Temporal Regulation of Early-Stage Cytokine Expression in Diabetic Wound Healing Under Negative Pressure Wound Therapy
Abstract
:1. Introduction
2. Results
2.1. Comparison of the Effects of NPWT Versus AP on 110 Cytokines Across the Four Main Stages of Wound Healing
2.2. Cytokine Modulation Delayed in Diabetic Mice Under Negative Pressure Wound Therapy
2.3. Differential Cytokine Expression Patterns Under Negative Pressure Wound Therapy in Diabetic Mice
2.4. NPWT Effectively Modulates Inflammatory Cytokines
2.5. Heightened Inflammatory State Delays NPWT-Mediated Wound Healing Modulation
2.6. One-Sided Binomial Test Reveals NPWT Accelerates Wound Healing by Inducing Early Expression of Key Signaling Cytokines
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Surgical Procedure and Postsurgical Monitoring
4.3. Cytokine Array Assay
4.4. Cytokine Array Data Processing and Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
References
- Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.R.; Bernstein, J.M. Chronic wound infection: Facts and controversies. Clin. Dermatol. 2010, 28, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Raghupathy, R.; Sabrena, S.; Vaithiswaran, A.; Franklin, A.; Kailasam, S. A prospective randomized trial of vacuum-assisted closure versus standard therapy of chronic non-healing wounds. J. Evol. Med. Dent. Sci. 2016, 5, 3162–3167. [Google Scholar] [CrossRef]
- Moues, C.M.; Heule, F.; Hovius, S.E. A review of topical negative pressure therapy in wound healing: Sufficient evidence? Am. J. Surg. 2011, 201, 544–556. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, S.; Da, J.; Wu, W.; Ma, F.; Tang, C.; Li, G.; Zhong, D.; Liao, B. A systematic review and meta-analysis of efficacy and safety of negative pressure wound therapy in the treatment of diabetic foot ulcer. Ann. Palliat. Med. 2021, 10, 10830–10839. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.G.; Yeo, J.H.; Kim, J.H.; Kim, J.B.; Cho, T.J.; Lee, D.Y. Negative-pressure wound therapy induces endothelial progenitor cell mobilization in diabetic patients with foot infection or skin defects. Exp. Mol. Med. 2013, 45, e62. [Google Scholar] [CrossRef]
- Wu, M.; Matar, D.Y.; Yu, Z.; Chen, Z.; Knoedler, S.; Ng, B.; Darwish, O.; Haug, V.; Friedman, L.; Orgill, D.P.; et al. Modulation of lymphangiogenesis in incisional murine diabetic wound healing using negative pressure wound therapy. Adv. Wound Care 2023, 12, 483–497. [Google Scholar] [CrossRef]
- Lindley, L.E.; Stojadinovic, O.; Pastar, I.; Tomic-Canic, M. Biology and biomarkers for wound healing. Plast. Reconstr. Surg. 2016, 138, 18S–28S. [Google Scholar] [CrossRef]
- Heyer, K.; Herberger, K.; Protz, K.; Glaeske, G.; Augustin, M. Epidemiology of chronic wounds in Germany: Analysis of statutory health insurance data. Wound Repair. Regen. 2016, 24, 434–442. [Google Scholar] [CrossRef]
- Mills, C.D.; Kincaid, K.; Alt, J.M.; Heilman, M.J.; Hill, A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 2000, 164, 6166–6173. [Google Scholar] [CrossRef]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef] [PubMed]
- Wilgus, T.A.; Roy, S.; McDaniel, J.C. Neutrophils and wound repair: Positive actions and negative reactions. Adv. Wound Care 2013, 2, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Mirza, R.E.; Fang, M.M.; Ennis, W.J.; Koh, T.J. Blocking interleukin-1beta induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes 2013, 62, 2579–2587. [Google Scholar] [CrossRef]
- Wu, X.; He, W.; Mu, X.; Liu, Y.; Deng, J.; Liu, Y.; Nie, X. Macrophage polarization in diabetic wound healing. Burns Trauma. 2022, 10, tkac051. [Google Scholar] [CrossRef]
