Effects of Physical Activity Level on Attentional Networks in Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. ANT Task Procedure
2.3. Statistical Analysis
2.3.1. Demographic Characteristics
2.3.2. Reaction Times and Accuracy Rates
2.3.3. Attention Networks
2.3.4. Correlation Analysis
3. Results
3.1. Demographic Characteristics
3.2. Reaction Times
3.3. Accuracy
3.4. Alerting Network
3.5. Orienting Network
3.6. Executive Control Network
3.7. Correlation between Executive Control and PA Level
4. Discussion
4.1. PA and the Executive Control Network
4.2. PA and the Alerting and Orienting Networks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vanhelst, J.; Béghin, L.; Duhamel, A.; Manios, Y.; Molnar, D.; Henauw, S.D.; Moreno, L.A.; Ortega, F.B.; Sjöström, M.; Widhalm, K.; et al. Physical Activity Is Associated with Attention Capacity in Adolescents. J. Pediatr. 2015, 168, 126–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, A. The early development of executive functions. In Lifespan Cognition Mechanisms of Change; Bialystok, E., Craik, F.I.M., Eds.; Oxford University Press: New York, NY, USA, 2006; pp. 70–95. [Google Scholar]
- Pesce, C.; Crova, C.; Cereatti, L.; Casella, R.; Bellucci, M. Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Ment. Health Phys. Act. 2009, 2, 16–22. [Google Scholar] [CrossRef]
- Wang, B.Y.; Guo, W.; Zhou, C.L. Selective enhancement of attentional networks in college table tennis athletes: A preliminary investigation. PeerJ 2016, 4, e2762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gondello, G.; Forte, R.; Falbo, S.; Shea, J.B.; Baldassarre, A.D.; Capranica, L.; Pesce, G. Steps to Health in Cognitive Aging: Effects of Physical Activity on Spatial Attention and Executive Control in the Elderly. Front. Hum. Neurosci. 2017, 11, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontifex, M.B.; Saliba, B.J.; Raine, L.B.; Picchietti, D.L.; Hillman, C.H. Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. J. Pediatr. 2013, 162, 543–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehren, A.; Özyurt, J.; Lam, A.P.; Brandes, M.; Müller, H.H.O.; Thiel, C.M.; Philipsen, A. Acute Effects of Aerobic Exercise on Executive Function and Attention in Adult Patients With ADHD. Front. Psychiatry 2019, 10, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.L.; Wang, C.H.; Tseng, Y.T. Effects of exercise intervention on event-related potential and task performance indices of attention networks in children with developmental coordination disorder. Brain Cogn. 2012, 79, 12–22. [Google Scholar] [CrossRef]
- Haverkamp, B.F.; Wiersma, R.; Vertessen, K.; Ewijk, H.; Oosterlaan, J.; Hartman, E. Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: A meta-analysis. J. Sports Sci. 2020, 6, 2637–2660. [Google Scholar] [CrossRef]
- Sousa, A.F.M.; Medeiros, A.R.; Rosso, S.D.; Stults-Kolehmainen, M.; Boullosa, D.A. The influence of exercise and physical fitness status on attention: A systematic review. Int. Rev. Sport Exerc. Psychology 2018, 2, 202–234. [Google Scholar] [CrossRef]
- Li, H.; Yue, J.Y.; Wang, Y.F.; Zou, F.; Zhang, M.; Wu, X. Negative Effects of Mobile Phone Addiction Tendency on Spontaneous Brain Microstates: Evidence from Resting-State EEG. Front. Hum. Neurosci. 2021, 15, 636504. [Google Scholar] [CrossRef]
