Special Issue “Molecular Insights into the Role of Exercise in Disease and Health”
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valenzuela, P.L.; Ruilope, L.M.; Santos-Lozano, A.; Wilhelm, M.; Kränkel, N.; Fiuza-Luces, C.; Lucia, A. Exercise benefits in cardiovascular diseases: From mechanisms to clinical implementation. Eur. Heart J. 2023, 44, 1874–1889. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Daly, R.M.; Hoogendijk, E.O.; Scott, D. Exercise to Prevent and Manage Frailty and Fragility Fractures. Curr. Osteoporos. Rep. 2023, 21, 205–215. [Google Scholar] [CrossRef]
- Muscella, A.; Stefàno, E.; Marsigliante, S. The effects of exercise training on lipid metabolism and coronary heart disease. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H76–H88. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T. Selected Methods of Resistance Training for Prevention and Treatment of Sarcopenia. Cells 2022, 11, 1389. [Google Scholar] [CrossRef]
- Feng, F.; Xu, H.; Sun, Y.; Zhang, X.; Li, N.; Sun, X.; Tian, X.; Zhao, R. Exercise for prevention of falls and fall-related injuries in neurodegenerative diseases and aging-related risk conditions: A meta-analysis. Front. Endocrinol. 2023, 14, 1187325. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, X.; Peng, Y.; Fang, Z.; Zhang, X. Roles and Molecular Mechanisms of Physical Exercise in Sepsis Treatment. Front. Physiol. 2022, 13, 879430. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Ma, H.; He, A.; Li, Y.; He, C.; Xia, Y. Exercise in cancer prevention and anticancer therapy: Efficacy, molecular mechanisms and clinical information. Cancer Lett. 2022, 544, 215814. [Google Scholar] [CrossRef]
- Guan, Y.; Yan, Z. Molecular Mechanisms of Exercise and Healthspan. Cells 2022, 11, 872. [Google Scholar] [CrossRef]
- Zhong, D.; Li, Y.; Huang, Y.; Hong, X.; Li, J.; Jin, R. Molecular Mechanisms of Exercise on Cancer: A Bibliometrics Study and Visualization Analysis. Front. Mol. Biosci. 2021, 8, 797902. [Google Scholar] [CrossRef]
- McGee, S.L.; Hargreaves, M. Exercise adaptations: Molecular mechanisms and potential targets for therapeutic benefit. Nat. Rev. Endocrinol. 2020, 16, 495–505. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, W. Roles and molecular mechanisms of physical exercise in cancer prevention and treatment. J. Sport Health Sci. 2021, 10, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Cantón-Suárez, A.; Sánchez-Valdeón, L.; Bello-Corral, L.; Cuevas, M.J.; Estébanez, B. Understanding the Molecular Impact of Physical Exercise on Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 13576. [Google Scholar] [CrossRef]
- Numakawa, T.; Kajihara, R. The Role of Brain-Derived Neurotrophic Factor as an Essential Mediator in Neuronal Functions and the Therapeutic Potential of Its Mimetics for Neuroprotection in Neurologic and Psychiatric Disorders. Molecules 2025, 30, 848. [Google Scholar] [CrossRef]
