Systematic Review and Meta-Analysis of Mercury Exposure among Populations and Environments in Contact with Electronic Waste
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Screening Process
2.3. Data Extraction
2.4. Study Quality
2.5. Data Analysis
3. Results
3.1. Study Location and Quality
3.2. Mercury in E-Waste Products
3.3. Mercury in Environments Contaminated by E-Waste
3.3.1. Environments Contaminated by E-Waste: Soil and Sediments
3.3.2. Environments Contaminated by E-Waste: Water
3.3.3. Environments Contaminated by E-Waste: Dust
3.3.4. Environments Contaminated by E-Waste: Food and Animals
3.3.5. Environments Contaminated by E-Waste: Air
3.3.6. Environments Contaminated by E-Waste: Plants
3.3.7. Environments Contaminated by E-Waste: Summary
3.4. Mercury in Biomarkers of Populations Exposed to E-Waste
3.4.1. Blood and Serum Samples
3.4.2. Urine Samples
3.4.3. Hair Samples
3.4.4. Biomarkers Summary
3.4.5. Comparison with Guidelines
4. Discussion
4.1. Mercury in E-Waste Products
4.2. Mercury in Environments Contaminated with E-Waste
4.3. Mercury in Biomarkers of Populations Exposed to E-Waste
4.4. Limitations
4.5. The Minamata Convention
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basu, N.; Horvat, M.; Evers, D.C.; Zastenskaya, I.; Weihe, P.; Tempowski, J. A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environ. Health Perspect. 2018, 126, 106001. [Google Scholar] [CrossRef] [PubMed]
- Eagles-Smith, C.A.; Silbergeld, E.K.; Basu, N.; Bustamante, P.; Diaz-Barriga, F.; Hopkins, W.A.; Kidd, K.A.; Nyland, J.F. Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 2018, 47, 170–197. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.; Basu, N.; Bose-O’Reilly, S.; Dórea, J.G.; McSorley, E.; Sakamoto, M.; Chan, H.M. Current progress on understanding the impact of mercury on human health. Environ. Res. 2017, 152, 419–433. [Google Scholar] [CrossRef] [PubMed]
- UNEP—UN Environment Programme. Global Mercury Assessment 2018. Available online: http://www.unep.org/resources/publication/global-mercury-assessment-2018 (accessed on 4 March 2019).
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential. United Nations University/United Nations Institute for Training and Research, International Telecommunication Union, and International Solid Waste Association. 2020. Available online: https://collections.unu.edu/view/UNU:7737#viewAttachments (accessed on 19 April 2022).
- Pérez-Belis, V.; Bovea, M.; Ibáñez-Forés, V. An in-depth literature review of the waste electrical and electronic equipment context: Trends and evolution. Waste Manag. Res. 2015, 33, 3–29. [Google Scholar] [CrossRef]
- Nelson, P.; Nguyen, H.; Morrison, A.; Cope, M.; Hibberd, M.; Lee, S.; Mcgregor, J.; Meyer, M. Mercury Sources, Transportation and Fate in Australia. Dep. Environ. Water Herit. Arts RFT 2009, 100, 607. [Google Scholar]
- Kyere, V.N.; Greve, K.; Atiemo, S.M.; Amoako, D.; Aboh, I.K.; Cheabu, B.S. Contamination and Health Risk Assessment of Exposure to Heavy Metals in Soils from Informal E-Waste Recycling Site in Ghana. Emerg. Sci. J. 2018, 2, 428–436. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Minamata Convention on Mercury: Text and Annexes. 2019. Available online: https://www.mercuryconvention.org/en/resources/minamata-convention-mercury-text-and-annexes (accessed on 19 April 2022).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- OHAT Risk of Bias Rating Tool for Human and Animal Studies. 2015; 37p. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiAnOe0y536AhVME6YKHXpjDp4QFnoECAYQAQ&url=https%3A%2F%2Fntp.niehs.nih.gov%2Fntp%2Fohat%2Fpubs%2Friskofbiastool_508.pdf&usg=AOvVaw2KFMhu2cIbNkVIIicRiBFm (accessed on 19 April 2022).
