Comparative Mitochondrial Genome Analysis of the Intestinal Schistosomiasis Snail Host Biomphalaria pfeifferi from Multiple Populations in Gezira State, Sudan
Abstract
1. Introduction
2. Results
2.1. Mitochondrial DNA Characteristics, Structure and Organization
2.2. Overlapping and Non-Coding Regions
2.3. Protein-Coding Genes (PCGs)
2.4. Transfer RNA and Ribosomal RNA Analysis
2.5. Amino Acid Usage and the Relative Synonymous Codon Usage (RSCU) Analysis
2.6. Non-Synonymous and Synonymous Substitutions (Ka/Ks Ratio) Analysis
2.7. Nucleotide and Amino Acid Identity Analysis
2.8. Phylogenetic Analysis
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. DNA Extraction
4.3. Mitochondrial Genome Sequencing, Assembly and Annotation
4.4. Transfer RNAs and Ribosomal RNAs Analysis
4.5. Amino Acid Usage and Relative Synonymous Codon Usage RSCU Analysis
4.6. Ka/Ks Ratio, Nucleotide and Amino Acid Identity Analysis
4.7. Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EG | East Gezira |
SG | South Gezira |
NU1 | North Umelgura1 |
NU3 | North Umelgura3 |
SG | South Gezira |
HA | Hasahisa |
GW | Greater Wadmedani |
MA | Managil |
COI | Cytochrome Oxidase Subunit I gene |
16S rRNA | 16S ribosomal RNA gene |
12S rRNA | 12S ribosomal RNA gene |
ITS1 and ITS2 | Internal transcribed spacers 1 and 2 |
tRNA | Transfer ribosomal RNA |
rRNA | Ribosomal RNA |
DNB | DNA nanoball |
cPAS | Combinatorial probe-anchored Synthesis technology |
ML | Maximum likelihood |
CDS | Coding sequences |
PCGs | Protein-coding genes |
rrnL | 16S ribosomal RNA |
rrnS | 12S ribosomal RNA |
RSCU | Relative synonymous codon usage |
Ka/Ks ratio | Non-synonymous and synonymous substitutions |
bp | Base pair |
References
- Brown, D.S. Freshwater Snails of Africa and Their Medical Importance; CRC Press: Boca Raton, FL, USA, 1994; ISBN 0-429-09494-9. [Google Scholar]
- Dejong, R.J.; Morgan, J.A.; Wilson, W.D.; Al-Jaser, M.H.; Appleton, C.C.; Coulibaly, G.; D’Andrea, P.S.; Doenhoff, M.J.; Haas, W.; Idris, M.A.; et al. Phylogeography of Biomphalaria glabrata and B. pfeifferi, Important Intermediate Hosts of Schistosoma mansoni in the New and Old World Tropics. Mol. Ecol. 2003, 12, 3041–3056. [Google Scholar] [CrossRef] [PubMed]
- Au, M.F.F. Status Quo and Future Perspectives of Molecular and Genomic Studies on the Genus Biomphalaria-The Intermediate Snail Host of Schistosoma mansoni. Int. J. Mol. Sci. 2023, 24, 4895. [Google Scholar] [CrossRef] [PubMed]
- Majoros, G.; Fehér, Z.; Deli, T.; Földvári, G. Establishment of Biomphalaria tenagophila Snails in Europe. Emerg. Infect. Dis. 2008, 14, 1812–1814. [Google Scholar] [CrossRef] [PubMed]
- Malek, E.A. Snail Hosts of Schistosomiasis and Other Snail-Transmitted Diseases in Tropical America: A Manual; Pan American Health Organization: Washington, DC, USA, 1985; ISBN 92-75-11478-1. [Google Scholar]
- DeJong, R.J.; Morgan, J.A.; Paraense, W.L.; Pointier, J.P.; Amarista, M.; Ayeh-Kumi, P.F.; Babiker, A.; Barbosa, C.S.; Brémond, P.; Pedro Canese, A.; et al. Evolutionary Relationships and Biogeography of Biomphalaria (Gastropoda: Planorbidae) with Implications Regarding Its Role as Host of the Human Bloodfluke, Schistosoma mansoni. Mol. Biol. Evol. 2001, 18, 2225–2239. [Google Scholar] [CrossRef]
- Jorgensen, A.; Kristensen, T.K.; Stothard, J.R. Phylogeny and Biogeography of African Biomphalaria (Gastropoda: Planorbidae), with Emphasis on Endemic Species of the Great East African Lakes. Zool. J. Linn. Soc. 2007, 151, 337–349. [Google Scholar] [CrossRef]
- Archibald, R.G. The Endemiology and Epidemiology of Schistosomiasis in the Sudan. J. Trop. Med. Hyg. 1933, 36, 345–348. [Google Scholar]
- Manjing, B.K. Snail Population Fluctuations In-Relation to Schistosoma mansoni Transmission in Gezira Irrigated. Master’s Thesis, Universty of Khartoum, Khartoum, Sudan, 1978. [Google Scholar]
- Hilali, A.H. Transmission of Schistosoma mansoni in the Managil Area. Master’s Thesis, University of Khartoum, Khartoum, Sudan, 1992. [Google Scholar]
- Babiker, A.; Fenwick, A.; Daffalla, A.A.; Amin, M.A. Focality and Seasonality of Schistosoma mansoni Transmission in the Gezira Irrigated Area, Sudan. J. Trop. Med. Hyg. 1985, 88, 57–63. [Google Scholar]
- Madsen, H.; Daffalla, A.A.; Karoum, K.O.; Frandsen, F. Distribution of Freshwater Snails in Irrigation Schemes in the Sudan. J. Appl. Ecol. 1988, 25, 853–866. [Google Scholar] [CrossRef]