- Mielniczek, M.; Aune, T.K. The Effect of High-Intensity Interval Training (HIIT) on Brain-Derived Neurotrophic Factor Levels (BNDF): A Systematic Review. Brain Sci. 2024, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Duderstadt, Y.; Schreiber, S.; Burtscher, J.; Schega, L.; Müller, N.G.; Brigadski, T.; Braun-Dullaeus, R.C.; Leßmann, V.; Müller, P. Controlled Hypoxia Acutely Prevents Physical Inactivity-Induced Peripheral BDNF Decline. Int. J. Mol. Sci. 2024, 25, 7536. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Dünnwald, T.; Faulhaber, M.; Schobersberger, W.; Samaja, M.; Burtscher, M.; Kopp, M. Risks of perturbed oxygen homeostasis: Responses and adaptations to hyperoxia and hypoxia. Med. Gas Res. 2025, 15, 189–190. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Y.; Luo, H.; Su, H.; Zhong, J.; Pan, L.; Liu, Y.; Yang, C.; Yin, Y.; Tan, B. Treadmill Training-Induced Remyelination Rescues Cognitive Impairment After Acute Hypoxia. Neurochem. Res. 2025, 50, 109. [Google Scholar] [CrossRef]
- Puech, C.; Badran, M.; Barrow, M.B.; Gozal, D. Cognitive Function, Sleep, and Neuroinflammatory Markers in Mice Exposed to Very Long-Term Intermittent Hypoxia. Int. J. Mol. Sci. 2025, 26, 1815. [Google Scholar] [CrossRef]
- Kimball, A.L.; Petrie, M.A.; McCue, P.M.; Johnson, K.A.; Shields, R.K. Impaired Glucose Tolerance and Visceral Adipose Tissue Thickness among Lean and Non-Lean People with and without Spinal Cord Injury. J. Funct. Morphol. Kinesiol. 2023, 8, 123. [Google Scholar] [CrossRef]
- Petrie, M.A.; Suneja, M.; Shields, R.K. Distinct Genomic Expression Signatures after Low-Force Electrically Induced Exercises in Persons with Spinal Cord Injury. Int. J. Mol. Sci. 2024, 25, 10189. [Google Scholar] [CrossRef]
- Estébanez, B.; Jiménez-Pavón, D.; Huang, C.J.; Cuevas, M.J.; González-Gallego, J. Effects of exercise on exosome release and cargo in in vivo and ex vivo models: A systematic review. J. Cell Physiol. 2021, 236, 3336–3353. [Google Scholar] [CrossRef]
- Wang, Z.; Ou, Y.; Zhu, X.; Zhou, Y.; Zheng, X.; Zhang, M.; Li, S.; Yang, S.N.; Juntti-Berggren, L.; Berggren, P.O. Differential Regulation of miRNA and Protein Profiles in Human Plasma-Derived Extracellular Vesicles via Continuous Aerobic and High-Intensity Interval Training. Int. J. Mol. Sci. 2025, 26, 1383. [Google Scholar] [CrossRef] [PubMed]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef]
- Nicolau, J.C.; Dalcoquio, T.F.; Giraldez, R.R.; Freitas, F.R.; Nicolau, A.M.; Furtado, R.H.M.; Tavoni, T.M.; Baracioli, L.M.; Lima, F.G.; Ferrari, A.G.; et al. The Role of Exercise-Based Cardiac Rehabilitation After Myocardial Infarction on Cholesterol Transfer to HDL. Int. J. Mol. Sci. 2025, 26, 419. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Dangas, K.; Ditmarsch, M.; Rensen, P.C.N.; Dicklin, M.R.; Kastelein, J.J.P. The evolving role of cholesteryl ester transfer protein inhibition beyond cardiovascular disease. Pharmacol. Res. 2023, 197, 106972. [Google Scholar] [CrossRef] [PubMed]
- Brandts, J.; Ray, K.K. Novel and future lipid-modulating therapies for the prevention of cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 600–616. [Google Scholar] [CrossRef]
- Jiang, H.; Bai, W.; Wang, W.; Zhang, J.; Wang, K.; Liu, Y.; Liu, S.; Jia, J.; Qin, L. Changes in cardiovascular function based on adrenalin and norepinephrine metabolism in ovariectomized rats. Exp. Gerontol. 2017, 91, 15–24. [Google Scholar] [CrossRef]
- Wang, X.; Kang, Y.; Yao, J.; Gao, X.; Feng, Z.; Song, Y.; Di, X.; Zhang, Q.; Zhang, J. Effects of Exercises of Different Intensities on Bone Microstructure and Cardiovascular Risk Factors in Ovariectomized Mice. Int. J. Mol. Sci. 2025, 26, 1005. [Google Scholar] [CrossRef]