- Shuai, L.; He, S.; Zheng, H.; Wang, Z.Y.; Qiu, M.H.; Xia, W.P.; Cao, X.; Lu, L.; Zhang, J.S. Influences of digital media use on children and adolescents with ADHD during COVID-19 pandemic. Glob. Health 2021, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Salo, R.; Gabay, S.; Fasssbender, C.; Henik, A. Distributed attentional deficits in chronic methamphetamine abusers: Evidence from the Attentional Network Task (ANT). Brain Cogn. 2011, 77, 446–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullaev, Y.; Posner, M.I.; Nunnally, R.; Dishion, T.J. Functional MRI evidence for inefficient attentional control in adolescent chronic cannabis abuse. Behav. Brain Res. 2010, 215, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.J.; Jiang, J.; Zhang, Z.Q.; Nie, X.; Liu, B.X.; Pei, L.; Gong, H.H.; Hu, J.P.; Lu, G.M.; Zhan, Y. Plasticity and Susceptibility of Brain Morphometry Alterations to Insufficient Sleep. Front. Psychiatry 2018, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Simpson, N.S.; Gibbs, E.L.; Matheson, G.O. Optimizing sleep to maximize performance: Implications and recommendations for elite athletes. Scand. J. Med. Sci. Sports 2017, 27, 266–274. [Google Scholar] [CrossRef]
- Posner, M.I.; Petersen, S.E. The Attention System of The Human Brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef]
- Posner, M.I.; Rothbart, M.K. Research on Attention Networks as a Model for the Integration of Psychological Science. Soc. Sci. Electron. Publ. 2007, 58, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; McCandliss, B.D.; Fossella, J.; Flombaum, J.I.; Posner, M.I. The activation of attentional networks. NeuroImage 2005, 26, 471–479. [Google Scholar] [CrossRef]
- Petersen, S.E.; Posner, M.I. The Attention System of the Human Brain: 20 Years After. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef]
- Mogg, K.; Salum, G.A.; Bradley, B.P.; Gadelha, A.; Pan, P.; Alvarenga, P.; Rohde, L.A.; Pine, D.S.; Manfro, G.G. Attention network functioning in children with anxiety disorders, attention-deficit/hyperactivity disorder and non-clinical anxiety. Psychol. Med. 2015, 45, 2633–2646. [Google Scholar] [CrossRef]
- Bush, G. Attention-Deficit/Hyperactivity Disorder and Attention Networks. Neuropsychopharmacology 2010, 35, 278–300. [Google Scholar] [CrossRef]
- Brunye, T.T.; Mahoney, C.R.; Lieberman, H.R.; Taylor, H.A. Caffeine modulates attention network function. Brain Cogn. 2010, 72, 181–188. [Google Scholar] [CrossRef]
- Johnstone, A.; Mari-Beffa, P. The Effects of Martial Arts Training on Attentional Networks in Typical Adults. Front. Psychol. 2018, 9, 80. [Google Scholar] [CrossRef]
- Liu, K.; Sun, G.; Li, B.; Jiang, Q.J.; Yang, X.; Li, M.; Li, L.; Qian, S.W.; Zhao, L.; Zhou, Z.Y.; et al. The impact of passive hyperthermia on human attention networks: An fMRI study. Behav. Brain Res. 2013, 243, 220–230. [Google Scholar] [CrossRef]
- Sani, S.H.Z.; Fathirezaie, Z.; Sadeghi-Bazargani, H.; Badicu, G.; Ebrahimi, S.; Grosz, R.W.; Bahmani, D.S.; Brand, S. Driving Accidents, Driving Violations, Symptoms of Attention-Deficit-Hyperactivity (ADHD) and Attentional Network Tasks. Int. J. Environ. Res. Public Health 2020, 17, 5238. [Google Scholar] [CrossRef]
- Van den Berg, V.; Saliasi, E.; Jolles, J.; Groot, R.H.M.; Chinapaw, M.J.M.; Singh, A.S. Exercise of Varying Durations: No Acute Effects on Cognitive Performance in Adolescents. Front. Neurosci. 2018, 12, 672. [Google Scholar] [CrossRef]
- Veldsman, M.; Churilov, L.; Werden, E.; Li, Q.; Cumming, T.; Brodtmann, A. Physical Activity After Stroke Is Associated with Increased Interhemispheric Connectivity of the Dorsal Attention Network. Neurorehabil. Neural Repair 2017, 31, 157–167. [Google Scholar] [CrossRef]