- Osman, A. Snails’ Population Dynamics and Their Parasitic Infections with Trematode in Barakat Canal, Gezira Scheme) 2011. Master’s Thesis, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Madani, Sudan, 2012. [Google Scholar]
- Hassan, R. Distribution, Ecological Factors of Snail Species and Their Infection with Trematodes in Wadrabiaa Area, Almadina Arab Administration Unit, South Gezira Locality, Gezira State, Sudan. Master’s Thesis, Blue Nile National Institute for Communicable Diseases, University of Gezira, Sudan University of Gezira, Wad Madani, Sudan, 2016. [Google Scholar]
- Musa, H. Distribution, Ecological Factors and Trematode Infectivity of Snails Al Madia Arab, South Gezira Locality, Gezira State, Sudan. Master’s Thesis, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Madani, Sudan, 2016. [Google Scholar]
- Edris, S. Distribution, Ecological Factors and Trematode Infectivity of Snails in New Halfa Locality, Kassala State, Sudan. Master’s Thesis, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Madani, Sudan, 2017. [Google Scholar]
- Hommed, M. Seasonality, Ecological Factors of Snail Species and their Infection with Trematode in Almosna Canal, New Halfa Locality, Kassala State, Sudan. Master’s Thesis, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Madani, Sudan, 2017. [Google Scholar]
- Apdelpagi, W. Studies on Freshwater Snails Distribution, Identification and their Infection with Cercaria in Elfaw Locality Gadarif State. Master’s Thesis, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Madani, Sudan, 2017. [Google Scholar]
- Harron, D. Situation Analysis of Schistosomaiasis in Umshoka Unit, Singa Locality, Sinner State. Master’s Thesis, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Madani, Sudan, 2015. [Google Scholar]
- Elbasheer, A. Distribution, Ecological Factors and Trematode Infectivity of Snails in Algetaina Locality, White Nile State, Sudan. Master’s Thesis, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Madani, Sudan, 2017. [Google Scholar]
- Mohieldeen, N. Seasonality, Ecological Factors of Snail Species and their Infection with Trematodes in Gandtw Area, Shendi Locality, River Nile State, Sudan. Master’s Thesis, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Madani, Sudan, 2017. [Google Scholar]
- Cha, S.; Elhag, M.S.; Lee, Y.-H.; Cho, D.-S.; Ismail, H.A.H.A.; Hong, S.-T. Epidemiological Findings and Policy Implications from the Nationwide Schistosomiasis and Intestinal Helminthiasis Survey in Sudan. Parasites Vectors 2019, 12, 429. [Google Scholar] [CrossRef]
- Boelee, E.; Madsen, H. Irrigation and Schistosomiasis in Africa: Ecological Aspects; IWMI: Colombo, Srilanka, 2006; Volume 99, ISBN 92-9090-631-6. [Google Scholar]
- Ghiselli, F.; Gomes-Dos-Santos, A.; Adema, C.M.; Lopes-Lima, M.; Sharbrough, J.; Boore, J.L. Molluscan Mitochondrial Genomes Break the Rules. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20200159. [Google Scholar] [CrossRef]
- Grande, C.; Templado, J.; Zardoya, R. Evolution of Gastropod Mitochondrial Genome Arrangements. BMC Evol. Biol. 2008, 8, 61. [Google Scholar] [CrossRef]
- Boore, J.; Brown, W.; Boore, J.L.; Brown, W.M. Complete DNA Sequence of the Mitochondrial Genome of the Black Chiton, Katharina tunicata. Genetics 1994, 138, 423–443. [Google Scholar] [CrossRef]
- Qu, J.; Xu, Y.; Cui, Y.; Wu, S.; Wang, L.; Liu, X.; Xing, Z.; Guo, X.; Wang, S.; Li, R.; et al. MODB: A Comprehensive Mitochondrial Genome Database for Mollusca. Database 2021, 2021, baab056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saccone, C.; De Giorgi, C.; Gissi, C.; Pesole, G.; Reyes, A. Evolutionary Genomics in Metazoa: The Mitochondrial DNA as a Model System. Gene 1999, 238, 195–209. [Google Scholar] [CrossRef]
- Ballard, J.W.; Whitlock, M.C. The Incomplete Natural History of Mitochondria. Mol. Ecol. 2004, 13, 729–744. [Google Scholar] [CrossRef]
- Tao, K.; Gao, Y.; Yin, H.; Liang, Q.; Yang, Q.; Yu, X. Comparative Mitogenome Analyses of Fifteen Ramshorn Snails and Insights into the Phylogeny of Planorbidae (Gastropoda: Hygrophila). Int. J. Mol. Sci. 2024, 25, 2279. [Google Scholar] [CrossRef]