- Sheehan, M.C.; Burke, T.A.; Navas-Acien, A.; Breysse, P.N.; McGready, J.; Fox, M.A. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: A systematic review. Bull. World Health Organ. 2014, 92, 254–269F. [Google Scholar] [CrossRef]
- Houessionon MG, K.; Ouendo, E.-M.D.; Bouland, C.; Takyi, S.A.; Kedote, N.M.; Fayomi, B.; Fobil, J.N.; Basu, N. Environmental Heavy Metal Contamination from Electronic Waste (E-Waste) Recycling Activities Worldwide: A Systematic Review from 2005 to 2017. Int. J. Environ. Res. Public Health 2021, 18, 3517. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 19 April 2022).
- Liang, P.; Feng, X.; Zhang, C.; Zhang, J.; Cao, Y.; You, Q.; Leung AO, W.; Wong, M.-H.; Wu, S.-C. Human exposure to mercury in a compact fluorescent lamp manufacturing area: By food (rice and fish) consumption and occupational exposure. Environ. Pollut. 2015, 198, 126–132. [Google Scholar] [CrossRef]
- Rios, A.S.; Fobil, J.; Basu, N. Methylmercury Measurements in Dried Blood Spots from Electronic Waste Workers Sampled from Agbogbloshie, Ghana. Environ. Toxicol. Chem. 2021, 40, 2183–2188. [Google Scholar] [CrossRef]
- Schecter, A.; Kincaid, J.; Quynh, H.T.; Lanceta, J.; Tran HT, T.; Crandall, R.; Shropshire, W.; Birnbaum, L.S. Biomonitoring of Metals, Polybrominated Diphenyl Ethers, Polychlorinated Biphenyls, and Persistent Pesticides in Vietnamese Female Electronic Waste Recyclers. J. Occup. Environ. Med. 2018, 60, 191–197. [Google Scholar] [CrossRef]
- Tang, W.; Cheng, J.; Zhao, W.; Wang, W. Mercury levels and estimated total daily intakes for children and adults from an electronic waste recycling area in Taizhou, China: Key role of rice and fish consumption. J. Environ. Sci. 2015, 34, 107–115. [Google Scholar] [CrossRef]
- U.S. EPA (Environmental Protection Agency). Exposure Factors Handbook: 2011 Edition; EPA/600/R-09/052F; National Center for Environmental Assessment: Washington, DC, USA, 2011. [Google Scholar]
- Croghan, W.; Egeghy, P. Methods of Dealing with Values Below the Limit of Detection Using SAS Carry. 2003. Available online: https://www.semanticscholar.org/paper/Methods-of-Dealing-with-Values-Below-the-Limit-of-Croghan-Egeghy/98ec87a1208e06a9f4e08136d245a986c5ff5019 (accessed on 19 April 2022).
- Gworek, B.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H. Mercury in the terrestrial environment: A review. Environ. Sci. Eur. 2020, 32, 128. [Google Scholar] [CrossRef]
- Occupational Safety and Health Administration. MERCURY (VAPOR). Available online: https://www.osha.gov/chemicaldata/505 (accessed on 20 June 2022).
- National Health and Family Planning Commission and China Food and Drug Administration. Maximum Levels of Contaminants in Foods; National Health and Family Planning Commission and China Food and Drug Administration: Beijing, China, 2017. [Google Scholar]
- US EPA. National Recommended Water Quality Criteria—Aquatic Life Criteria Table [Data and Tools]. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 3 September 2015).
- Ilankoon, I.M.S.K.; Ghorbani, Y.; Chong, M.N.; Herath, G.; Moyo, T.; Petersen, J. E-waste in the international context—A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag. 2018, 82, 258–275. [Google Scholar] [CrossRef]
- RoHS Directive. Available online: https://environment.ec.europa.eu/topics/waste-and-recycling/rohs-directive_en (accessed on 20 June 2022).