- Wang, T.; Li, X.; Fan, L.; Chen, B.; Liu, J.; Tao, Y.; Wang, X. Negative pressure wound therapy promoted wound healing by suppressing inflammation via down-regulating MAPK-JNK signaling pathway in diabetic foot patients. Diabetes Res. Clin. Pract. 2019, 150, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, L.; Jie, R.; Tang, Y.; Zhao, X.; Xu, M.; Chen, M. Negative pressure wound therapy promotes wound healing of diabetic foot ulcers by up-regulating PRDX2 in wound margin tissue. Sci. Rep. 2023, 13, 16192. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, M.; Wang, Y.; Zhang, D.; Qi, B.; Yu, A. Role of autologous fat transplantation combined with negative-pressure wound therapy in treating rat diabetic wounds. Plast. Reconstr. Surg. 2023, 152, 561–570. [Google Scholar] [CrossRef]
- Shyu, Y.C.; Huang, T.S.; Chiu, H.S.; Sumazin, P.; Lin, X.Y.; Liao, P.C.; Liou, C.C.; Hsu, F.C.; Lin, J.S.; Hsu, C.C.; et al. Deciphering early-stage molecular mechanisms of negative pressure wound therapy in a murine model. Int. J. Mol. Sci. 2024, 25, 2373. [Google Scholar] [CrossRef]
- Dalmedico, M.M.; do Rocio Fedalto, A.; Martins, W.A.; de Carvalho, C.K.L.; Fernandes, B.L.; Ioshii, S.O. Effectiveness of negative pressure wound therapy in treating diabetic foot ulcers: A systematic review and meta-analysis of randomized controlled trials. Wounds 2024, 36, 281–289. [Google Scholar] [CrossRef]
- Ogbeide, O.A.; Okeleke, S.I.; Okorie, J.C.; Mandong, J.; Ajiboye, A.; Olawale, O.O.; Salifu, F. Evolving trends in the management of diabetic foot ulcers: A narrative review. Cureus 2024, 16, e65095. [Google Scholar] [CrossRef]
- Li, W.; Zheng, J. Negative pressure wound therapy for chronic wounds. Ann. Plast. Surg. 2024, 93, S19–S26. [Google Scholar] [CrossRef] [PubMed]
- Basu Mallik, S.; Jayashree, B.S.; Shenoy, R.R. Epigenetic modulation of macrophage polarization- perspectives in diabetic wounds. J. Diabetes Complicat. 2018, 32, 524–530. [Google Scholar] [CrossRef]
- Kwon, K.T.; Armstrong, D.G. Microbiology and antimicrobial therapy for diabetic foot infections. Infect. Chemother. 2018, 50, 11–20. [Google Scholar] [CrossRef]
- Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef]
- Arroba, A.I.; Alcalde-Estevez, E.; Garcia-Ramirez, M.; Cazzoni, D.; de la Villa, P.; Sanchez-Fernandez, E.M.; Mellet, C.O.; Garcia Fernandez, J.M.; Hernandez, C.; Simo, R.; et al. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice. Biochim. Biophys. Acta 2016, 1862, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
- Alavi, A.; Sibbald, R.G.; Mayer, D.; Goodman, L.; Botros, M.; Armstrong, D.G.; Woo, K.; Boeni, T.; Ayello, E.A.; Kirsner, R.S. Diabetic foot ulcers: Part I. Pathophysiology and prevention. J. Am. Acad. Dermatol. 2014, 70, 1.e1–18; quiz 19–20. [Google Scholar] [CrossRef]
- Loot, M.A.; Kenter, S.B.; Au, F.L.; van Galen, W.J.; Middelkoop, E.; Bos, J.D.; Mekkes, J.R. Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur. J. Cell Biol. 2002, 81, 153–160. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair. Regen. 2008, 16, 585–601. [Google Scholar] [CrossRef]
- Angelo, L.S.; Kurzrock, R. Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin. Cancer Res. 2007, 13, 2825–2830. [Google Scholar] [CrossRef]
- Presta, L.G.; Chen, H.; O’Connor, S.J.; Chisholm, V.; Meng, Y.G.; Krummen, L.; Winkler, M.; Ferrara, N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997, 57, 4593–4599. [Google Scholar]
- Zhou, K.; Ma, Y.; Brogan, M.S. Chronic and non-healing wounds: The story of vascular endothelial growth factor. Med. Hypotheses 2015, 85, 399–404. [Google Scholar] [CrossRef]
- Greenhalgh, D.G.; Sprugel, K.H.; Murray, M.J.; Ross, R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am. J. Pathol. 1990, 136, 1235–1246. [Google Scholar] [PubMed]