- Mutsaka-Makuvaza, M.J.; Zhou, X.-N.; Tshuma, C.; Abe, E.; Manasa, J.; Manyangadze, T.; Allan, F.; Chin’ombe, N.; Webster, B.; Midzi, N. Genetic Diversity of Biomphalaria pfeifferi, the Intermediate Host of Schistosoma mansoni in Shamva District, Zimbabwe: Role on Intestinal Schistosomiasis Transmission. Mol. Biol. Rep. 2020, 47, 4975–4987. [Google Scholar] [CrossRef]
- Bu, L.; Lu, L.; Laidemitt, M.R.; Zhang, S.-M.; Mutuku, M.; Mkoji, G.; Steinauer, M.; Loker, E.S. A Genome Sequence for Biomphalaria pfeifferi, the Major Vector Snail for the Human-Infecting Parasite Schistosoma mansoni. PLoS Neglected Trop. Dis. 2023, 17, e0011208. [Google Scholar] [CrossRef]
- Webster, J.P.; Davies, C.M.; Ndamba, J.; Noble, L.R.; Jones, C.S.; Woolhouse, M.E.J. Spatio-Temporal Genetic Variability in the Schistosome Intermediate Host Biomphalaria pfeifferi. Ann. Trop. Med. Parasitol. 2001, 95, 515–527. [Google Scholar] [CrossRef]
- Mavárez, J.; Pointier, J.P.; David, P.; Delay, B.; Jarne, P. Genetic Differentiation, Dispersal and Mating System in the Schistosome-Transmitting Freshwater Snail Biomphalaria glabrata. Heredity 2002, 89, 258–265. [Google Scholar] [CrossRef]
- Charbonnel, N.; Quesnoit, M.; Razatavonjizay, R.; Bremond, P.; Jarne, P. A Spatial and Temporal Approach to Microevolutionary Forces Affecting Population Biology in the Freshwater Snail Biomphalaria pfeifferi. Am. Nat. 2002, 160, 741–755. [Google Scholar] [CrossRef]
- Charbonnel, N.; Angers, B.; Rasatavonjizay, R.; Bremond, P.; Debain, C.; Jarne, P. The Influence of Mating System, Demography, Parasites and Colonization on the Population Structure of Biomphalaria pfeifferi in Madagascar. Mol. Ecol. 2002, 11, 2213–2228. [Google Scholar] [CrossRef]
- Webster, J.P.; Davies, C.M.; Hoffman, J.I.; Ndamba, J.; Noble, L.R.; Woolhouse, M.E.J. Population Genetics of the Schistosome Intermediate Host Biomphalaria pfeifferi in the Zimbabwean Highveld: Implications for Co-Evolutionary Theory. Ann. Trop. Med. Parasitol. 2001, 95, 203–214. [Google Scholar] [CrossRef]
- Andrus, P.S.; Stothard, J.R.; Wade, C.M. Seasonal Patterns of Schistosoma mansoni Infection within Biomphalaria Snails at the Ugandan Shorelines of Lake Albert and Lake Victoria. PLoS Neglected Trop. Dis. 2023, 17, e0011506. [Google Scholar] [CrossRef]
- Vidigal, T.; Kissinger, J.C.; Caldeira, R.L.; Pires, E.C.R.; Monteiro, E.; Simpson, A.J.G.; Carvalho, O.S. Phylogenetic Relationships among Brazilian Biomphalaria Species (Mollusca: Planorbidae) Based upon Analysis of Ribosomal ITS2 Sequences. Parasitology 2000, 121, 611–620. [Google Scholar] [CrossRef]
- Campbell, G.; Jones, C.S.; Lockyer, A.E.; Hughes, S.; Brown, D.; Noble, L.R.; Rollinson, D. Molecular Evidence Supports an African Affinity of the Neotropical Freshwater Gastropod, Biomphalaria glabrata, Say 1818, an Intermediate Host for Schistosoma mansoni. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2000, 267, 2351–2358. [Google Scholar] [CrossRef]
- Habib, M.R.; Lv, S.; Guo, Y.-H.; Gu, W.-B.; Standley, C.J.; Caldeira, R.L.; Zhou, X.-N. Morphological and Molecular Characterization of Invasive Biomphalaria straminea in Southern China. Infect. Dis. Poverty 2018, 7, 10–23. [Google Scholar] [CrossRef]
- Ohlweiler, F.P.; Rossignoli, T.J.; Tavares, T.E.S.; Madeira-Ott, T.; Martins, D.S.; Thyssen, P.J. Integrative Taxonomy and Revision of the Neotropical Biomphalaria tenagophila (Mollusca: Planorbidae) Complex Taxa. Stud. Neotrop. Fauna Environ. 2023, 59, 609–629. [Google Scholar] [CrossRef]
- Palasio, R.G.S.; de Almeida Guimarães, M.C.; Ohlweiler, F.P.; Tuan, R. Molecular and Morphological Identification of Biomphalaria Species from the State of São Paulo, Brazil. ZooKeys 2017, 668, 11–32. [Google Scholar] [CrossRef]
- Plam, M.; Jørgensen, A.; Kristensen, T.; Madsen, H. Sympatric Biomphalaria Species (Gastropoda: Planorbidae) in Lake Albert, Uganda, Show Homoplasies in Shell Morphology. Afr. Zool. 2008, 43, 34–44. [Google Scholar] [CrossRef]