- Huertas, F.; Zahonero, J.; Sanabria, D.; Lupiáñez, J. Functioning of the Attentional Networks at Rest vs. During Acute Bouts of Aerobic Exercise. J. Sport Exerc. Psychol. 2011, 33, 649–665. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.K.; Pesce, C.; Chiang, Y.T.; Kuo, C.Y.; Fong, D.Y. Antecedent acute cycling exercise affects attention control: An ERP study using attention network test. Front. Hum. Neurosci. 2015, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; Forns, J.; Esnaola, M.; Suades-González, E.; Álvarez-Pedrerol, M.; Robinson, O.; Júlvez, J.; Garcia-Aymerich, J.; Sunyer, J. Physical Activity and Cognitive Trajectories in Schoolchildren. Pediatr. Exerc. Sci. 2016, 28, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Noguera, C.; Sánchez-Horcajo, R.; Álvarez-Cazorla, D.; Cimadevilla, J.M. Ten years younger: Practice of chronic aerobic exercise improves attention and spatial memory functions in ageing. Exp. Gerontol. 2019, 117, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Wikee, G.; Martella, D. Physical activity and cognitive reserve as protective factors for attentional functioning in older people. Rev. Med. Chile 2018, 146, 570–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.H.; Im, K.; Kwon, H.; Seo, S.W.; Ye, B.S.; Cho, H.; Noh, Y.; Lee, J.M.; Kim, S.T.; Park, S.E.; et al. Higher Physical Activity Is Associated with Increased Attentional Network Connectivity in the Healthy Elderly. Front. Aging Neurosci. 2016, 8, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, L.; Padilla, C.; Parmentier, F.B.R.; Andrés, P. The Effects of Chronic Exercise on Attentional Networks. PLoS ONE 2014, 9, e101478. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Yang, Y.X.; Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1397–1404. [Google Scholar] [CrossRef]
- Yu, H.J.; Zhu, W.M.; Qiu, J. International Physical Activity Questionnaire (IPAQ-SF) for Chinese College Students: A Validation Study. Med. Sci. Sports Exerc. 2017, 49, 476. [Google Scholar] [CrossRef]
- Macfarlane, D.J.; Lee, C.C.Y.; Ho, E.Y.K.; Chan, K.L.; Chan, D.T.S. Reliability and validity of the Chinese version of IPAQ (short, last 7 days). J. Sci. Med. Sport 2007, 10, 45–51. [Google Scholar] [CrossRef]
- Hellmann, F.; Verdi, M.; Schlemper, B.R., Jr.; Caponi, S. 50th anniversary of the Declaration of Helsinki: The double standard was introduced. Arch. Med. Res. 2014, 45, 600–601. [Google Scholar] [CrossRef]
- Hopkins, W.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Wang, X.Z. Characteristic analysis and cognitive reconstruction of sedentary behavior: Public health observation based on change in human behavior pattern. J. Phys. Educ. 2021, 28, 137–144. [Google Scholar] [CrossRef]
- Wu, Z.J.; Wang, Z.Y.; Hu, B.Q.; Zhang, X.H.; Zhang, F.; Wang, H.L.; Li, F.H. Relationships of accelerometer-based measured objective physical activity and sedentary behaviour with cognitive function: A comparative cross-sectional study of China’s elderly population. BMC Geriatr. 2020, 20, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, T.; Koyama, A.; Barnes, D.; Sidney, S.; Jacobs, D.; Zhu, N.; Reis, J.; Launer, L.; Whitmer, R.; Yaffe, K. Long-term patterns of low physical activity and cognitive function in mid-life: The CARDIA study. Alzheimer’s Dement. 2013, 9 (Suppl. S2), 134–135. [Google Scholar] [CrossRef]
- Erickson, K.I.; Leckie, R.L.; Weinstein, A.M. Physical activity, fitness, and gray matter volume. Neurobiol. Aging 2014, 35, S20–S28. [Google Scholar] [CrossRef] [Green Version]
- Jochem, C.; Baumeister, S.E.; Wittfeld, K.; Leitzmann, M.F.; Bahls, M.; Schminke, U.; Markus, M.R.P.; Felix, S.B.; Völzke, H.; Hegenscheid, K.; et al. Domains of physical activity and brain volumes: A population-based study. NeuroImage 2017, 156, 101–108. [Google Scholar] [CrossRef]
- Weinstein, A.M.; Voss, M.W.; Prakash, R.S.; Chaddock, L.; Szabo, A.; White, S.M.; Wojcicki, T.R.; Mailey, E.; McAuley, E.; Kramer, A.F.; et al. The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav. Immun. 2012, 26, 811–819. [Google Scholar] [CrossRef] [Green Version]