- Chakraborty, R.; Borah, P.; Dutta, P.P.; Sen, S. Evolving spectrum of diabetic wound: Mechanistic insights and therapeutic targets. World J. Diabetes 2022, 13, 696–716. [Google Scholar] [CrossRef] [PubMed]
- Connolly, D.T.; Stoddard, B.L.; Harakas, N.K.; Feder, J. Human fibroblast-derived growth factor is a mitogen and chemoattractant for endothelial cells. Biochem. Biophys. Res. Commun. 1987, 144, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, R.; Rifkin, D.B. Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. J. Exp. Med. 1990, 172, 245–251. [Google Scholar] [CrossRef]
- Bruhn-Olszewska, B.; Korzon-Burakowska, A.; Gabig-Ciminska, M.; Olszewski, P.; Wegrzyn, A.; Jakobkiewicz-Banecka, J. Molecular factors involved in the development of diabetic foot syndrome. Acta Biochim. Pol. 2012, 59, 507–513. [Google Scholar] [CrossRef]
- Lobmann, R.; Pap, T.; Ambrosch, A.; Waldmann, K.; Konig, W.; Lehnert, H. Differential effects of PDGF-BB on matrix metalloproteases and cytokine release in fibroblasts of Type 2 diabetic patients and normal controls in vitro. J. Diabetes Complicat. 2006, 20, 105–112. [Google Scholar] [CrossRef]
- Gary Sibbald, R.; Woo, K.Y. The biology of chronic foot ulcers in persons with diabetes. Diabetes Metab. Res. Rev. 2008, 24 (Suppl. S1), S25–S30. [Google Scholar] [CrossRef]
- Leu, J.G.; Chiang, M.H.; Chen, C.Y.; Lin, J.T.; Chen, H.M.; Chen, Y.L.; Liang, Y.J. Adenine accelerated the diabetic wound healing by PPAR delta and angiogenic regulation. Eur. J. Pharmacol. 2018, 818, 569–577. [Google Scholar] [CrossRef]
- Dong, J.; Qing, C.; Song, F.; Wang, X.; Lu, S.; Tian, M. Potential molecular mechanisms of negative pressure in promoting wound healing. Int. Wound J. 2020, 17, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Matar, D.Y.; Yu, Z.; Chen, Z.; Knoedler, S.; Ng, B.; Darwish, O.A.; Sohrabi, S.; Friedman, L.; Haug, V.; et al. Continuous NPWT Regulates Fibrosis in Murine Diabetic Wound Healing. Pharmaceutics 2022, 14, 2125. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.H.; Speed, T. Normalization. In DNA Microarrays, a Molecular Cloning Manual; Bowtell, D., Sambrook, J., Eds.; CSHL Press: Cold Spring Harbor, NY, USA, 2003; pp. 536–543. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, H.-S.; Huang, T.-S.; Chen, C.-T.; Lin, X.-Y.; Liao, P.-C.; Liou, C.-C.; Hsu, C.-C.; Somvanshi, S.; Sumazin, P.; Hsu, P.-H.; et al. Temporal Regulation of Early-Stage Cytokine Expression in Diabetic Wound Healing Under Negative Pressure Wound Therapy. Int. J. Mol. Sci. 2025, 26, 4634. https://doi.org/10.3390/ijms26104634
Chiu H-S, Huang T-S, Chen C-T, Lin X-Y, Liao P-C, Liou C-C, Hsu C-C, Somvanshi S, Sumazin P, Hsu P-H, et al. Temporal Regulation of Early-Stage Cytokine Expression in Diabetic Wound Healing Under Negative Pressure Wound Therapy. International Journal of Molecular Sciences. 2025; 26(10):4634. https://doi.org/10.3390/ijms26104634
Chicago/Turabian StyleChiu, Hua-Sheng, Ting-Shuo Huang, Chien-Tzung Chen, Xin-Yu Lin, Po-Cheng Liao, Cai-Cin Liou, Chih-Chin Hsu, Sonal Somvanshi, Pavel Sumazin, Pang-Hung Hsu, and et al. 2025. "Temporal Regulation of Early-Stage Cytokine Expression in Diabetic Wound Healing Under Negative Pressure Wound Therapy" International Journal of Molecular Sciences 26, no. 10: 4634. https://doi.org/10.3390/ijms26104634
APA StyleChiu, H.-S., Huang, T.-S., Chen, C.-T., Lin, X.-Y., Liao, P.-C., Liou, C.-C., Hsu, C.-C., Somvanshi, S., Sumazin, P., Hsu, P.-H., Sun, C.-C., & Shyu, Y.-C. (2025). Temporal Regulation of Early-Stage Cytokine Expression in Diabetic Wound Healing Under Negative Pressure Wound Therapy. International Journal of Molecular Sciences, 26(10), 4634. https://doi.org/10.3390/ijms26104634