- Standley, C.J.; Goodacre, S.L.; Wade, C.M.; Stothard, J.R. The Population Genetic Structure of Biomphalaria choanomphala in Lake Victoria, East Africa: Implications for Schistosomiasis Transmission. Parasites Vectors 2014, 7, 524. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.H.; Condemine, C.; Hesketh, J.; Kayuni, S.A.; Arme, T.M.; Archer, J.; Jones, S.; LaCourse, E.J.; Makaula, P.; Musaya, J. Biomphalaria Pfeifferi (Gastropoda: Planorbidae) in Lake Malawi and Upper Shire River, Mangochi District, Malawi: Distribution, Genetic Diversity and Pre-Patent Schistosome Infections. Trop. Med. Infect. Dis. 2023, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Whelan, S.; Liò, P.; Goldman, N. Molecular Phylogenetics: State-of-the-Art Methods for Looking into the Past. Trends Genet. 2001, 17, 262–272. [Google Scholar] [CrossRef]
- Dejong, R.; Emery, A.; Adema, C. The Mitochondrial Genome of Biomphalaria glabrata (Gastropoda: Basommatophora), Intermediate Host of Schistosoma mansoni. J. Parasitol. 2004, 90, 991–997. [Google Scholar] [CrossRef]
- Zhao, Q.-P.; Zhang, S.H.; Deng, Z.-R.; Jiang, M.-S.; Nie, P. Conservation and Variation in Mitochondrial Genomes of Gastropods Oncomelania hupensis and Tricula hortensis, Intermediate Host Snails of Schistosoma in China. Mol. Phylogenetics Evol. 2010, 57, 215–226. [Google Scholar] [CrossRef]
- Young, N.; Kinkar, L.; Stroehlein, A.; Korhonen, P.; Stothard, J.; Rollinson, D.; Gasser, R. Mitochondrial Genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): Implications for Snail Systematics and Schistosome Epidemiology. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100017. [Google Scholar] [CrossRef]
- Zhang, S.-M.; Bu, L.; Laidemitt, M.R.; Lu, L.; Mutuku, M.W.; Mkoji, G.M.; Loker, E.S. Complete Mitochondrial and rDNA Complex Sequences of Important Vector Species of Biomphalaria, Obligatory Hosts of the Human-Infecting Blood Fluke, Schistosoma mansoni. Sci. Rep. 2018, 8, 7341. [Google Scholar] [CrossRef]
- Pennance, T.; Calvelo, J.; Tennessen, J.A.; Burd, R.; Cayton, J.; Bollmann, S.R.; Blouin, M.S.; Spaan, J.M.; Hoffmann, F.G.; Ogara, G.; et al. The Genome and Transcriptome of the Snail Biomphalaria sudanica s.l.: Immune Gene Diversification and Highly Polymorphic Genomic Regions in an Important African Vector of Schistosoma mansoni. BMC Genom. 2024, 25, 192. [Google Scholar] [CrossRef]
- Jannotti-Passos, L.; Ruiz, J.; Caldeira, R.; Murta, S.; Coelho, P.; Carvalho, O. Phylogenetic Analysis of Biomphalaria tenagophila (Orbigny, 1835) (Mollusca: Gastropoda). Memórias do Instituto Oswaldo Cruz 2010, 105, 504–511. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Wu, R.; Zhou, C.; Ouyang, S.; Wu, X. The Complete Mitochondrial Genome of Invasive Species Biomphalaria straminea (Planorbidae: Biomphalaria) and Phylogenetic Analysis. Mitochondrial DNA Part B 2019, 4, 937–938. [Google Scholar] [CrossRef]
- Raghavan, N.; Knight, M. The Snail (Biomphalaria glabrata) Genome Project. Trends Parasitol. 2006, 22, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Adema, C.M.; Hillier, L.W.; Jones, C.S.; Loker, E.S.; Knight, M.; Minx, P.; Oliveira, G.; Raghavan, N.; Shedlock, A.; Do Amaral, L.R. Whole Genome Analysis of a Schistosomiasis-Transmitting Freshwater Snail. Nat. Commun. 2017, 8, 15451. [Google Scholar] [CrossRef]
- Zhong, D.; Bu, L.; Habib, M.R.; Lu, L.; Yan, G.; Zhang, S.-M. A Haplotype-like, Chromosome-Level Assembled and Annotated Genome of Biomphalaria glabrata, an Important Intermediate Host of Schistosomiasis and the Best Studied Model of Schistosomiasis Vector Snails. PLoS Neglected Trop. Dis. 2024, 18, e0011983. [Google Scholar] [CrossRef] [PubMed]
- Nong, W.; Yu, Y.; Aase-Remedios, M.E.; Xie, Y.; So, W.L.; Li, Y.; Wong, C.F.; Baril, T.; Law, S.T.S.; Lai, S.Y.; et al. Genome of the Ramshorn Snail Biomphalaria straminea—An Obligate Intermediate Host of Schistosomiasis. GigaScience 2022, 11, giac012. [Google Scholar] [CrossRef] [PubMed]
- Schultz, J.H.; Bansbach, L.M.; Bremmer, J.A.; Dimmler, K.E.; Forde, Q.A.; Gagliano, E.M.; Glenn, E.M.; Greengrass, C.M.; Hayes, J.P.; Kraus, A.L.; et al. The Mitochondrial Genome of the Planorbid Snail Planorbella duryi. Mitochondrial DNA B Resour. 2018, 3, 972–973. [Google Scholar] [CrossRef]
- Boore, J.L.; Brown, W.M. Big Trees from Little Genomes: Mitochondrial Gene Order as a Phylogenetic Tool. Curr. Opin. Genet. Dev. 1998, 8, 668–674. [Google Scholar] [CrossRef]
- Hassell, E.; Kim, T.; Park, J.-K. The Mitochondrial Genome in Nematode Phylogenetics. Front. Ecol. Evol. 2020, 8, 250. [Google Scholar] [CrossRef]
- Gissi, C.; Iannelli, F.; Pesole, G. Evolution of the Mitochondrial Genome of Metazoa as Exemplified by Comparison of Congeneric Species. Heredity 2008, 101, 301–320. [Google Scholar] [CrossRef]
