Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horn, E.; Lee, S. Electronic evaluations of the fetal heart rate patterns preceding fetal death: Further observation. Am. J. Obster. Gynecol. 1965, 87, 824–826. [Google Scholar]
- Pomeranz, B.; Macaulay, R.; Caudill, M.A.; Kutz, I.; Adam, D.; Gordon, D.; Kilborn, K.M.; Barger, A.C.; Shannon, D.C.; Cohen, R.J.; et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. Heart Circ. 1985, 248, H151–H153. [Google Scholar] [CrossRef]
- Pagani, M.; Lombardi, F.; Guzzetti, S.; Rimoldi, O.; Furlan, R.; Pizzinelli, P.; Sandrone, G.; Malfatto, G.; Dell’Orto, S.; Piccaluga, E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 1986, 59, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Furlan, R.; Guzzetti, S.; Crivellaro, W.; Dassi, S.; Tinelli, M.; Baselli, G.; Cerutti, S.; Lombardi, F.; Pagani, M.; Malliani, A. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation 1990, 81, 537–547. [Google Scholar] [CrossRef]
- Kleiger, R.E.; Miller, J.; Bigger, J.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. [Google Scholar] [CrossRef]
- Malik, M.; Farrell, T.; Cripps, T.; Camm, A.J. Heart rate variability in relation to prognosis after myocardial infarction: Selection of optimal processing techniques. Eur. Heart J. 1989, 10, 1060–1074. [Google Scholar] [CrossRef]
- Bigger, J.T.; Fleiss, J.L.; Steinman, R.C.; Rolnitzky, L.M.; Kleiger, R.E.; Rottman, J.N. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 1992, 85, 164–171. [Google Scholar] [CrossRef]
- Kitney, R. Heart rate variability in the assessment of autonomic diabetic neuropathy. Automedica 1982, 4, 155–167. [Google Scholar]
- Pagani, M.; Malfatto, G.; Pierini, S.; Casati, R.; Masu, A.M.; Poli, M.; Guzzetti, S.; Lombardi, F.; Cerutti, S.; Malliani, A. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J. Auton. Nerv. Syst. 1988, 23, 143–153. [Google Scholar] [CrossRef]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef]
- Appel, M.L.; Berger, R.D.; Saul, J.; Smith, J.M.; Cohen, R.J. Beat to beat variability in cardiovascular variables: Noise or music? J. Am. Coll. Cardiol. 1989, 14, 1139–1148. [Google Scholar] [CrossRef]
- Miu, A.C.; Heilman, R.M.; Miclea, M. Reduced heart rate variability and vagal tone in anxiety: Trait versus state, and the effects of autogenic training. Auton. Neurosci. 2009, 145, 99–103. [Google Scholar] [CrossRef]
- Furlan, R.; Piazza, S.; Dell’Orto, S.; Gentile, E.; Cerutti, S.; Pagani, M.; Malliani, A. Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc. Res. 1993, 27, 482–488. [Google Scholar] [CrossRef]
- Arai, Y.; Saul, J.P.; Albrecht, P.; Hartley, L.H.; Lilly, L.S.; Cohen, R.J.; Colucci, W.S. Modulation of cardiac autonomic activity during and immediately after exercise. Am. J. Physiol. 1989, 256, H132–H141. [Google Scholar] [CrossRef]
- Kaikkonen, P.; Hynynen, E.; Mann, T.; Rusko, H.; Nummela, A. Can HRV be used to evaluate training load in constant load exercises? Eur. J. Appl. Physiol. 2010, 108, 435–442. [Google Scholar] [CrossRef]
