miR-1-3p Downregulation as a Consistent Biomarker for Atrial Fibrillation Burden in Patients with Sick Sinus Syndrome: A Multi-Sample Analysis
Abstract
1. Introduction
2. Results
2.1. Differential miRNA Expression in WBC in Patients with PerAF, PaAF, and No AF
2.2. Plasma miRNA Profiling in Patients with PerAF and No AF
2.3. Cross-Compartment Comparisons of WBC and Plasma miRNA Expression
2.4. miR-1-3p as a Potential Biomarker for AF Burden
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. miRNA Isolation, Purification, and Quantification
4.3. miRNA Microarray Detection
4.4. Bioinformatic Tools
4.5. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- Vanassche, T.; Lauw, M.N.; Eikelboom, J.W.; Healey, J.S.; Hart, R.G.; Alings, M.; Avezum, A.; Díaz, R.; Hohnloser, S.H.; Lewis, B.S.; et al. Risk of ischaemic stroke according to pattern of atrial fibrillation: Analysis of 6563 aspirin-treated patients in ACTIVE-A and AVERROES. Eur. Heart J. 2015, 36, 281–287a. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Fukunami, M.; Yamada, T.; Ohmori, M.; Shimonagata, T.; Kumagai, K.; Kim, J.; Sanada, S.; Hori, M.; Hoki, N. Prediction of transition to chronic atrial fibrillation in patients with paroxysmal atrial fibrillation by signal-averaged electrocardiography: A prospective study. Circulation 1997, 96, 2612–2616. [Google Scholar] [CrossRef]
- Li, Y.; Tan, W.; Ye, F.; Wen, S.; Hu, R.; Cai, X.; Wang, K.; Wang, Z. Inflammation as a risk factor for stroke in atrial fibrillation: Data from a microarray data analysis. J. Int. Med. Res. 2020, 48, 300060520921671. [Google Scholar] [CrossRef]
- Vardas, E.P.; Oikonomou, E.; Vardas, P.E.; Tousoulis, D. MicroRNAs as Prognostic Biomarkers for Atrial Fibrillation Recurrence After Catheter Ablation: Current Evidence and Future Directions. Biomedicines 2024, 13, 32. [Google Scholar] [CrossRef]
- Vardas, E.P.; Theofilis, P.; Oikonomou, E.; Vardas, P.E.; Tousoulis, D. MicroRNAs in Atrial Fibrillation: Mechanisms, Vascular Implications, and Therapeutic Potential. Biomedicines 2024, 12, 811. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, W.; Luo, Z.; Zhou, H.; Duan, Z.; Xiong, X.L. The role of miR1 and miR133a in new-onset atrial fibrillation after acute myocardial infarction. BMC Cardiovasc. Disord. 2023, 23, 448. [Google Scholar] [CrossRef] [PubMed]
- Sieweke, J.T.; Pfeffer, T.J.; Biber, S.; Chatterjee, S.; Weissenborn, K.; Grosse, G.M.; Hagemus, J.; Derda, A.A.; Berliner, D.; Lichtinghagen, R.; et al. miR-21 and NT-proBNP Correlate with Echocardiographic Parameters of Atrial Dysfunction and Predict Atrial Fibrillation. J. Clin. Med. 2020, 9, 1118. [Google Scholar] [CrossRef]
- Ye, Q.; Liu, Q.; Ma, X.; Bai, S.; Chen, P.; Zhao, Y.; Bai, C.; Liu, Y.; Liu, K.; Xin, M.; et al. MicroRNA-146b-5p promotes atrial fibrosis in atrial fibrillation by repressing TIMP4. J. Cell Mol. Med. 2021, 25, 10543–10553. [Google Scholar] [CrossRef]
- da Silva, A.M.; de Araújo, J.N.; de Freitas, R.C.; Silbiger, V.N. Circulating MicroRNAs as Potential Biomarkers of Atrial Fibrillation. BioMed Res. Int. 2017, 2017, 7804763. [Google Scholar] [CrossRef]
- Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kääb, S.; Wakili, R.; et al. Stability of Circulating Blood-Based MicroRNAs—Pre-Analytic Methodological Considerations. PLoS ONE 2017, 12, e0167969. [Google Scholar] [CrossRef]
- Zhan, J.; Peng, C.; Liu, Y.; Bi, Z.; Lu, G.; Hao, S.; Tong, Y.; Zhang, G. Predictive Value of Serum microRNA-29b-3p in Recurrence of Atrial Fibrillation After Radiofrequency Catheter Ablation. Clin. Interv. Aging 2024, 19, 715–725. [Google Scholar] [CrossRef]
- Xu, J.; Lei, S.; Sun, S.; Zhang, W.; Zhu, F.; Yang, H.; Xu, Q.; Zhang, B.; Li, H.; Zhu, M.; et al. MiR-324-3p Regulates Fibroblast Proliferation via Targeting TGF-β1 in Atrial Fibrillation. Int. Heart J. 2020, 61, 1270–1278. [Google Scholar] [CrossRef]
- Fattahi, M.; Shahrabi, S.; Saadatpour, F.; Rezaee, D.; Beyglu, Z.; Delavari, S.; Amrolahi, A.; Ahmadi, S.; Bagheri-Mohammadi, S.; Noori, E.; et al. microRNA-382 as a tumor suppressor? Roles in tumorigenesis and clinical significance. Int. J. Biol. Macromol. 2023, 250, 125863. [Google Scholar] [CrossRef] [PubMed]
- Balan, A.I.; Scridon, A. MicroRNAs in atrial fibrillation—Have we discovered the Holy Grail or opened a Pandora’s box? Front. Pharmacol. 2025, 16, 1535621. [Google Scholar] [CrossRef]
- Kim, G.H. MicroRNA regulation of cardiac conduction and arrhythmias. Transl. Res. 2013, 161, 381–392. [Google Scholar] [CrossRef]
- Benito, B.; García-Elías, A.; Ois, Á.; Tajes, M.; Vallès, E.; Ble, M.; Yáñez Bisbe, L.; Giralt-Steinhauer, E.; Rodríguez-Campello, A.; Cladellas Capdevila, M.; et al. Plasma levels of miRNA-1-3p are associated with subclinical atrial fibrillation in patients with cryptogenic stroke. Rev. Esp. Cardiol. 2022, 75, 717–726. [Google Scholar] [CrossRef]
- Dai, W.; Chao, X.; Jiang, Z.; Zhong, G. lncRNA KCNQ1OT1 may function as a competitive endogenous RNA in atrial fibrillation by sponging miR-223-3p. Mol. Med. Rep. 2021, 24, 870. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Meng, H.; Chen, G.; Ma, Y.; Li, J.; Liu, S.; Liang, Z.; Xie, Y.; Liu, Y.; et al. Identification of miR-1 and miR-499 in chronic atrial fibrillation by bioinformatics analysis and experimental validation. Front. Cardiovasc. Med. 2024, 11, 1400643. [Google Scholar] [CrossRef] [PubMed]
- Girmatsion, Z.; Biliczki, P.; Bonauer, A.; Wimmer-Greinecker, G.; Scherer, M.; Moritz, A.; Bukowska, A.; Goette, A.; Nattel, S.; Hohnloser, S.H.; et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm. 2009, 6, 1802–1809. [Google Scholar] [CrossRef]
- Zhang, M.W.; Shen, Y.J.; Shi, J.; Yu, J.G. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Front. Cardiovasc. Med. 2020, 7, 610561. [Google Scholar] [CrossRef]