- Sueoka, N. On the Genetic Basis of Variation and Heterogeneity of DNA Base Composition. Proc. Natl. Acad. Sci. USA 1962, 48, 582–592. [Google Scholar] [CrossRef]
- Boore, J.L. Requirements and Standards for Organelle Genome Databases. Omics 2006, 10, 119–126. [Google Scholar] [CrossRef]
- Francino, M.P.; Ochman, H. Strand Asymmetries in DNA Evolution. Trends Genet. 1997, 13, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.-L.; Arken, K.; Kadir, M.; Zhang, W.-R.; Rong, M.-J.; Wei, N.-W.; Liu, Y.-J.; Yue, C. Correction: The Complete Mitochondrial Genomes of Paradiplozoon yarkandense and Paradiplozoon homoion Confirm That Diplozoidae Evolve at an Elevated Rate. Parasites Vectors 2022, 15, 169. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qiu, Y.-Y.; Zeng, M.-H.; Diao, P.-W.; Chang, Q.-C.; Gao, Y.; Zhang, Y.; Wang, C.-R. The Complete Mitochondrial Genome of Echinostoma miyagawai: Comparisons with Closely Related Species and Phylogenetic Implications. Infect. Genet. Evol. 2019, 75, 103961. [Google Scholar] [CrossRef] [PubMed]
- Na, L.; Gao, J.-F.; Liu, G.-H.; Fu, X.; Su, X.; Yue, D.-M.; Gao, Y.; Zhang, Y.; Wang, C.-R. The Complete Mitochondrial Genome of Metorchis orientalis (Trematoda: Opisthorchiidae): Comparison with Other Closely Related Species and Phylogenetic Implications. Infect. Genet. Evol. 2016, 39, 45–50. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, S.; Li, X.; Li, L.; Shi, W.; Yu, Z. Evolution of the tRNA Gene Family in Mitochondrial Genomes of Five Meretrix Clams (Bivalvia, Veneridae). Gene 2014, 533, 439–446. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.; Li, L.; Yu, Z. A Unique tRNA Gene Family and a Novel, Highly Expressed ORF in the Mitochondrial Genome of the Silver-Lip Pearl Oyster, Pinctada maxima (Bivalvia: Pteriidae). Gene 2012, 510, 22–31. [Google Scholar] [CrossRef]
- Feng, J.; Guo, Y.; Yan, C.; Ye, Y.; Li, J.; Guo, B.; Lü, Z. Comparative Analysis of the Complete Mitochondrial Genomes in Two Limpets from Lottiidae (Gastropoda: Patellogastropoda): Rare Irregular Gene Rearrangement within Gastropoda. Sci. Rep. 2020, 10, 19277. [Google Scholar] [CrossRef]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved Annotation of Protein-Coding Genes Boundaries in Metazoan Mitochondrial Genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef]
- Standley, C.J.; Wade, C.M.; Stothard, J.R. A Fresh Insight into Transmission of Schistosomiasis: A Misleading Tale of Biomphalaria in Lake Victoria. PLoS ONE 2011, 6, e26563. [Google Scholar] [CrossRef]
- Talha, A.A.; Mohamed, S.I.; Mohamed, A.E.; Ibrahim, E.S.; Ali, E.A.; Abakar, A.D.; Abdalla, U.E.; Nour, B.Y.M. Prevalence of Intestinal and Urinary Schistosomaisis in Five Localities in Gezira State, Sudan. Int. J. Med. Sci. Health Res. 2018, 2, 88–99. [Google Scholar]
- WHO. Field Use of Molluscicides in Schistosomiasis Control Programmes: An Operational Manual for Programme Managers; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Amin, M.A. Large-Scale Assessment of the Molluscicides Copper Sulphate and N-Tritlymorpholine (Frescon) in the North Group of the Gezira Irrigated Area, Sudan. J. Trop. Med. Hyg. 1972, 75, 169–175. [Google Scholar] [PubMed]
- Danish Bilharziasis Laboratory. Danish Bilharziasis Laboratory WHO a Field Guide to African Freshwater Snails; WHO collaborating Centre for Applied Malacology: Charlottenlund, Denmark, 1998. [Google Scholar]
- Frandsen, F.; McCullough, F.; Madsen, H.; World Health Organization; Danish Bilharziasis Lab. A Practical Guide to the Identification of African Freshwater Snails; Malacological Review; Danish Bilharziasis Lab: Charlottenlund, Denmark, 1980; Volume 13, No. 1–2. [Google Scholar]
- Bhat, A.I.; Rao, G.P. Rolling Circle Amplification (RCA). In Characterization of Plant Viruses: Methods and Protocols; Bhat, A.I., Rao, G.P., Eds.; Springer: New York, NY, USA, 2020; pp. 377–381. ISBN 978-1-0716-0334-5. [Google Scholar]
- Fehlmann, T.; Reinheimer, S.; Geng, C.; Su, X.; Drmanac, S.; Alexeev, A.; Zhang, C.; Backes, C.; Ludwig, N.; Hart, M.; et al. cPAS-Based Sequencing on the BGISEQ-500 to Explore Small Non-Coding RNAs. Clin. Epigenetics 2016, 8, 123. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 8 May 2025).
