Comparison of Polar Active Watch and Waist- and Wrist-Worn ActiGraph Accelerometers for Measuring Children’s Physical Activity Levels during Unstructured Afterschool Programs
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting and Participants
2.2. Procedures
2.3. Polar Active Watch
2.4. ActiGraph GT3X+ and GT9X Accelerometers
- MET thresholds#1: Sedentary (<2.0 METs); Light-intensity PA (LPA) (2.00–3.49 METs); and moderate- and vigorous-intensity PA (MVPA) (≥3.50 METs)
- MET thresholds#2: Sedentary (<1.5 METs); Light-intensity PA (LPA) (1.50–2.99 METs); and moderate- and vigorous-intensity PA (MVPA) (≥3.00 METs)
- MET thresholds#3: Sedentary (<2.0 METs); LPA (2.01–3.99 METs); and MVPA (≥4 METs)
- Evenson’s cut-points (GT3X+-Evenson): Sedentary (≤50), LPA (51–1146), and MVPA (≥1147) using activity counts per 30-s from the vertical axis, according to Reference [40].
- Chandler’s cut-points (GT9X-Chandler): Sedentary (<966), Light-intensity physical activity (966–3174), and moderate- and vigorous-intensity physical activity (≥3175).
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Eime, R.M.; Young, J.A.; Harvey, J.T.; Charity, M.J.; Payne, W.R. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: Informing development of a conceptual model of health through sport. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; Andersen, L.B.; Byrne, N.M. Physical activity and obesity in children. Br. J. Sports Med. 2011, 45, 866–870. [Google Scholar] [CrossRef] [PubMed]
- McMurray, R.G.; Bo Andersen, L. The influence of exercise on metabolic syndrome in youth: A review. Am. J. Lifestyle Med. 2010, 4, 176–186. [Google Scholar] [CrossRef]
- Boreham, C.A.; McKay, H.A. Physical activity in childhood and bone health. Br. J. Sports Med. 2011, 45, 877–879. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; Asare, M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011, 45, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; Warburton, D.E.; Janssen, I.; Paterson, D.H.; Latimer, A.E.; Rhodes, R.E.; Kho, M.E.; Hicks, A.; LeBlanc, A.G.; Zehr, L. New Canadian physical activity guidelines. Appl. Physiol. Nutr. Metab. 2011, 36, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Scientific Report; US Department of Health and Human Services: Washington, DC, USA, 2018.
- Institute of Medicine. Committee on Prevention of Obesity in Children Youth: Preventing Childhood Obesity: Health in the Balance; National Academy of Sciences: Washington, DC, USA, 2005. [Google Scholar]
- Centers for Disease Control and Prevention. Comprehensive School Physical Activity Programs a Guide for Schools; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2013.
- Rowlands, A.V.; Eston, R.G. The measurement and interpretation of children’s physical activity. J. Sports Sci. Med. 2007, 6, 270–276. [Google Scholar] [PubMed]
- Lubans, D.R.; Morgan, P.J.; Tudor-Locke, C. A systematic review of studies using pedometers to promote physical activity among youth. Prev. Med. 2009, 48, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Future Marketing Insights. Wearable Fitness Trackers Market: Wrist Wear Product Type Segment Expected to Remain Dominant over the Forecast Period: Global Industry Analysis (2012–2016) and Opportunity Assessment (2017–2027). Available online: https://www.futuremarketinsights.com/reports/wearable-fitness-trackers-market (accessed on 25 August 2018).
- International Data Corporation. Wearables Aren’t Dead, They’re Just Shifting Focus as the Market Grows 16.9% in the Fourth Quarter, According to IDC. Available online: https://www.idc.com/getdoc.jsp?containerId=prUS42342317 (accessed on 1 September 2018).