- Kaikkonen, P.; Hynynen, E.; Mann, T.; Rusko, H.; Nummela, A. Heart rate variability is related to training load variables in interval running exercises. Eur. J. Appl. Physiol. 2012, 112, 829–838. [Google Scholar] [CrossRef]
- Chalencon, S.; Busso, T.; Lacour, J.-R.; Garet, M.; Pichot, V.; Connes, P.; Gabel, C.P.; Roche, F.; Barthélémy, J.C. A model for the training effects in swimming demonstrates a strong relationship between parasympathetic activity, performance and index of fatigue. PLoS ONE 2012, 7, e52636. [Google Scholar] [CrossRef]
- Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 108, 1153–1167. [Google Scholar] [CrossRef] [PubMed]
- Umetani, K.; Singer, D.H.; McCraty, R.; Atkinson, M. Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. J. Am. Coll. Cardiol. 1998, 31, 593–601. [Google Scholar] [CrossRef]
- Antelmi, I.; De Paula, R.S.; Shinzato, A.R.; Peres, C.A.; Mansur, A.J.; Grupi, C.J. Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am. J. Cardiol. 2004, 93, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Tulppo, M.; Mäkikallio, T.H.; Seppänen, T.; Laukkanen, R.T.; Huikuri, H.V. Vagal modulation of heart rate during exercise: Effects of age and physical fitness. Am. J. Physiol. 1998, 274, H424–H429. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, J.; Tuck, S.; Yamamoto, Y.; Hughson, R. Heart rate variability at rest and exercise: Influence of age, gender, and physical training. Can. J. Appl. Physiol. 1996, 21, 455. [Google Scholar] [CrossRef] [PubMed]
- Orellana, J.N.; Torres, B.C.; Cachadiña, E.S.; de Hoyo, M.; Cobo, S.D. Two new indexes for the assessment of autonomic balance in elite soccer players. Int. J. Sports Physiol. 2015, 10, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Crandall, C.G.; Wilson, T.E. Human cardiovascular adaptations supporting human exercise-heat acclimation. Compr. Physiol. 2015, 5, 17. [Google Scholar] [PubMed]
- Périard, J.D.; Travers, G.J.; Racinais, S.; Sawka, M.N. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton. Neurosci. 2016, 196, 52–62. [Google Scholar] [CrossRef]
- Cheshire, W.P. Thermoregulatory disorders and illness related to heat and cold stress. Auton. Neurosci. 2016, 196, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; O’neill, M.S.; Park, S.K.; Sparrow, D.; Vokonas, P.; Schwartz, J. Ambient temperature, air pollution, and heart rate variability in an aging population. Am. J. Epidemiol. 2011, 173, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Brenner, I.K.M.; Thomas, S.; Shephard, R.J. Spectral analysis of heart rate variability during heat exposure and repeated exercise. Graefe’s Arch. Clin. Exp. Ophthalmol. 1997, 76, 145–156. [Google Scholar] [CrossRef]
- Sollers, J.J.; Sanford, T.A.; Nabors-Oberg, R.; Anderson, C.A.; Thayer, J.F. Examining changes in HRV in response to varying ambient temperature. IEEE Eng. Med. Biol. 2002, 21, 30–34. [Google Scholar] [CrossRef]
- Yamamoto, S.; Iwamoto, M.; Inoue, M.; Harada, N. Evaluation of the Effect of Heat Exposure on the Autonomic Nervous System by Heart Rate Variability and Urinary Catecholamines. J. Occup. Health 2007, 49, 199–204. [Google Scholar] [CrossRef]