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De Novo Assembly of Organelle Genomes from Whole Genome Data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar] [CrossRef]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A Toolkit for Animal Mitochondrial Genome Assembly, Annotation and Visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef]
- Laslett, D.; Canbäck, B. ARWEN: A Program to Detect tRNA Genes in Metazoan Mitochondrial Nucleotide Sequences. Bioinformatics 2008, 24, 172–175. [Google Scholar] [CrossRef]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Stothard, P. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences. Biotechniques 2000, 28, 1102–1104. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “One for All, All for One” Bioinformatics Platform for Biological Big-Data Mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
Regions | Sample | A | C | G | T | AT (%) | GC (%) | AT Skew | GC Skew |
---|---|---|---|---|---|---|---|---|---|
Whole mitogenome | EG | 33.8 | 10.4 | 13.0 | 42.8 | 76.6 | 23.4 | −0.117 | 0.111 |
GW | 33.8 | 10.3 | 13.0 | 42.9 | 76.7 | 23.3 | −0.119 | 0.116 | |
HA | 33.8 | 10.3 | 13.0 | 42.9 | 76.7 | 23.3 | −0.119 | 0.116 | |
MA | 33.7 | 10.2 | 13.1 | 43.0 | 76.7 | 23.3 | −0.121 | 0.124 | |
NU1 | 33.8 | 10.4 | 13.0 | 42.8 | 76.6 | 23.4 | −0.117 | 0.111 | |
NU3 | 33.8 | 10.4 | 13.0 | 42.8 | 76.6 | 23.4 | −0.117 | 0.111 | |
SG | 33.8 | 10.4 | 13.0 | 42.8 | 76.6 | 23.4 | −0.117 | 0.111 | |
rRNAs | EG | 38.1 | 10.0 | 12.1 | 39.9 | 78.0 | 22.1 | −0.023 | 0.095 |
GW | 37.9 | 10.1 | 12.3 | 39.8 | 77.7 | 22.4 | −0.024 | 0.098 | |
HA | 37.8 | 10.1 | 12.3 | 39.9 | 77.7 | 22.4 | −0.027 | 0.098 | |
MA | 38.0 | 10.2 | 12.4 | 39.5 | 77.5 | 22.6 | −0.019 | 0.097 | |
NU1 | 38.1 | 10.0 | 12.1 | 39.9 | 78.0 | 22.1 | −0.023 | 0.095 | |
NU3 | 38.1 | 10.0 | 12.1 | 39.9 | 78.0 | 22.1 | −0.023 | 0.095 | |
SG | 38.0 | 10.0 | 12.1 | 39.9 | 77.9 | 22.1 | −0.024 | 0.095 | |
tRNAs | EG | 36.9 | 9.8 | 12.9 | 40.4 | 77.3 | 22.7 | −0.045 | 0.137 |
GW | 37.0 | 9.8 | 12.7 | 40.5 | 77.5 | 22.5 | −0.045 | 0.129 | |
HA | 36.9 | 9.8 | 12.7 | 40.6 | 77.5 | 22.5 | −0.048 | 0.129 | |
MA | 36.8 | 9.9 | 12.8 | 40.6 | 77.4 | 22.7 | −0.049 | 0.128 | |
NU1 | 36.8 | 9.9 | 12.8 | 40.5 | 77.3 | 22.7 | −0.048 | 0.128 | |
NU3 | 36.9 | 9.9 | 12.9 | 40.4 | 77.3 | 22.8 | −0.045 | 0.132 | |
SG | 36.7 | 9.9 | 12.8 | 40.6 | 77.3 | 22.7 | −0.05 | 0.128 | |
PCGs | EG | 30.6 | 10.5 | 13.3 | 45.6 | 76.2 | 23.8 | −0.197 | 0.118 |
GW | 30.5 | 10.4 | 13.3 | 45.8 | 76.3 | 23.7 | −0.2 | 0.122 | |
HA | 30.5 | 10.4 | 13.3 | 45.8 | 76.3 | 23.7 | −0.2 | 0.122 | |
MA | 30.6 | 10.4 | 13.3 | 45.8 | 76.4 | 23.7 | −0.199 | 0.122 | |
NU1 | 30.6 | 10.5 | 13.3 | 45.6 | 76.2 | 23.8 | −0.197 | 0.118 | |
NU3 | 30.6 | 10.5 | 13.3 | 45.6 | 76.2 | 23.8 | −0.197 | 0.118 | |
SG | 30.6 | 10.5 | 13.3 | 45.6 | 76.2 | 23.8 | −0.197 | 0.118 |
Gene Name | Strand | NU3 (bp) | NU1 (bp) | SG (bp) | EG (bp) | GW (bp) | HA (bp) | MA (bp) | Codon (Start/Stop) | Anticodon |
---|---|---|---|---|---|---|---|---|---|---|
cox1 | + | 1527 | 1527 | 1527 | 1527 | 1527 | 1527 | 1527 | TTG/TAA | |
trnV(uac) | + | 61 | 61 | 61 | 61 | 61 | 61 | 60 | TAC | |
