Arthritis-Related Interstitial Lung Disease: Real-World Safety Profile and Risk of Side Effects and Discontinuation. J. Rheumatol. 2025, 52, 420–425. [Google Scholar] [CrossRef]
- Denton, C.P.; Goh, N.S.; Humphries, S.M.; Maher, T.M.; Spiera, R.; Devaraj, A.; Ho, L.; Stock, C.; Erhardt, E.; Alves, M.; et al. Extent of fibrosis and lung function decline in patients with systemic sclerosis and interstitial lung disease: Data from the SENSCIS trial. Rheumatology 2023, 62, 1870–1876. [Google Scholar] [CrossRef]
- Tekgoz, E.; Colak, S.Y.; Gunes, E.C.; Ocal, N.; Cinar, M.; Yilmaz, S. Nintedanib and its combination with immunosuppressives in connective tissue disease-related interstitial lung diseases. Ir. J. Med. Sci. 2025, 194, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, G.; Wang, H.; Mo, C. Comprehensive review of potential drugs with anti-pulmonary fibrosis properties. Biomed. Pharmacother. = Biomed. Pharmacother. 2024, 173, 116282. [Google Scholar] [CrossRef] [PubMed]
- De Marco, M.; Armentaro, G.; Falco, A.; Minniti, A.; Cammarota, A.L.; Iannone, C.; Basile, A.; D’Ardia, A.; Zeppa, P.; Marzullo, L.; et al. Overexpression of BAG3 (Bcl2-associated athanogene 3) in serum and skin of patients with systemic sclerosis. Clin. Exp. Rheumatol. 2024, 42, 1623–1628. [Google Scholar] [CrossRef]
- Freedman, P.; De Marco, M.; Rosati, A.; Marzullo, L.; Del Papa, N.; Turco, M.C.; O’Reilly, S. Extracellular BAG3 is elevated in early diffuse systemic sclerosis. Mil. Med. Res. 2025, 12, 37. [Google Scholar] [CrossRef]
- De Marco, M.; Basile, A.; Cammarota, A.L.; Iannone, C.; Falco, A.; Marzullo, L.; Rosati, A.; Caporali, R.; Turco, M.C.; Del Papa, N. Response to antifibrotic therapy and decrease of circulating BAG3 protein levels in systemic sclerosis patients with reduced forced vital capacity. Biomed. Pharmacother.=Biomed. Pharmacother. 2024, 174, 116578. [Google Scholar] [CrossRef] [PubMed]
CYTOKINES | CELL SOURCES | MAIN TARGETS | MAIN ROLES | ASSOCIATED RHEUMATIC DISEASE | THERAPEUTIC AGENTS |
---|---|---|---|---|---|
TNF-α | T and NK lymphocytes, macrophages | Th1 and Th17 cells, monocytes, macrophages, endothelial cells, synovial fibroblasts, osteoblasts, osteoclasts | Release of inflammatory mediators, promotion of innate and acquired immune response, fever induction, joint and bone erosion, tissue damage (eg. glandular tissue), formation of ectopic lymphoid structures | RA, SLE, SS, PsA, AS | Infliximab, etanercept, adalimumab, certolizumab, golimumab, ozoralizumab |
IL-1-β | Monocytes, macrophages | T cells, dendritic cells, fibroblast-like synoviocytes chondrocytes, osteoclasts, fibroblasts | Lymphocyte activation and proliferation, synthesis of collagenases, COX-2, proteases inhibitors and MMPs that contribute to cartilage degradation, endothelial cell activation, differentiation of fibroblasts into myofibroblasts | RA, SLE, SS, PsA, SSc | Anakinra, canakinumab, rilonacept |
IL-6 | B and T cells, macrophage, fibroblasts, keratinocyte, endothelial cells, mast cells and dendritic cells | Monocytes, T and B cells, synoviocytes, osteoclasts, fibroblasts | Activation of acute-phase responses and immune mechanisms, regulation of body weight, support of liver function and bone health, promotion of angiogenesis and pannus formation, Th17 differentiation and activation | RA, SLE, SS, PsA, AS, SSc | Tociliizumab, sirukumab, sarilumab, siltuximab, JAK-inhibitors (tofacitinib, baricitinib, upadacitinib, filgotinib) |