- Lyons, E.J.; Lewis, Z.H.; Mayrsohn, B.G.; Rowland, J.L. Behavior change techniques implemented in electronic lifestyle activity monitors: A systematic content analysis. J. Med. Internet Res. 2014, 16, e192. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.; Murawski, B.; Short, C.E.; Rebar, A.L.; Schoeppe, S.; Alley, S.; Vandelanotte, C.; Kirwan, M. Activity trackers implement different behavior change techniques for activity, sleep, and sedentary behaviors. Interact. J. Med. Res. 2017, 6, e13. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, J.; Gallant, F.; Bélanger, M. A bit of fit: Minimalist intervention in adolescents based on a physical activity tracker. JMIR Mhealth Uhealth 2017, 5, e92. [Google Scholar] [CrossRef] [PubMed]
- Bianchi-Hayes, J.; Schoenfeld, E.; Cataldo, R.; Hou, W.; Messina, C.; Pati, S. Combining activity trackers with motivational interviewing and mutual support to increase physical activity in parent-adolescent dyads: Longitudinal observational feasibility study. JMIR Pediatr. Parent. 2018, 1, e3. [Google Scholar]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.; Marshall, P.; Bianchi-Berthouze, N.; Bird, J. Activity tracking: Barriers, workarounds and customisation. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 617–621. [Google Scholar]
- Yang, R.; Shin, E.; Newman, M.W.; Ackerman, M.S. When fitness trackers don’t’fit’: End-user difficulties in the assessment of personal tracking device accuracy. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 623–634. [Google Scholar]
- Sirard, J.R.; Masteller, B.; Freedson, P.S.; Mendoza, A.; Hickey, A. Youth oriented activity trackers: Comprehensive laboratory-and field-based validation. J. Med. Internet Res. 2017, 19, e250. [Google Scholar] [CrossRef] [PubMed]
- Tully, M.A.; McBride, C.; Heron, L.; Hunter, R.F. The validation of Fitbit Zip™ physical activity monitor as a measure of free-living physical activity. BMC Res. Notes 2014, 7, 952. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.B.; Kaminsky, L.A.; Dickin, D.C.; Montoye, A.H. Validity of consumer-based physical activity monitors for specific activity types. Med. Sci. Sports Exerc. 2016, 48, 1619–1628. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M. Validity of consumer-based physical activity monitors and calibration of smartphone for prediction of physical activity energy expenditure. Med. Sci. Sports Exerc. 2014, 46, 1830–1838. [Google Scholar]
- Kim, Y.; Lochbaum, M. Objectively measured physical activity levels among ethnic minority children attending school-based afterschool programs in a high-poverty neighborhood. J. Sports Sci. Med. 2017, 16, 350. [Google Scholar] [PubMed]
- Schaefer, S.E.; Camacho-Gomez, R.; Sadeghi, B.; Kaiser, L.; German, J.B.; De la Torre, A. Assessing child obesity and physical activity in a hard-to-reach population in California’s central valley, 2012–2013. Prev. Chronic Dis. 2015, 12, E117. [Google Scholar] [CrossRef] [PubMed]
- Fetter, D.S.; Scherr, R.E.; Linnell, J.D.; Dharmar, M.; Schaefer, S.E.; Zidenberg-Cherr, S. Effect of the Shaping Healthy Choices Program, a Multicomponent, School-Based Nutrition Intervention, on Physical Activity Intensity. J. Am. Coll. Nutr. 2018, 37, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shangguan, R.; Keating, X.D.; Leitner, J.; Wu, Y. A conceptual physical education course and college freshmen’s health-related fitness. Health Educ. 2017, 117, 53–68. [Google Scholar] [CrossRef]
- Schaefer, S.E.; Gomez-Camacho, R.; Martinez, L.; Sadeghi, B.; German, J.B.; de la Torre, A. Social and environmental determinants of child physical activity in a rural Mexican-origin community. J. Community Health. 2016, 41, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, S.E.; Van Loan, J.M. A feasibility study of wearable activity monitors for pre-adolescent school-age children. Prev. Chronic Dis. 2014, 11, E85. [Google Scholar] [CrossRef] [PubMed]