- Pensel, M.C.; Daamen, M.; Scheef, L.; Knigge, H.U.; Vega, S.R.; Martin, J.A.; Schild, H.H.; Strüder, H.K.; Boecker, H. Executive control processes are associated with individual fitness outcomes following regular exercise training: Blood lactate profile curves and neuroimaging findings. Sci. Rep. 2018, 8, 4893. [Google Scholar] [CrossRef] [Green Version]
- Krafft, C.E.; Schwarz, N.F.; Chi, L.X.; Weinberger, A.L.; Schaeffer, D.J.; Pierce, J.E.; Rodrigue, A.L.; Yanasak, N.E.; Miller, P.H.; Tomporowski, P.D.; et al. An 8-month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children. Obesity 2014, 22, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Levine, J.; Melanson, E.L.; Westerterp, K.R.; Hill, J.O. Measurement of the components of nonexercise activity thermogenesis. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E670–E675. [Google Scholar] [CrossRef]
- Wang, B.Y.; Guo, W. Exercise mode and attentional networks in older adults: A cross-sectional study. PeerJ 2020, 8, e8364. [Google Scholar] [CrossRef]
- Raichlen, D.A.; Alexander, G.E. Adaptive Capacity: An Evolutionary Neuroscience Model Linking Exercise, Cognition, and Brain Health. Trends Neurosci. 2017, 40, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xu, Q.X.; Wang, Y.F.; Zhang, J.L.; Liu, J.P.; Xu, F. Association of Sedentary Behavior and Depression among College Students Majoring in Design. Int. J. Environ. Res. Public Health 2020, 17, 3545. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.J.; Xin, S.M.; Luan, D.C.; Zou, Z.L.; Bai, X.; Liu, M.T.; Gao, Q. Independent and combined associations between screen time and physical activity and perceived stress among college students. Addict. Behav. 2020, 103, 106224. [Google Scholar] [CrossRef] [PubMed]
- Virtuoso Júnior, J.S.; Roza, L.B.; Tribess, S.; Meneguci, J.; Mendes, E.L.; Pegorari, M.S.; Dias, F.A.; dos Santos Tavares, D.M.; Sasaki, J.E. Time Spent Sitting Is Associated with Changes in Biomarkers of Frailty in Hospitalized Older Adults: A Cross Sectional Study. Front. Physiol. 2017, 8, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.H.; García, E.B.; Pedisic, Z.; Bennie, J.; Vergeer, I.; Wiesner, G. Screen Time, Other Sedentary Behaviours, and Obesity Risk in Adults: A Review of Reviews. Curr. Obes. Rep. 2017, 6, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Falck, R.S.; Davis, J.C.; Liu-Ambrose, T. What is the association between sedentary behaviour and cognitive function? A systematic review. Br. J. Sports Med. 2017, 51, 800–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, T.D.; Reis, J.; Zhu, N.; Jacobs, D.R.; Launer, L.J.; Whitmer, R.A.; Sidney, S.; Yaffe, K. Effect of Early Adult Patterns of Physical Activity and Television Viewing on Midlife Cognitive Function. JAMA Psychiatry 2016, 73, 73–79. [Google Scholar] [CrossRef]
- Magnon, V.; Vallet, G.T.; Dutheil, F.; Auxiette, C. Sedentary Lifestyle Matters as Past Sedentariness, Not Current Sedentariness, Predicts Cognitive Inhibition Performance among College Students: An Exploratory Study. Int. J. Environ. Res. Public Health 2021, 18, 7649. [Google Scholar] [CrossRef]
- Van der Niet, A.G.; Smith, J.; Scherder, E.J.A.; Oosterlaan, J.; Hartman, E.; Visscher, C. Associations between daily physical activity and executive functioning in primary school-aged children. J. Sci. Med. Sport 2015, 18, 673–677. [Google Scholar] [CrossRef]