IL-17 | Th 17 cells and others T cells | Epithelial cells, fibroblasts, osteoclasts, dendritic cells | Activation of immune responses, maintenance of barrier integrity, production of inflammatory mediators, Th17 differentiation and activation, promotion of tissue repair and fibrosis | RA, SLE, SS, PsA, AS, SSc | Secukinumab, bimekizumab, risankizumab |
IFN-γ | Plasmacytoid dendritic cells, CD4+ T cells | Macrophages, dendritic cells, epithelial cells, endothelial cells, leukocytes, adipose tissue cells | Cytokines production, antigen presentation, generation of reactive oxygen species, regulation of metabolic processes, macrophage polarization toward the pro-inflammatory M1 phenotype, modulation of cell growth and survival | SLE, SS, SSc | Anifrolumab, JAK-inhibitors (tofacitinib, baricitinib, upadacitinib, filgotinib) |
IL-10 | B and T cells, monocytes, macrophages, dendritic cells | B and T cells, macrophages, neutrophils, myeloid cells | Suppression the excessive pro-inflammatory responses; macrophage polarization toward the M2 phenotype | RA, SS, AS | rhIL-10 |
IL-4 | Th 2 cells, eosinophils, basophils and mast cells | B and T cells, macrophages | Regulation of B cell differentiation, survival and memory formation; influence on differentiation of T-cell subset; tissue repair; resolution of inflammation; macrophage polarization toward the M2 phenotype | SLE, SS, PsA | Dupilumab |
TGF-β | Fibroblasts, macrophage, endothelial cells, platelets, T cells, epithelial cells | Epithelial cells, fibroblasts, B and T cells, macrophages | Immune tolerance promotion, development and differentiation of T-cell subset, wound healing | SSc | Nintedanib |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donniacuo, A.; Mauro, A.; Cardamone, C.; Basile, A.; Manzo, P.; Dimitrov, J.; Cammarota, A.L.; Marzullo, L.; Triggiani, M.; Turco, M.C.; et al. Comprehensive Profiling of Cytokines and Growth Factors: Pathogenic Roles and Clinical Applications in Autoimmune Diseases. Int. J. Mol. Sci. 2025, 26, 8921. https://doi.org/10.3390/ijms26188921
Donniacuo A, Mauro A, Cardamone C, Basile A, Manzo P, Dimitrov J, Cammarota AL, Marzullo L, Triggiani M, Turco MC, et al. Comprehensive Profiling of Cytokines and Growth Factors: Pathogenic Roles and Clinical Applications in Autoimmune Diseases. International Journal of Molecular Sciences. 2025; 26(18):8921. https://doi.org/10.3390/ijms26188921
Chicago/Turabian StyleDonniacuo, Anna, Arianna Mauro, Chiara Cardamone, Anna Basile, Paola Manzo, Jelena Dimitrov, Anna Lisa Cammarota, Liberato Marzullo, Massimo Triggiani, Maria Caterina Turco, and et al. 2025. "Comprehensive Profiling of Cytokines and Growth Factors: Pathogenic Roles and Clinical Applications in Autoimmune Diseases" International Journal of Molecular Sciences 26, no. 18: 8921. https://doi.org/10.3390/ijms26188921
APA StyleDonniacuo, A., Mauro, A., Cardamone, C., Basile, A., Manzo, P., Dimitrov, J., Cammarota, A. L., Marzullo, L., Triggiani, M., Turco, M. C., De Marco, M., & Rosati, A. (2025). Comprehensive Profiling of Cytokines and Growth Factors: Pathogenic Roles and Clinical Applications in Autoimmune Diseases. International Journal of Molecular Sciences, 26(18), 8921. https://doi.org/10.3390/ijms26188921