Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research
Abstract
1. Background
2. Rationale
3. Methods
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- De Moissac, D.; Bowen, S. Impact of language barriers on quality of care and patient safety for official language minority Francophones in Canada. J. Patient Exp. 2019, 6, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Bowen, S. The Impact of Language Barriers on Patient Safety and Quality of Care; Société Santé en français: Ottawa, ON, Canada, 2015; pp. 603–623. [Google Scholar]
- Duronjic, A.; Ku, D.; Chavan, S.; Bucci, T.; Taylor, S.; Pilcher, D. The impact of language barriers & interpreters on critical care patient outcomes. J. Crit. Care 2023, 73, 154182. [Google Scholar] [PubMed]
- Hamilton, R.; Kleinpell, R.; Lipman, J.; Davidson, J.E. International facilitators and barriers to family engagement in the ICU: Results of a qualitative analysis. J. Crit. Care 2020, 58, 72–77. [Google Scholar] [CrossRef]
- Cooper, L.A.; Roter, D.L.; Johnson, R.L.; Ford, D.E.; Steinwachs, D.M.; Powe, N.R. Patient-centered communication, ratings of care, and concordance of patient and physician race. Ann. Intern. Med. 2003, 139, 907–915. [Google Scholar] [CrossRef]
- LaVeist, T.A.; Nuru-Jeter, A. Is doctor-patient race concordance associated with greater satisfaction with care? J. Health Soc. Behav. 2002, 43, 296–306. [Google Scholar] [CrossRef]
- Walker, K.O.; Moreno, G.; Grumbach, K. The association among specialty, race, ethnicity, and practice location among California physicians in diverse specialties. J. Natl. Med. Assoc. 2012, 104, 46–52. [Google Scholar] [CrossRef]
- Valantine, H.A.; Collins, F.S. National Institutes of Health addresses the science of diversity. Proc. Natl. Acad. Sci. USA 2015, 112, 12240–12242. [Google Scholar] [CrossRef]
- Noack, E.M.; Schulze, J.; Müller, F. Designing an app to overcome language barriers in the delivery of emergency medical services: Participatory development process. JMIR mHealth uHealth 2021, 9, e21586. [Google Scholar] [CrossRef]
- Panayiotou, A.; Gardner, A.; Williams, S.; Zucchi, E.; Mascitti-Meuter, M.; Goh, A.M.; You, E.; Chong, T.W.; Logiudice, D.; Lin, X.; et al. Language translation apps in health care settings: Expert opinion. JMIR mHealth uHealth 2019, 7, e11316. [Google Scholar] [CrossRef]
- Nguyen-Lu, N.; Reide, P.; Yentis, S.M. ‘Do you have a stick in your mouth?’–use of Google Translate as an aid to anaesthetic pre-assessment. Anaesthesia 2010, 65, 96–97. [Google Scholar] [CrossRef]
- Taira, B.R.; Kreger, V.; Orue, A.; Diamond, L.C. A pragmatic assessment of Google Translate for emergency department instructions. J. Gen. Intern. Med. 2021, 36, 3361–3365. [Google Scholar] [CrossRef] [PubMed]
- Moberly, T. Doctors are cautioned against using Google Translate in consultations. BMJ 2018, 363, k4546. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dada, A.; Puladi, B.; Kleesiek, J.; Egger, J. ChatGPT in healthcare: A taxonomy and systematic review. Comput. Methods Programs Biomed. 2024, 245, 108013. [Google Scholar] [CrossRef]
- Bouchard, L. Minorités de Langue Officielle du Canada: Égales Devant la Santé? PUQ: Quebec, QC, Canada, 2011; Volume 50. [Google Scholar]
- Ngwakongnwi, E.; Hemmelgarn, B.R.; Musto, R.; Quan, H.; King-Shier, K.M. Experiences of French speaking immigrants and non-immigrants accessing health care services in a large Canadian city. Int. J. Environ. Res. Public Health 2012, 9, 3755–3768. [Google Scholar] [CrossRef]
- Falconer, J.; Quesnel-Vallée, A. Les disparités d’accès aux soins de santé parmi la minorité de langue officielle au Québec. Rech. Sociographiques 2014, 55, 511–529. [Google Scholar] [CrossRef]
- Khurana, D.; Koli, A.; Khatter, K.; Singh, S. Natural language processing: State of the art, current trends and challenges. Multimed. Tools Appl. 2023, 82, 3713–3744. [Google Scholar] [CrossRef]
- Ayanouz, S.; Abdelhakim, B.A.; Benhmed, M. A smart chatbot architecture based NLP and machine learning for health care assistance. In Proceedings of the 3rd International Conference on Networking, Information Systems & Security, Marrakech Morocco, 31 March–2 April 2020; pp. 1–6. [Google Scholar]