- Viana, A.A.; Fernandes, B.; Alvarez, C.; Guimarães, G.V.; Ciolac, E.G. Prescribing high-intensity interval exercise by RPE in individuals with type 2 diabetes: Metabolic and hemodynamic responses. Appl. Physiol. Nutr. Metab. 2019, 44, 348–356. [Google Scholar] [CrossRef]
- Tammineni, E.R.; Manno, C.; Oza, G.; Figueroa, L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol. Cell Endocrinol. 2025, 599, 112466. [Google Scholar] [CrossRef]
- Garneau, L.; Mulvihill, E.E.; Smith, S.R.; Sparks, L.M.; Aguer, C. Myokine Secretion following an Aerobic Exercise Intervention in Individuals with Type 2 Diabetes with or without Exercise Resistance. Int. J. Mol. Sci. 2024, 25, 4889. [Google Scholar] [CrossRef] [PubMed]
- Bouthoorn, S.; Valstar, G.B.; Gohar, A.; den Ruijter, H.M.; Reitsma, H.B.; Hoes, A.W.; Rutten, F.H. The prevalence of left ventricular diastolic dysfunction and heart failure with preserved ejection fraction in men and women with type 2 diabetes: A systematic review and meta-analysis. Diabetes Vasc. Dis. Res. 2018, 15, 477–493. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, M.; Lacy, C.; Shah, S.; Epstein, F.H.; Yan, Z. Endurance Exercise Training Mitigates Diastolic Dysfunction in Diabetic Mice Independent of Phosphorylation of Ulk1 at S555. Int. J. Mol. Sci. 2024, 25, 633. [Google Scholar] [CrossRef]
- Wu, Y.; Jha, R.; Li, A.; Liu, H.; Zhang, Z.; Zhang, C.; Zhai, Q.; Zhang, J. Probiotics (Lactobacillus plantarum HNU082) Supplementation Relieves Ulcerative Colitis by Affecting Intestinal Barrier Functions, Immunity-Related Gene Expression, Gut Microbiota, and Metabolic Pathways in Mice. Microbiol. Spectr. 2022, 10, e0165122. [Google Scholar] [CrossRef]
- Jin, J.J.; Ko, I.G.; Hwang, L.; Kim, S.H.; Jee, Y.S.; Jeon, H.; Park, S.B.; Jeon, J.W. Simultaneous Treatment of 5-Aminosalicylic Acid and Treadmill Exercise More Effectively Improves Ulcerative Colitis in Mice. Int. J. Mol. Sci. 2024, 25, 5076. [Google Scholar] [CrossRef]
- Yoon, E.J.; Lee, S.R.; Ortutu, B.F.; Kim, J.O.; Jaiswal, V.; Baek, S.; Yoon, S.I.; Lee, S.K.; Yoon, J.H.; Lee, H.J.; et al. Effect of Endurance Exercise Training on Gut Microbiota and ER Stress. Int. J. Mol. Sci. 2024, 25, 10742. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estébanez, B.; Cuevas, M.J. Special Issue “Molecular Insights into the Role of Exercise in Disease and Health”. Int. J. Mol. Sci. 2025, 26, 2954. https://doi.org/10.3390/ijms26072954
Estébanez B, Cuevas MJ. Special Issue “Molecular Insights into the Role of Exercise in Disease and Health”. International Journal of Molecular Sciences. 2025; 26(7):2954. https://doi.org/10.3390/ijms26072954
Chicago/Turabian StyleEstébanez, Brisamar, and María J. Cuevas. 2025. "Special Issue “Molecular Insights into the Role of Exercise in Disease and Health”" International Journal of Molecular Sciences 26, no. 7: 2954. https://doi.org/10.3390/ijms26072954
APA StyleEstébanez, B., & Cuevas, M. J. (2025). Special Issue “Molecular Insights into the Role of Exercise in Disease and Health”. International Journal of Molecular Sciences, 26(7), 2954. https://doi.org/10.3390/ijms26072954