- Lecler, M.-T.; Zimmermann, F.; Silvente, E.; Masson, A.; Morèle, Y.; Remy, A.; Chollot, A. Improving the work environment in the fluorescent lamp recycling sector by optimizing mercury elimination. Waste Manag. 2018, 76, 250–260. [Google Scholar] [CrossRef]
- Salhofer, S.; Tesar, M. Assessment of removal of components containing hazardous substances from small WEEE in Austria. J. Hazard. Mater. 2011, 186, 1481–1488. [Google Scholar] [CrossRef]
- Taghipour, H.; Amjad, Z.; Jafarabadi, M.A.; Gholampour, A.; Nowrouz, P. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: Some strategies for improving current conditions. Waste Manag. 2014, 34, 1251–1256. [Google Scholar] [CrossRef]
- Hobohm, J.; Krüger, O.; Basu, S.; Kuchta, K.; van Wasen, S.; Adam, C. Recycling oriented comparison of mercury distribution in new and spent fluorescent lamps and their potential risk. Chemosphere 2017, 169, 618–626. [Google Scholar] [CrossRef]
- Zimmermann, F.; Lecler, M.-T.; Clerc, F.; Chollot, A.; Silvente, E.; Grosjean, J. Occupational exposure in the fluorescent lamp recycling sector in France. Waste Manag. 2014, 34, 1257–1263. [Google Scholar] [CrossRef]
- Mester, A.; Fraunholcz, N.; Schaik, A.; Reuter, M. Characterization of the hazardous components in end-of-life notebook display. Light Met. 2005, 2005, 1213–1216. [Google Scholar]
- Long, S.; Tong, H.; Zhang, X.; Jia, S.; Chen, M.; Liu, C. Heavy Metal Tolerance Genes Associated With Contaminated Sediments From an E-Waste Recycling River in Southern China. Front. Microbiol. 2021, 12, 665090. [Google Scholar] [CrossRef]
- Tang, X.; Shen, C.; Shi, D.; Cheema, S.A.; Khan, M.I.; Zhang, C.; Chen, Y. Heavy metal and persistent organic compound contamination in soil from Wenling: An emerging e-waste recycling city in Taizhou area, China. J. Hazard. Mater. 2010, 173, 653–660. [Google Scholar] [CrossRef]
- Nfor, B.; Fai PB, A.; Fobil, J.N.; Basu, N. Effects of Electronic and Electrical Waste–Contaminated Soils on Growth and Reproduction of Earthworm (Alma nilotica). Environ. Toxicol. Chem. 2022, 41, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Tang, Z.; Sun, J.; Xing, X.; Zhang, M.; Cheng, J. Heavy metals in soil contaminated through e-waste processing activities in a recycling area: Implications for risk management. Process Saf. Environ. Prot. 2019, 125, 189–196. [Google Scholar] [CrossRef]
- Liu, M.; Huang, B.; Bi, X.; Ren, Z.; Sheng, G.; Fu, J. Heavy metals and organic compounds contamination in soil from an e-waste region in South China. Environ. Sci. Processes Impacts 2013, 15, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Julander, A.; Lundgren, L.; Skare, L.; Grandér, M.; Palm, B.; Vahter, M.; Lidén, C. Formal recycling of e-waste leads to increased exposure to toxic metals: An occupational exposure study from Sweden. Environ. Int. 2014, 73, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhang, L.; Huang, Q.; Yang, Y.; Nie, Z.; Cheng, J.; Yang, J.; Wang, Y.; Chai, M. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicol. Environ. Saf. 2015, 122, 343–351. [Google Scholar] [CrossRef]
- Snow, M.A.; Darko, G.; Gyamfi, O.; Ansah, E.; Breivik, K.; Hoang, C.; Lei, Y.D.; Wania, F. Characterization of inhalation exposure to gaseous elemental mercury during artisanal gold mining and e-waste recycling through combined stationary and personal passive sampling. Environ. Sci. Processes Impacts 2021, 23, 569–579. [Google Scholar] [CrossRef]
- Ha, N.N.; Agusa, T.; Ramu, K.; Tu NP, C.; Murata, S.; Bulbule, K.A.; Parthasaraty, P.; Takahashi, S.; Subramanian, A.; Tanabe, S. Contamination by trace elements at e-waste recycling sites in Bangalore, India. Chemosphere 2009, 76, 9–15. [Google Scholar] [CrossRef]