- Camm, A.J.; Malik, M.; Bigger, J.; Breithardt, G.; Cerutti, S.; Cohen, R.; Singer, D.H. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Peçanha, T.; Forjaz, C.L.D.M.; Low, D.A. Additive effects of heating and exercise on baroreflex control of heart rate in healthy males. J. Appl. Physiol. 2017, 123, 1555–1562. [Google Scholar] [CrossRef]
- Kleiger, R.; Stein, P.K.; Bosner, M.S.; Rottman, J.N. Time domain measurements of heart rate variability. Cardiol. Clin. 1992, 10, 487–498. [Google Scholar] [CrossRef]
- Nolan, J.; Batin, P.D.; Andrews, R.; Lindsay, S.J.; Brooksby, P.; Mullen, M.; Baig, W.; Flapan, A.D.; Cowley, A.; Prescott, R.J.; et al. Prospective study of heart rate variability and mortality in chronic heart failure. Circulation 1998, 98, 1510–1516. [Google Scholar] [CrossRef]
- Kamath, M.V.; Fallen, E.L. Power spectral analysis of heart rate variability: A noninvasive signature of cardiac autonomic function. Crit. Rev. Biomed. Eng. 1993, 21, 245–311. [Google Scholar] [PubMed]
- Saboul, D.; Balducci, P.; Millet, G.; Pialoux, V.; Hautier, C. A pilot study on quantification of training load: The use of HRV in training practice. Eur. J. Sport Sci. 2015, 16, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Tulppo, M.; Makikallio, T.H.; Takala, T.E.; Seppanen, T.; Huikuri, H.V. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. 1996, 271, H244–H252. [Google Scholar] [CrossRef]
- Ciccone, A.B.; Siedlik, J.A.; Wecht, J.M.; Deckert, J.A.; Nguyen, N.D.; Weir, J.P. Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle Nerve 2017, 56, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, G.R.; Bromley, P.D.; Brodie, D.A. The reliability of short-term measurements of heart rate variability. Int. J. Cardiol. 2005, 103, 238–247. [Google Scholar] [CrossRef]
- Bruce-Low, S.S.; Cotterrell, D.; Jones, G.E. Heart rate variability during high ambient heat exposure. Aviat. Space Environ. Med. 2006, 77, 915–920. [Google Scholar]
- Gorman, A.J.; Proppe, D.W. Mechanisms producing tachycardia in conscious baboons during environmental heat stress. J. Appl. Physiol. 1984, 56, 441–446. [Google Scholar] [CrossRef] [PubMed]
Experimental Group (n = 12) | Control Group (n = 10) | |||
---|---|---|---|---|
Outcome | M | SD | M | S |
Age (years) | 25 | 3 | 24 | 3 |
Height (cm) | 174 | 7 | 176 | 8 |
Weight (kg) | 68 | 11 | 71 | 9 |
Body mass index (kg∙m2) | 22.4 | 2.2 | 22.9 | 1.4 |
ANOVA (F, p, η2p) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19 °C | 35 °C EG 19 °C CG | Temperature Effect | Group Effect | Group*Temperature Effect | |||||||||||
Outcome | Group | M | SD | M | SD | p | F | p | η2p | F | p | η2p | F | p | η2p |
RR | EG | 1066.44 | 184.00 | 876.17 | 326.35 | 0.004 | 13.157 | 0.002 | 0.409 | 0.015 | 0.905 | 0.001 | 3.848 | 0.065 | 0.168 |
CG | 982.28 | 177.69 | 996.61 | 159.77 | 1 | ||||||||||
SDNN | EG | 75.43 | 21.80 | 64.25 | 20.73 | 0.333 | 0.025 | 0.876 | 0.001 | 1.224 | 0.282 | 0.061 | 2.34 | 0.143 | 0.11 |
CG | 71.43 | 21.13 | 73.90 | 21.54 | 0.258 | ||||||||||