- Siddique, S.; Chow, J.C.L. Machine learning in healthcare communication. Encyclopedia 2021, 1, 220–239. [Google Scholar] [CrossRef]
- Bhirud, N.; Tataale, S.; Randive, S.; Nahar, S. A literature review on chatbots in healthcare domain. Int. J. Sci. Technol. Res. 2019, 8, 225–231. [Google Scholar]
- Kalyanathaya, K.P.; Akila, D.; Rajesh, P. Advances in natural language processing–a survey of current research trends, development tools and industry applications. Int. J. Recent Technol. Eng. 2019, 7, 199–202. [Google Scholar]
- Zhou, B.; Yang, G.; Shi, Z.; Ma, S. Natural language processing for smart healthcare. IEEE Rev. Biomed. Eng. 2022, 17, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Iroju, O.G.; Olaleke, J.O. A systematic review of natural language processing in healthcare. Int. J. Inf. Technol. Comput. Sci. 2015, 8, 44–50. [Google Scholar] [CrossRef]
- Rao, P.; McGee, L.M.; Seideman, C.A. A Comparative assessment of ChatGPT vs. Google Translate for the translation of patient instructions. J. Med. Artif. Intell. 2024, 7, 11. [Google Scholar] [CrossRef]
- Zeng-Treitler, Q.; Kim, H.; Rosemblat, G.; Keselman, A. Can multilingual machine translation help make medical record content more comprehensible to patients? In MEDINFO 2010; IOS Press: Amsterdam, The Netherlands, 2010; pp. 73–77. [Google Scholar]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E. Evaluating the feasibility of ChatGPT in healthcare: An analysis of multiple clinical and research scenarios. J. Med. Syst. 2023, 47, 33. [Google Scholar] [CrossRef] [PubMed]
- Lundmark, A.; Boglind, F. Evaluating ChatGPT for Machine Translation of Medical Terms. Bachelor’s Thesis, Stockholm University, Stockholm, Sweden, 2024. [Google Scholar]
- Sarella, P.N.K.; Mangam, V.T. AI-driven natural language processing in healthcare: Transforming patient-provider communication. Indian J. Pharm. Pract. 2024, 17, 21–26. [Google Scholar] [CrossRef]
- Névéol, A.; Dalianis, H.; Velupillai, S.; Savova, G.; Zweigenbaum, P. Clinical natural language processing in languages other than English: Opportunities and challenges. J. Biomed. Semant. 2018, 9, 12. [Google Scholar] [CrossRef]
- Soto, X.; Perez-de-Viñaspre, O.; Oronoz, M.; Labaka, G. Development of a machine translation system for promoting the use of a low resource language in the clinical domain: The case of basque. In Natural Language Processing In Healthcare; CRC Press: Boca Raton, FL, USA, 2022; pp. 139–158. [Google Scholar]
- Corbeil, J.-P.; Chavez, B.; Pereira, D. Portrait of Official-Language Minorities in Canada—Anglophones in Quebec; Statistics Canada: Ottawa, ON, Canada, 2010. [Google Scholar]
- Rubulotta, F.M.; Bahrami, S.; Marshall, D.C.M.; Komorowski, M. Machine Learning Tools for Acute Respiratory Distress Syndrome Detection and Prediction. Crit. Care Med. 2024, 52, 1768–1780. [Google Scholar] [CrossRef]
- Vukovic, J.; Ivankovic, D.; Habl, C.; Dimnjakovic, J. Enablers and barriers to the secondary use of health data in Europe: General data protection regulation perspective. Arch. Public Health 2022, 80, 115. [Google Scholar] [CrossRef]
- Naik, N.; Hameed, B.Z.; Shetty, D.K.; Swain, D.; Shah, M.; Paul, R.; Aggarwal, K.; Ibrahim, S.; Patil, V.; Smriti, K.; et al. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Front. Surg. 2022, 9, 862322. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahrami, S.; Rubulotta, F. Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research. Int. J. Environ. Res. Public Health 2025, 22, 95. https://doi.org/10.3390/ijerph22010095
Bahrami S, Rubulotta F. Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research. International Journal of Environmental Research and Public Health. 2025; 22(1):95. https://doi.org/10.3390/ijerph22010095
Chicago/Turabian StyleBahrami, Sahar, and Francesca Rubulotta. 2025. "Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research" International Journal of Environmental Research and Public Health 22, no. 1: 95. https://doi.org/10.3390/ijerph22010095
APA StyleBahrami, S., & Rubulotta, F. (2025). Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research. International Journal of Environmental Research and Public Health, 22(1), 95. https://doi.org/10.3390/ijerph22010095