- Han, X.; Wang, S.; Yong, Z.; Zhang, X.; Wang, X. miR-29b ameliorates atrial fibrosis in rats with atrial fibrillation by targeting TGFβRΙ and inhibiting the activation of Smad-2/3 pathway. J. Bioenerg. Biomembr. 2022, 54, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Okuzaki, D.; Yamauchi, A.; Ishikawa, S.; Nomura, Y.; Nishimura, A.; Motoike, Y.; Koshikawa, M.; Hitachi, K.; Tsuchida, K.; et al. Circulating miR-20b-5p and miR-330-3p are novel biomarkers for progression of atrial fibrillation: Intracardiac/extracardiac plasma sample analysis by small RNA sequencing. PLoS ONE 2023, 18, e0283942. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.L.; Han, C.; Zhao, L.D.; Hu, G.Y.; Jiang, Y.; Li, C.G.; Shi, L.L.; Zhou, M.J. Role of miRNA-499-5p in patients with atrial fibrillation and heart failure. J. Biol. Regul. Homeost. Agents 2020, 34, 1015–1020. [Google Scholar] [CrossRef]
- Bai, C.; Liu, Y.; Zhao, Y.; Ye, Q.; Zhao, C.; Liu, Y.; Wang, J. Circulating exosome-derived miR-122-5p is a novel biomarker for prediction of postoperative atrial fibrillation. J. Cardiovasc. Transl. Res. 2022, 15, 1393–1405. [Google Scholar] [CrossRef]
- Lage, R.; Cebro-Márquez, M.; Vilar-Sánchez, M.E.; González-Melchor, L.; García-Seara, J.; Martínez-Sande, J.L.; Fernández-López, X.A.; Aragón-Herrera, A.; Martínez-Monzonís, M.A.; González-Juanatey, J.R.; et al. Circulating miR-451a Expression May Predict Recurrence in Atrial Fibrillation Patients after Catheter Pulmonary Vein Ablation. Cells 2023, 12, 638. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, Y.; Shu, J.; Tang, C.E.; Jiang, Y.; Luo, F. Identification of microRNAs enriched in exosomes in human pericardial fluid of patients with atrial fibrillation based on bioinformatic analysis. J. Thorac. Dis. 2020, 12, 5617–5627. [Google Scholar] [CrossRef]
- Yao, L.; Zhou, B.; You, L.; Hu, H.; Xie, R. LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis. Mol. Biol. Rep. 2020, 47, 2605–2617. [Google Scholar] [CrossRef]
- Soeki, T.; Matsuura, T.; Bando, S.; Tobiume, T.; Uematsu, E.; Ise, T.; Kusunose, K.; Yamaguchi, K.; Yagi, S.; Fukuda, D.; et al. Relationship between local production of microRNA-328 and atrial substrate remodeling in atrial fibrillation. J. Cardiol. 2016, 68, 472–477. [Google Scholar] [CrossRef]
- Lu, Y.; Hou, S.; Huang, D.; Luo, X.; Zhang, J.; Chen, J.; Xu, W. Expression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients. Int. J. Clin. Exp. Med. 2015, 8, 845–853. [Google Scholar]
- Huang, H.; Chen, H.; Liang, X.; Chen, X.; Chen, X.; Chen, C. Upregulated miR-328-3p and its high risk in atrial fibrillation: A systematic review and meta-analysis with meta-regression. Medicine 2022, 101, e28980. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Cui, S.; Chen, L.; Chen, X.C.; Ma, L.L.; Yang, H.N.; Wen, F.M. Circulating miRNA-1-3p as Biomarker of Accelerated Sarcopenia in Patients Diagnosed with Chronic Heart Failure. Rev. Investig. Clin. 2022, 74, 276–283. [Google Scholar] [CrossRef]
- Lai, Y.J.; Tsai, F.C.; Chang, G.J.; Chang, S.H.; Huang, C.C.; Chen, W.J.; Yeh, Y.H. miR-181b targets semaphorin 3A to mediate TGF-β-induced endothelial-mesenchymal transition related to atrial fibrillation. J. Clin. Investig. 2022, 132, e142548. [Google Scholar] [CrossRef]
- Russo, R.; Zito, F.; Lampiasi, N. MiRNAs Expression Profiling in Raw264.7 Macrophages after Nfatc1-Knockdown Elucidates Potential Pathways Involved in Osteoclasts Differentiation. Biology 2021, 10, 1080. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