RMSSD | EG | 76.14 | 28.92 | 52.85 | 29.46 | 0.096 | 0.38 | 0.545 | 0.2 | 0.087 | 0.771 | 0.005 | 3.255 | 0.087 | 0.146 |
CG | 60.74 | 22.37 | 61.18 | 26.74 | 0.422 | ||||||||||
pNN50 | EG | 45.74 | 18.90 | 28.43 | 22.26 | 0.021 | 2.338 | 0.143 | 0.11 | 0.612 | 0.444 | 0.031 | 3.72 | 0.069 | 0.164 |
CG | 38.76 | 17.20 | 37.35 | 27.75 | 0.785 | ||||||||||
LFln (ms2) | EG | 7.14 | 0.66 | 6.95 | 0.70 | 0.449 | 0.051 | 0.824 | 0.003 | 0.06 | 0.81 | 0.003 | 1.671 | 0.212 | 0.081 |
CG | 6.89 | 0.77 | 6.85 | 0.84 | 0.307 | ||||||||||
LFnu | EG | 44.35 | 21.43 | 52.60 | 18.58 | 0.049 | 0.7 | 0.413 | 0.036 | 1.154 | 0.296 | 0.057 | 3.593 | 0.073 | 0.159 |
CG | 56.49 | 17.60 | 50.97 | 21.68 | 0.473 | ||||||||||
HFln (ms2) | EG | 7.4 | 0.75 | 6.82 | 0.89 | 0.032 | 0.179 | 0.677 | 0.009 | 1.495 | 0.236 | 0.073 | 4.034 | 0.059 | 0.175 |
CG | 6.67 | 0.89 | 6.72 | 1.38 | 0.287 | ||||||||||
HFnu | EG | 55.63 | 21.44 | 47.20 | 18.36 | 0.049 | 0.782 | 0.388 | 0.04 | 1.172 | 0.293 | 0.058 | 3.68 | 0.07 | 0.162 |
CG | 43.38 | 17.60 | 48.90 | 21.69 | 0.484 | ||||||||||
TPln | EG | 8.38 | 0.50 | 8.06 | 0.61 | 0.233 | 0.001 | 0.98 | <0.001 | 0.007 | 0.932 | <0.001 | 2.981 | 0.1 | 0.136 |
CG | 6.64 | 1.79 | 6.51 | 1.55 | 0.241 | ||||||||||
LF/HF | EG | 1.30 | 1.72 | 1.68 | 1.95 | 0.281 | 0.985 | 0.333 | 0.049 | 0.214 | 0.649 | 0.011 | 0.292 | 0.595 | 0.015 |
CG | 1.94 | 0.59 | 1.53 | 0.57 | 0.758 | ||||||||||
SD1 | EG | 53.95 | 20.48 | 40.20 | 18.62 | 0.095 | 0.380 | 0.545 | 0.02 | 0.086 | 0.773 | 0.004 | 3.268 | 0.087 | 0.147 |
CG | 43.04 | 15.85 | 49.00 | 37.37 | 0.421 | ||||||||||
SD2 | EG | 91.08 | 26.65 | 81.07 | 24.30 | 0.491 | 0.15 | 0.703 | 0.008 | 1.665 | 0.212 | 0.081 | 1.842 | 0.191 | 0.088 |
CG | 91.46 | 29.72 | 89.93 | 22.93 | 0.243 | ||||||||||
SD2/SD1 | EG | 1.82 | 0.58 | 2.19 | 0.59 | 0.04 | 3.153 | 0.092 | 0.142 | 1.503 | 0.235 | 0.073 | 1.597 | 0.222 | 0.078 |
CG | 2.96 | 2.09 | 2.21 | 0.69 | 0.728 | ||||||||||
SS | EG | 10.97 | 2.62 | 13.32 | 3.83 | 0.187 | 0.511 | 0.483 | 0.026 | 0.91 | 0.352 | 0.046 | 1.375 | 0.255 | 0.067 |
CG | 13.28 | 3.34 | 12.92 | 3.81 | 0.755 | ||||||||||
S/PS | EG | 0.23 | 0.12 | 0.43 | 0.27 | 0.045 | 1.852 | 0.189 | 0.089 | 0.052 | 0.822 | 0.003 | 2.566 | 0.126 | 0.119 |
CG | 0.32 | 0.30 | 0.50 | 0.42 | 0.87 |
ANOVA (F, p, η2p) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19 °C | 35 °C EG 19 °C CG | Temperature Effect | Group Effect | Group*Temperature Effect | |||||||||||
Outcome | Group | M | SD | M | SD | p | F | p | η2p | F | p | η2p | F | p | η2p |
RR | EG | 1078.84 | 174.80 | 932.56 | 128.32 | <0.001 | 17.093 | 0.001 | 0.474 | 0.08 | 0.78 | 0.004 | 4.127 | 0.056 | 0.178 |
CG | 1018.06 | 127.96 | 1048.88 | 112.37 | 0.163 | ||||||||||
SDNN | EG | 76.42 | 21.54 | 65.52 | 20.47 | 0.932 | 0.348 | 0.562 | 0.018 | 2.383 | 0.139 | 0.111 | 0.503 | 0.487 | 0.026 |
CG | 71.83 | 21.67 | 74.02 | 22.32 | 0.381 | ||||||||||
RMSSD | EG | 79.38 | 32.51 | 52.37 | 26.70 | 0.042 | 0.58 | 0.456 | 0.03 | 0.123 | 0.73 | 0.006 | 3.62 | 0.072 | 0.16 |
CG | 61.50 | 33.54 | 61.45 | 29.44 | 0.44 | ||||||||||