- Stillman, C.M.; Watt, J.C.; Grove, G.A.; Wollam, M.E.; Uyar, F.; Mataro, M.; Cohen, N.J.; Howard, D.V.; Howard, J.H.; Erickson, K.I. Physical Activity Is Associated with Reduced Implicit Learning but Enhanced Relational Memory and Executive Functioning in Young Adults. PLoS ONE 2016, 11, e0162100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llorens, F.; Sanabria, D.; Huertas, F. The Influence of Acute Intense Exercise on Exogenous Spatial Attention Depends on Physical Fitness Level. Exp. Psychol. 2014, 62, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Nougier, V.; Azemar, G.; Stein, J. Covert orienting to central visual cues and sport practice relations in the development of visual attention. J. Exp. Child Psychol. 1992, 54, 315. [Google Scholar] [CrossRef]
Characteristic | High PA | Moderate PA | Low PA |
---|---|---|---|
n | 20 | 19 | 18 |
Female | 8 | 8 | 7 |
Age (years) | 20.10 ± 0.26 | 19.74 ± 0.23 | 19.83 ± 0.32 |
Height (cm) | 173.55 ± 1.98 | 169.79 ± 1.81 | 172.39 ± 1.86 |
Body mass (kg) | 63.95 ± 1.98 | 61.58 ± 3.10 | 64.17 ± 2.54 |
Body mass index (kg/m2) | 21.46 ± 0.58 | 21.27 ± 0.94 | 21.49 ± 0.62 |
Education (years) | 14.05 ± 0.22 | 13.74 ± 0.18 | 13.72 ± 0.19 |
IPAQ 1 (METs/week) | 5843.85 ± 672.30 | 1465.50 ± 133.27 | 416.50 ± 47.40 |
Sitting time (min/day) | 307.50 ± 131.62 | 412.63 ± 110.75 | 460.00 ± 151.23 |
Group | Cue Type | Flanker Type | ||
---|---|---|---|---|
Congruent | Incongruent | Neural | ||
High | No cue | 538.14 ± 15.84 | 611.47 ± 17.42 | 516.73 ± 13.85 |
Central cue | 509.50 ± 17.24 | 601.29 ± 17.56 | 495.92 ± 15.43 | |
Double cue | 507.29 ± 15.33 | 598.37 ± 17.37 | 498.96 ± 14.36 | |
Spatial cue | 475.40 ± 16.29 | 552.42 ± 17.78 | 479.18 ± 16.70 | |
Moderate | No cue | 549.13 ± 16.25 | 639.63 ± 17.87 | 547.76 ± 14.21 |
Central cue | 522.25 ± 17.68 | 627.32 ± 18.01 | 516.14 ± 15.83 | |
Double cue | 527.47 ± 15.73 | 621.66 ± 17.82 | 517.40 ± 14.73 | |
Spatial cue | 502.34 ± 16.71 | 585.64 ± 18.24 | 500.86 ± 17.13 | |
Low | No cue | 561.84 ± 16.70 | 664.05 ± 18.36 | 566.76 ± 14.60 |
Central cue | 543.98 ± 18.17 | 649.15 ± 18.51 | 541.14 ± 16.27 | |
Double cue | 540.29 ± 16.16 | 658.49 ± 18.31 | 541.72 ± 15.14 | |
Spatial cue | 517.88 ± 17.17 | 618.64 ± 18.74 | 525.50 ± 17.60 |
Group | Cue | Flanker | ||
---|---|---|---|---|
Congruent | Incongruent | Neural | ||
High | No cue | 100.00 ± 0.25 | 94.05 ± 3.00 | 99.80 ± 0.29 |
Central cue | 99.40 ± 0.28 | 89.10 ± 3.17 | 99.80 ± 0.48 | |
Double cue | 99.80 ± 0.23 | 94.35 ± 2.45 | 99.60 ± 0.39 | |
Spatial cue | 100.00 ± 0.32 | 96.90 ± 2.22 | 99.60 ± 0.33 | |
Moderate | No cue | 99.79 ± 0.25 | 87.21 ± 3.08 | 98.95 ± 0.30 |
Central cue | 99.58 ± 0.29 | 84.74 ± 3.25 | 98.74 ± 0.49 | |
Double cue | 99.79 ± 0.24 | 84.32 ± 2.52 | 99.58 ± 0.40 | |
Spatial cue | 99.37 ± 0.33 | 91.32 ± 2.28 | 98.95 ± 0.34 | |
Low | No cue | 99.11 ± 0.26 | 90.61 ± 3.16 | 99.78 ± 0.30 |
Central cue | 99.78 ± 0.30 | 86.00 ± 3.34 | 98.44 ± 0.50 | |
Double cue | 99.56 ± 0.25 | 90.06 ± 2.58 | 99.33 ± 0.42 | |
Spatial cue | 99.33 ± 0.34 | 93.67 ± 2.34 | 100.00 ± 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Xie, C.; Qiu, F.; Geng, J.; Li, F. Effects of Physical Activity Level on Attentional Networks in Young Adults. Int. J. Environ. Res. Public Health 2022, 19, 5374. https://doi.org/10.3390/ijerph19095374
Meng F, Xie C, Qiu F, Geng J, Li F. Effects of Physical Activity Level on Attentional Networks in Young Adults. International Journal of Environmental Research and Public Health. 2022; 19(9):5374. https://doi.org/10.3390/ijerph19095374
Chicago/Turabian StyleMeng, Fanying, Chun Xie, Fanghui Qiu, Jiaxian Geng, and Fengrong Li. 2022. "Effects of Physical Activity Level on Attentional Networks in Young Adults" International Journal of Environmental Research and Public Health 19, no. 9: 5374. https://doi.org/10.3390/ijerph19095374
APA StyleMeng, F., Xie, C., Qiu, F., Geng, J., & Li, F. (2022). Effects of Physical Activity Level on Attentional Networks in Young Adults. International Journal of Environmental Research and Public Health, 19(9), 5374. https://doi.org/10.3390/ijerph19095374