- Fu, J.; Zhou, Q.; Liu, J.; Liu, W.; Wang, T.; Zhang, Q.; Jiang, G. High levels of heavy metals in rice (Oryzasativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 2008, 71, 1269–1275. [Google Scholar] [CrossRef]
- Gerding, J.; Peters, C.; Wegscheider, W.; Stranzinger, J.; Lessmann, F.; Pitzke, K.; Harth, V.; Eickmann, U.; Nienhaus, A. Metal exposure of workers during recycling of electronic waste: A cross-sectional study in sheltered workshops in Germany. Int. Arch. Occup. Environ. Health 2021, 94, 935–944. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Wang, J.; Pan, B.; Fu, X.; Zhang, G.; Zhang, L.; Lin, K. Distribution of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal e-waste dismantling site, South China. Environ. Sci. Pollut. Res. Int. 2015, 22, 1020–1033. [Google Scholar] [CrossRef]
- Rothenberg, S.E.; Windham-Myers, L.; Creswell, J.E. Rice methylmercury exposure and mitigation: A comprehensive review. Environ. Res. 2014, 133, 407–423. [Google Scholar] [CrossRef]
- Luo, J.; Cai, L.; Qi, S.; Wu, J.; Gu, X.S. Heavy metal remediation with Ficus microcarpa through transplantation and its environmental risks through field scale experiment. Chemosphere 2018, 193, 244–250. [Google Scholar] [CrossRef]
- Xu, X.; Liao, W.; Lin, Y.; Dai, Y.; Shi, Z.; Huo, X. Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area. Environ. Geochem. Health 2018, 40, 1481–1494. [Google Scholar] [CrossRef]
- Kuntawee, C.; Tantrakarnapa, K.; Limpanont, Y.; Lawpoolsri, S.; Phetrak, A.; Mingkhwan, R.; Worakhunpiset, S. Exposure to Heavy Metals in Electronic Waste Recycling in Thailand. Int. J. Environ. Res. Public Health 2020, 17, 2996. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, X.; Lu, X.; Zeng, Z.; Faas, M.M.; Xu, X. Exposure to multiple heavy metals associate with aberrant immune homeostasis and inflammatory activation in preschool children. Chemosphere 2020, 257, 127257. [Google Scholar] [CrossRef]
- Wittsiepe, J.; Feldt, T.; Till, H.; Burchard, G.; Wilhelm, M.; Fobil, J.N. Pilot study on the internal exposure to heavy metals of informal-level electronic waste workers in Agbogbloshie, Accra, Ghana. Environ. Sci. Pollut. Res. 2017, 24, 3097–3107. [Google Scholar] [CrossRef]
- Dartey, E.; Berlinger, B.; Weinbruch, S.; Thomassen, Y.; Odland J, Ø.; Brox, J.; Nartey, V.K.; Yeboah, F.A.; Ellingsen, D.G. Essential and non-essential trace elements among working populations in Ghana. J. Trace Elem. Med. Biol. 2017, 44, 279–287. [Google Scholar] [CrossRef]
- Ceballos, D.; Beaucham, C.; Page, E. Metal Exposures at three U.S. electronic scrap recycling facilities. J. Occup. Environ. Hyg. 2017, 14, 401–408. [Google Scholar] [CrossRef]
- Srigboh, R.K.; Basu, N.; Stephens, J.; Asampong, E.; Perkins, M.; Neitzel, R.L.; Fobil, J. Multiple elemental exposures amongst workers at the Agbogbloshie electronic waste (e-waste) site in Ghana. Chemosphere 2016, 164, 68–74. [Google Scholar] [CrossRef]
- Decharat, S. Urinary Mercury Levels Among Workers in E-waste Shops in Nakhon Si Thammarat Province, Thailand. J. Prev. Med. Public Health 2018, 51, 196–204. [Google Scholar] [CrossRef]
- Steinhausen, S.L.; Agyeman, N.; Turrero, P.; Ardura, A.; Garcia-Vazquez, E. Heavy metals in fish nearby electronic waste may threaten consumer’s health. Examples from Accra, Ghana. Mar. Pollut. Bull. 2022, 175, 113162. [Google Scholar] [CrossRef]