pNN50 | EG | 46.72 | 17.64 | 27.64 | 18.07 | 0.019 | 3.395 | 0.081 | 0.152 | 0.138 | 0.714 | 0.007 | 2.882 | 0.106 | 0.132 |
CG | 39.77 | 23.16 | 37.57 | 20.81 | 0.921 | ||||||||||
LFln (ms2) | EG | 7.08 | 0.74 | 6.95 | 0.63 | 0.655 | 0.546 | 0.469 | 0.028 | 0.233 | 0.635 | 0.012 | 0.013 | 0.912 | 0.001 |
CG | 6.84 | 0.79 | 6.84 | 0.64 | 0.563 | ||||||||||
LFnu | EG | 41.70 | 18.97 | 57.05 | 19.47 | 0.026 | 1.876 | 0.187 | 0.09 | 0.041 | 0.842 | 0.002 | 3.821 | 0.065 | 0.167 |
CG | 58.25 | 15.95 | 51.99 | 18.03 | 0.691 | ||||||||||
HFln (ms2) | EG | 7.44 | 0.75 | 6.64 | 0.89 | 0.038 | 1.86 | 0.189 | 0.089 | 0.422 | 0.524 | 0.022 | 1.888 | 0.185 | 0.09 |
CG | 6.47 | 1.15 | 6.72 | 1.03 | 0.994 | ||||||||||
HFnu | EG | 58.22 | 18.98 | 42.89 | 19.46 | 0.026 | 1.865 | 0.188 | 0.089 | 0.044 | 0.836 | 0.002 | 3.841 | 0.065 | 0.168 |
CG | 41.65 | 15.85 | 47.84 | 18.03 | 0.686 | ||||||||||
TPln | EG | 8.51 | 0.55 | 8.16 | 0.66 | 0.156 | 1.903 | 0.184 | 0.091 | 0.42 | 0.525 | 0.022 | 0.434 | 0.518 | 0.022 |
CG | 6.65 | 1.03 | 6.78 | 0.84 | 0.624 | ||||||||||
LF/HF | EG | 1.04 | 1.24 | 1.82 | 1.31 | 0.47 | 0.5 | 0.488 | 0.026 | <0.001 | 0.988 | <0.001 | 2.505 | 0.13 | 0.116 |
CG | 1.77 | 0.36 | 1.57 | 0.50 | 0.493 | ||||||||||
SD1 | EG | 56.24 | 23.04 | 37.08 | 18.92 | 0.042 | 0.583 | 0.455 | 0.03 | 0.124 | 0.729 | 0.006 | 3.625 | 0.072 | 0.16 |
CG | 43.56 | 23.76 | 43.53 | 20.83 | 0.44 | ||||||||||
SD2 | EG | 91.66 | 23.08 | 83.95 | 25.63 | 0.473 | 0.211 | 0.651 | 0.011 | 0.203 | 0.657 | 0.011 | 0.303 | 0.588 | 0.016 |
CG | 90.92 | 31.15 | 87.92 | 24.84 | 0.95 | ||||||||||
SD2/SD1 | EG | 1.75 | 0.47 | 2.54 | 0.79 | 0.048 | 2.924 | 0.104 | 0.133 | 0.034 | 0.856 | 0.002 | 5.062 | 0.037 | 0.21 |
CG | 2.29 | 0.49 | 2.23 | 0.61 | 0.238 | ||||||||||
SS | EG | 13.32 | 3.83 | 12.89 | 3.65 | 0.337 | 1.311 | 0.266 | 0.065 | 0.002 | 0.962 | <0.001 | 0.046 | 0.833 | 0.002 |
CG | 13.65 | 3.31 | 12.72 | 3.36 | 0.528 | ||||||||||
S/PS | EG | 0.25 | 0.15 | 0.47 | 0.35 | 0.041 | 3.681 | 0.07 | 0.162 | 0.257 | 0.618 | 0.013 | 0.463 | 0.504 | 0.024 |
CG | 0.38 | 0.07 | 0.37 | 0.07 | 0.403 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abellán-Aynés, O.; Manonelles, P.; Alacid, F. Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability. Int. J. Environ. Res. Public Health 2021, 18, 5934. https://doi.org/10.3390/ijerph18115934
Abellán-Aynés O, Manonelles P, Alacid F. Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability. International Journal of Environmental Research and Public Health. 2021; 18(11):5934. https://doi.org/10.3390/ijerph18115934
Chicago/Turabian StyleAbellán-Aynés, Oriol, Pedro Manonelles, and Fernando Alacid. 2021. "Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability" International Journal of Environmental Research and Public Health 18, no. 11: 5934. https://doi.org/10.3390/ijerph18115934
APA StyleAbellán-Aynés, O., Manonelles, P., & Alacid, F. (2021). Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability. International Journal of Environmental Research and Public Health, 18(11), 5934. https://doi.org/10.3390/ijerph18115934