16S rrnL | + | 984 | 984 | 984 | 984 | 985 | 986 | 984 | ||
trnL1(uag) | + | 63 | 63 | 63 | 63 | 63 | 63 | 63 | TAG | |
trnA(ugc) | + | 63 | 63 | 63 | 63 | 63 | 63 | 63 | TGC | |
trnP(ugg) | + | 64 | 64 | 64 | 64 | 65 | 66 | 63 | TGG | |
nad6 | + | 435 | 435 | 435 | 435 | 435 | 435 | 435 | ATT/TAA | |
nad5 | + | 1656 | 1656 | 1656 | 1656 | 1656 | 1656 | 1656 | ATG/TAG | |
nad1 | + | 891 | 891 | 891 | 891 | 891 | 891 | 891 | ATG/TAA | |
nad4l | + | 306 | 306 | 306 | 306 | 306 | 306 | 306 | ATA/TAA | |
cytb | + | 1128 | 1128 | 1128 | 1128 | 1128 | 1128 | 1128 | ATA/TAA | |
trnD(guc) | + | 69 | 69 | 69 | 69 | 67 | 70 | 69 | GTC | |
trnC(gca) | + | 56 | 58 | 58 | 56 | 58 | 56 | 58 | GCA | |
trnF(gaa) | + | 61 | 61 | 61 | 61 | 61 | 61 | 61 | GAA | |
cox2 | + | 652 | 652 | 652 | 652 | 652 | 652 | 652 | ATA/T | |
trnY(gua) | + | 61 | 61 | 61 | 61 | 61 | 61 | 61 | GTA | |
trnW(uca) | + | 62 | 62 | 62 | 62 | 63 | 63 | 63 | TCA | |
trnG(ucc) | + | 63 | 63 | 63 | 63 | 63 | 63 | 63 | TCC | |
trnH(gug) | + | 68 | 68 | 68 | 68 | 66 | 66 | 64 | GTG | |
trnQ(uug) | − | 58 | 58 | 58 | 58 | 58 | 58 | 59 | TTG | |
trnL2(uaa) | − | 52 | 54 | 54 | 52 | 52 | 52 | 52 | TAA | |
atp8 | − | 123 | 123 | 123 | 123 | 123 | 123 | 123 | ATT/TAA | |
trnN(guu) | − | 66 | 66 | 66 | 66 | 67 | 67 | 67 | GTT | |
atp6 | − | 643 | 643 | 643 | 643 | 643 | 643 | 643 | ATT/T | |
trnR(ucg) | − | 64 | 64 | 65 | 64 | 64 | 64 | 65 | TCG | |
trnE(uuc) | − | 58 | 58 | 58 | 58 | 57 | 57 | 58 | TTC | |
12S rrnS | − | 707 | 707 | 708 | 707 | 708 | 708 | 706 | ||
trnM(cau) | − | 63 | 63 | 63 | 63 | 63 | 63 | 63 | CAT | |
nad3 | − | 343 | 343 | 343 | 343 | 343 | 343 | 343 | ATT/T | |
trnS2(uga) | − | 61 | 61 | 61 | 61 | 62 | 62 | 63 | TGA | |
trnS1(gcu) | + | 54 | 54 | 53 | 54 | 53 | 53 | 53 | GCT | |
nad4 | + | 1303 | 1303 | 1303 | 1303 | 1303 | 1303 | 1303 | ATA/T | |
trnT(ugu) | − | 63 | 63 | 63 | 63 | 63 | 63 | 63 | TGT | |
cox3 | − | 775 | 775 | 775 | 775 | 775 | 775 | 775 | ATA/T | |
trnI(gau) | + | 64 | 64 | 64 | 64 | 64 | 64 | 64 | GAT | |
nad2 | + | 913 | 913 | 913 | 913 | 913 | 913 | 913 | ATT/T | |
trnK(uuu) | + | 51 | 51 | 52 | 51 | 53 | 53 | 49 | TTT |
EG | NU1 | NU3 | SG | HA | GW | MA | NC_038059 | |
---|---|---|---|---|---|---|---|---|
EG | ||||||||
NU1 | 0 (100) | |||||||
NU3 | 0 (100) | 0 (100) | ||||||
SG | 0 (99.9) | 0 (99.9) | 0 (99.9) | |||||
HA | 0.0042 (99.4) | 0.0042 (99.4) | 0.0042 (99.4) | 0.0043 (99.6) | ||||
GW | 0.0042 (99.4) | 0.0042 (99.4) | 0.0042 (99.4) | 0.0043 (99.6) | 0 (100) | |||
MA | 0.0156 (98.3) | 0.0156 (98.3) | 0.0156 (98.3) | 0.0156 (98.2) | 0.0113 (98.6) | 0.0113 (98.6) | ||
NC_038059 | 0.064 (84.3) | 0.064 (84.3) | 0.064 (84.3) | 0.064 (84.5) | 0.063 (84.6) | 0.063 (84.6) | 0.072 (83.5) |
EG | NU1 | NU3 | SG | HA | GW | MA | NC_038059 * | |
---|---|---|---|---|---|---|---|---|
EG | ||||||||
NU1 | 0 (100) | |||||||
NU3 | 0 (100) | 0 (100) | 0 (100) | |||||
SG | 0 (100) | 0 (100) | 0 (100) | |||||
HA | 0.0041 (99.4) | 0.0041 (99.4) | 0.0041 (99.4) | 0.0041 (99.4) | ||||
GW | 0.0041 (99.5) | 0.0041 (99.5) | 0.0041 (99.5) | 0.0041 (99.5) | 0 (99.9) | |||