- Soetrisno, F.N.; Delgado-Saborit, J.M. Chronic exposure to heavy metals from informal e-waste recycling plants and children’s attention, executive function and academic performance. Sci. Total Environ. 2020, 717, 137099. [Google Scholar] [CrossRef]
- Li, Y.; Richardson, J.B.; Walker, A.K.; Yuan, P.-C. TCLP Heavy Metal Leaching of Personal Computer Components. J. Environ. Eng. 2006, 132, 497–504. [Google Scholar] [CrossRef]




| Environmental Samples | Biomarker Samples | |||
|---|---|---|---|---|
| Category | Description | Example | Description | Example |
| 1 | Active e-waste recycling area | Burning site, dismantling site, e-waste workshop, acid-leaching site, shredding site, recycling site, sorting site, food grown in e-waste area | Active e-waste worker | |
| 2 | Abandoned e-waste area or near active e-waste area | Commercial site, storage space, desoldering space, loading area, municipal solid waste that may contain e-waste | Person living near e-waste activity or retired e-waste worker | Traders, persons from cities with high e-waste recycling activity |
| 3 | Control area near e-waste recycling site | Area surrounding e-waste, office space of e-waste workshop | Person (control) near e-waste activity | Office workers of e-waste workshop, control from a city with high e-waste activity |
| 4 | Control area far from e-waste recycling site | Different city, specifically uncontaminated sample | Person (control) far from e-waste activity and never involved with e-waste | |
| Data Group | Mercury in E-Waste Products | Mercury in Environments Contaminated by E-Waste | Mercury in Biomarkers of Populations Exposed to E-Waste |
|---|---|---|---|
| # Publications | n = 23 | n = 42 | n = 23 |
| Year Range | 2005–2022 | 2008–2021 | 2009–2021 |
| Countries | Austria, Belgium, Brazil, China, France, Germany, Greece, India, Iran, South Korea, Sweden, Switzerland, United States | Cameroon, China, France, Germany, Ghana, Greece, India, Indonesia, Nigeria, Norway, Sweden, Thailand | China, Germany, Ghana, India, Indonesia, Sweden, Thailand, United States, Vietnam |
| WHO Regions | Europe (n = 10), WesternPacific (n = 5), Americas (n = 4), Southeast Asia (n = 1), Eastern Mediterranean (n = 1), not specified (n = 2) | Western Pacific (n = 25), Africa (n = 7), Europe (n = 6), Southeast Asia (n = 4) | Western Pacific (n = 10), Africa (n = 5), Southeast Asia (n = 4), Americas (n = 2), Europe (n = 2) |
| 1 Median Study Quality Score | 6 [1–11] | 9 [3–13] | 14 [9–19] |
| Exposure Group | Central Tendency Value | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | sample media category | unit | total samples | geometric mean | median | mean | IQR | minimum | maximum | SD |
| soil and sediment | mg/kg | 707 | 1.86 | 0.80 | 204.04 | 2.87 | 0.02 | 6402.00 | 969.52 | |
| water | mg/kg | 45 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.49 | 0.22 | |
| dust | mg/kg | 66 | 2.44 | 2.54 | 8.48 | 4.33 | 0.10 | 37.60 | 14.44 | |
| food or animals | mg/kg | 198 | 0.12 | 0.08 | 1.55 | 0.18 | 0.00 | 20.80 | 4.59 | |
| air | μg/m3 | 774 | 1.29 | 4.70 | 5.87 | 7.23 | 0.01 | 21.70 | 6.49 | |
| plants | mg/kg | 194 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.02 | 0.01 | |
| other | mg/kg | 6 | 7 | N.A. | 7 | N.A. | N.A. | N.A. | N.A. | |
| 2 | soil and sediment | mg/kg | 385 | 0.22 | 0.30 | 0.98 | 0.54 | 0.00 | 9.91 | 1.94 |
| dust | mg/kg | 27 | 2.20 | 2.26 | 26.75 | 6.26 | 0.15 | 148.00 | 59.47 | |
| food or animals | mg/kg | 13 | 0.15 | 0.11 | 0.23 | 0.23 | 0.06 | 0.52 | 0.25 | |
| air | μg/m3 | 1 | 0.035 | N.A. | 0.04 | N.A. | N.A. | N.A. | N.A. | |
| plants | mg/kg | 14 | 0.00017 | N.A. | 0.00 | N.A. | N.A. | N.A. | N.A. | |