WBC | Plasma | |||
---|---|---|---|---|
miRNA ID | PerAF | p Value | PerAF | p Value |
hsa-miR-382-5p | 2.2229 | 2.2670 | 0.04774 | |
hsa-miR-143-3p | 0.2837 | 1.7828 | ||
hsa-miR-338-5p | 0.6154 | 0.034 | 0.4325 | |
hsa-miR-145-5p | 0.4585 | 0.2718 | ||
hsa-miR-204-5p | 2.3431 | 0.2051 |
WBC | Plasma | ||
---|---|---|---|
miRNA ID | PaAF | PerAF | PerAF |
hsa-miR-196a-5p | 2.4212 | 2.6132 | 0.4246 |
hsa-miR-1-3p | 0.2194 | 0.1995 | 0.2763 |
Qualifier | GO | GO Term | Symbol | Annotation | Pathway |
---|---|---|---|---|---|
acts_upstream_of | GO:0010880 | Regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum | - | - | - |
enables | GO:1903231 | mRNA base-pairing translational repressor activity | IRX-5 | Iroquois-class homeodomain protein IRX-5 | - |
GJA1 | Gap junction alpha-1 protein | Gap junction/Arrhythmogenic right ventricular cardiomyopathy | |||
PPP2R1 | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform | Tight junction | |||
MEF2C | Myocyte-specific enhancer factor 2A | Myocyte-specific enhancer factor 2A cGMP-PKG signaling pathway | |||
CALM2 | Calmodulin-2 | Calcium signaling pathway | |||
SOX6 | Transcription factor SOX-6 | - | |||
PIM1 | Serine/threonine-protein kinase pim-1 | JAK-STAT signaling pathway | |||
EDN1 | Endothelin-1 | Hypertrophic cardiomyopathy | |||
KCNJ2 | Inward rectifier potassium channel 2 | Oxytocin signaling pathway/Renin secretion | |||
SOX9 | Transcription factor SOX-9 | cAMP signaling pathway | |||
SPRED1 | Sprouty-related, EVH1 domain-containing protein 1 | MAPK signaling | |||
FZD7 | Frizzled-7 | Wnt signaling pathway | |||
FRS2 | Fibroblast growth factor receptor substrate 2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-T.; Chen, S.-M.; Chen, H.-C.; Lin, P.-T.; Chen, Y.-L. miR-1-3p Downregulation as a Consistent Biomarker for Atrial Fibrillation Burden in Patients with Sick Sinus Syndrome: A Multi-Sample Analysis. Int. J. Mol. Sci. 2025, 26, 4936. https://doi.org/10.3390/ijms26104936
Wang H-T, Chen S-M, Chen H-C, Lin P-T, Chen Y-L. miR-1-3p Downregulation as a Consistent Biomarker for Atrial Fibrillation Burden in Patients with Sick Sinus Syndrome: A Multi-Sample Analysis. International Journal of Molecular Sciences. 2025; 26(10):4936. https://doi.org/10.3390/ijms26104936
Chicago/Turabian StyleWang, Hui-Ting, Shyh-Ming Chen, Huang-Chung Chen, Pei-Ting Lin, and Yung-Lung Chen. 2025. "miR-1-3p Downregulation as a Consistent Biomarker for Atrial Fibrillation Burden in Patients with Sick Sinus Syndrome: A Multi-Sample Analysis" International Journal of Molecular Sciences 26, no. 10: 4936. https://doi.org/10.3390/ijms26104936
APA StyleWang, H.-T., Chen, S.-M., Chen, H.-C., Lin, P.-T., & Chen, Y.-L. (2025). miR-1-3p Downregulation as a Consistent Biomarker for Atrial Fibrillation Burden in Patients with Sick Sinus Syndrome: A Multi-Sample Analysis. International Journal of Molecular Sciences, 26(10), 4936. https://doi.org/10.3390/ijms26104936