MA | 0.0112 (98.7) | 0.0112 (98.7) | 0.0112 (98.7) | 0.0112 (98.7) | 0.0092 (98.7) | 0.0092 (98.8) | ||
NC_038059 * | 0.006 (99.3) | 0.006 (99.3) | 0.006 (99.3) | 0.006 (99.3) | 0.004 (99.3) | 0.0041 (99.4) | 0.0091 (98.9) |
Species Name | Accession Number | Genome Size (Base Pair) | Reference |
---|---|---|---|
Biomphalaria pfeifferi Sudan (EG area) | PV213442 | 13,691 | This study |
B. pfeifferi Sudan (GW area) | PV213443 | 13,694 | |
B. pfeifferi Sudan (HA area) | PV213444 | 13,696 | |
B. pfeifferi Sudan (MA area) | PV213445 | 13,688 | |
B. pfeifferi Sudan (NU1 area) | PV213446 | 13,691 | |
B. pfeifferi Sudan (NU3 area) | PV213447 | 13,690 | |
B. pfeifferi Sudan (SG area) | PV213448 | 13,693 | |
B. pfeifferi (Kenya) * | NC_038059 | 13,624 | Zhang et al. [51] |
B. Sudanica (Kenya) * | NC_038060 | 13.671 | Zhang et al. [51] |
B. choanomphala (Kenya) * | NC_038061 | 13,672 | Zhang et al. [51] |
B. straminea (China) | NC_036993 | 13,650 | Zhou et al. [54] |
B. tenagophila (Brazil) * | NC_010220 | 13,722 | Jannotti-Passos et al. [53] |
B. glabrata (UK) * | NC_005439 | 13,670 | Dejong et al. [48] |
Planorbella duryi (Outgroup) | KY_514384 | 14,217 | Schultz et al. [59] |
Locality/Administrative Unit | Collection Site ID/ Water Body Name | No. of Biomphalaria Extracted | Latitude | Longitude |
---|---|---|---|---|
South Gezira/Barakat | S3 Barakat canal | 5 | 14.357 | 33.526 |
Greater Wadmedani | S6 Atraa | 3 | 14.445 | 33.487 |
North Umelgura/Elhediba | S10 Elhediba | 5 | 14.484 | 33.658 |
S12 Elhediba | 1 | 14.484 | 33.657 | |
East Gezira/Elgineid | S13 Elgineid | 5 | 14.866 | 33.277 |
Hasahisa/Wadelfadni | S19 Wadelfadni | 5 | 14.6704 | 33.343 |
Managil/Eboud | S23 Eboud/alnegeer village | 3 | 14.230 | 33.173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, A.; Andrus, P.S.; Zhu, X.; Dong, Z.; Guo, Y.; Nour, B.Y.M.; Zhou, X.; Zhao, L. Comparative Mitochondrial Genome Analysis of the Intestinal Schistosomiasis Snail Host Biomphalaria pfeifferi from Multiple Populations in Gezira State, Sudan. Int. J. Mol. Sci. 2025, 26, 4756. https://doi.org/10.3390/ijms26104756
Osman A, Andrus PS, Zhu X, Dong Z, Guo Y, Nour BYM, Zhou X, Zhao L. Comparative Mitochondrial Genome Analysis of the Intestinal Schistosomiasis Snail Host Biomphalaria pfeifferi from Multiple Populations in Gezira State, Sudan. International Journal of Molecular Sciences. 2025; 26(10):4756. https://doi.org/10.3390/ijms26104756
Chicago/Turabian StyleOsman, Arwa, Peter S. Andrus, Xianglu Zhu, Zhaoyang Dong, Yunhai Guo, Bakri Y. M. Nour, Xiaonong Zhou, and Liming Zhao. 2025. "Comparative Mitochondrial Genome Analysis of the Intestinal Schistosomiasis Snail Host Biomphalaria pfeifferi from Multiple Populations in Gezira State, Sudan" International Journal of Molecular Sciences 26, no. 10: 4756. https://doi.org/10.3390/ijms26104756
APA StyleOsman, A., Andrus, P. S., Zhu, X., Dong, Z., Guo, Y., Nour, B. Y. M., Zhou, X., & Zhao, L. (2025). Comparative Mitochondrial Genome Analysis of the Intestinal Schistosomiasis Snail Host Biomphalaria pfeifferi from Multiple Populations in Gezira State, Sudan. International Journal of Molecular Sciences, 26(10), 4756. https://doi.org/10.3390/ijms26104756