| 3 | soil and sediment | mg/kg | 26 | 0.05 | 0.04 | 0.07 | 0.07 | 0.03 | 0.16 | 0.07 |
| food or animals | mg/kg | 10 | 0.17 | 0.19 | 0.19 | 0.09 | 0.10 | 0.28 | 0.13 | |
| air | μg/m3 | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 4 | soil and sediment | mg/kg | 58 | 0.10 | 0.10 | 5.71 | 0.21 | 0.00 | 78.10 | 20.84 |
| water | mg/kg | 8 | 0.04 | 0.05 | 0.05 | 0.03 | 0.03 | 0.08 | 0.04 | |
| dust | mg/kg | 4 | 0.05 | N.A. | 0.05 | N.A. | N.A. | N.A. | N.A. | |
| food or animals | mg/kg | 78 | 0.04 | 0.02 | 3.17 | 0.01 | 0.01 | 28.40 | 9.46 | |
| air | μg/m3 | 114 | 0.03 | 0.04 | 0.05 | 0.03 | 0.01 | 0.12 | 0.05 | |
| plants | mg/kg | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | |
| Exposure Group | Central Tendency | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | sample media category | unit | total samples | geometric mean | median | mean | IQR | minimum | maximum | SD |
| blood | μg/L | 399 | 0.60 | 1.40 | 1.81 | 2.26 | 0.00 | 3.60 | 1.47 | |
| serum | μg/L | 128 | 0.70 | 0.70 | 0.70 | 0.00 | 0.70 | 0.70 | 0.00 | |
| urine | μg/L | 273 | 0.10 | 0.38 | 0.50 | 0.30 | 0.00 | 1.40 | 0.54 | |
| urine adjusted for creatinine | μg/g creatinine | 324 | 0.93 | 1.31 | 4.23 | 3.01 | 0.07 | 18.98 | 7.36 | |
| hair | μg/g | 151 | 0.72 | 1.13 | 0.97 | 0.98 | 0.10 | 1.64 | 0.58 | |
| 2 | blood | μg/L | 515 | 1.30 | 3.62 | 3.71 | 2.07 | 0.00 | 11.13 | 3.32 |
| serum | μg/L | 26 | 0.8 | N.A. | 0.80 | N.A. | N.A. | N.A. | N.A. | |
| urine | μg/L | 11 | 0.0004 | N.A. | 0.00 | N.A. | N.A. | N.A. | N.A. | |
| urine adjusted for creatinine | μg/g creatinine | 26 | 0.42 | N.A. | 0.42 | N.A. | N.A. | N.A. | N.A. | |
| hair | μg/g | 227 | 0.39 | 0.88 | 0.85 | 0.15 | 0.01 | 1.52 | 0.54 | |
| 3 | blood | μg/L | 116 | 2.60 | 3.42 | 2.97 | 1.55 | 1.20 | 4.30 | 1.60 |
| serum | μg/L | 65 | 0.8 | N.A. | 0.8 | N.A. | N.A. | N.A. | N.A. | |
| urine | μg/L | 10 | 0.66 | N.A. | 0.66 | N.A. | N.A. | N.A. | N.A. | |
| urine adjusted for creatinine | μg/g creatinine | 132 | 0.55 | 0.24 | 2.45 | 2.28 | 0.18 | 9.15 | 4.47 | |
| blood | μg/L | 409 | 2.22 | 2.34 | 2.35 | 0.69 | 1.10 | 3.46 | 0.80 | |
| 4 | urine | μg/L | 60 | 0.33 | 0.34 | 0.34 | 0.01 | 0.33 | 0.34 | 0.01 |
| urine adjusted for creatinine | μg/g creatinine | 96 | 0.43 | 0.61 | 0.61 | 0.43 | 0.18 | 1.04 | 0.61 | |
| hair | μg/g | 213 | 1.00 | 1.06 | 1.06 | 0.34 | 0.72 | 1.40 | 0.48 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aubrac, G.; Bastiansz, A.; Basu, N. Systematic Review and Meta-Analysis of Mercury Exposure among Populations and Environments in Contact with Electronic Waste. Int. J. Environ. Res. Public Health 2022, 19, 11843. https://doi.org/10.3390/ijerph191911843
Aubrac G, Bastiansz A, Basu N. Systematic Review and Meta-Analysis of Mercury Exposure among Populations and Environments in Contact with Electronic Waste. International Journal of Environmental Research and Public Health. 2022; 19(19):11843. https://doi.org/10.3390/ijerph191911843
Chicago/Turabian StyleAubrac, Gwen, Ashley Bastiansz, and Niladri Basu. 2022. "Systematic Review and Meta-Analysis of Mercury Exposure among Populations and Environments in Contact with Electronic Waste" International Journal of Environmental Research and Public Health 19, no. 19: 11843. https://doi.org/10.3390/ijerph191911843
APA StyleAubrac, G., Bastiansz, A., & Basu, N. (2022). Systematic Review and Meta-Analysis of Mercury Exposure among Populations and Environments in Contact with Electronic Waste. International Journal of Environmental Research and Public Health, 19(19), 11843. https://doi.org/10.3390/ijerph191911843