- Ridgers, N.D.; McNarry, M.A.; Mackintosh, K.A. Feasibility and effectiveness of using wearable activity trackers in youth: A systematic review. JMIR Mhealth Uhealth 2016, 4, e129. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, A.-M.; Ahola, R.; Kulmala, J.; Hakonen, H.; Vähä-Ypyä, H.; Herzig, K.-H.; Auvinen, J.; Keinänen-Kiukaanniemi, S.; Sievänen, H.; Tammelin, T.H. Measuring physical activity in free-living conditions-Comparison of three accelerometry-based methods. Front. Physiol. 2017, 7, 681. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, T.; Rowlands, A.V.; Olds, T.; Maher, C. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Menickelli, J.; Grube, D.P.; Lowell, S. Convergent validity of a consumer-grade accelerometer with a research-grade pedometer in a physical education setting. Int. J. Phys. Educ. Fitn Sports 2018, 7, 20–24. [Google Scholar] [CrossRef]
- McClain, J.J.; Hart, T.L.; Getz, R.S.; Tudor-Locke, C. Convergent validity of 3 low cost motion sensors with the ActiGraph accelerometer. J. Phys. Act. Health 2010, 7, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Beets, M.W.; Morgan, C.F.; Banda, J.A.; Bornstein, D.; Byun, W.; Mitchell, J.; Munselle, L.; Rooney, L.; Beighle, A.; Erwin, H. Convergent validity of pedometer and accelerometer estimates of moderate-to-vigorous physical activity of youth. J. Phys. Act. Health 2011, 8, S295–S305. [Google Scholar] [CrossRef] [PubMed]
- Carlson, K.D.; Herdman, A.O. Understanding the impact of convergent validity on research results. Org. Res. Methods 2012, 15, 17–32. [Google Scholar] [CrossRef]
- Westen, D.; Rosenthal, R. Quantifying construct validity: Two simple measures. J. Pers. Soc. Psychol. 2003, 84, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Voss, C.; Gardner, R.F.; Dean, P.H.; Harris, K.C. Validity of commercial activity trackers in children with congenital heart disease. Can. J. Cardiol. 2017, 33, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Hamari, L.; Kullberg, T.; Ruohonen, J.; Heinonen, O.J.; Díaz-Rodríguez, N.; Lilius, J.; Pakarinen, A.; Myllymäki, A.; Leppänen, V.; Salanterä, S. Physical activity among children: Objective measurements using Fitbit One® and ActiGraph. BMC Res. Notes 2017, 10, 161. [Google Scholar] [CrossRef] [PubMed]
- Mooses, K.; Oja, M.; Reisberg, S.; Vilo, J.; Kull, M. Validating Fitbit Zip for monitoring physical activity of children in school: A cross-sectional study. BMC Public Health 2018, 18, 858. [Google Scholar] [CrossRef] [PubMed]
- US Department of Education. East Lubbock Promise Neighborhood: Promise Neighborhood Grant—Texas Tech University. Available online: http://www2.ed.gov/programs/promiseneighborhoods/2012/apptexastech.pdf (accessed on 5 March 2018).
- Harrell, J.S.; McMurray, R.G.; Baggett, C.D.; Pennell, M.L.; Pearce, P.F.; Bangdiwala, S.I. Energy costs of physical activities in children and adolescents. Med. Sci. Sports Exerc. 2005, 37, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Saint-Maurice, P.F.; Kim, Y.; Welk, G.J.; Gaesser, G.A. Kids are not little adults: What MET threshold captures sedentary behavior in children? Eur. J. Appl. Physiol. 2016, 116, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.; Brazendale, K.; Beets, M.; Mealing, B. Classification of physical activity intensities using a wrist-worn accelerometer in 8–12-year-old children. Pediatr. Obes. 2016, 11, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Cain, K.L.; Conway, T.L.; Adams, M.A.; Husak, L.E.; Sallis, J.F. Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Montoye, A.H.; Nelson, M.B.; Bock, J.M.; Imboden, M.T.; Kaminsky, L.A.; Mackintosh, K.A.; Mcnarry, M.A.; Pfeiffer, K.A. Raw and Count Data Comparability of Hip-Worn ActiGraph GT3X+ and Link Accelerometers. Med. Sci. Sports Exerc. 2018, 50, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Sng, E.; Addoh, O.; Loprinzi, P. Comparison of two ActiGraph accelerometers in laboratory and free-living conditions. J. Behav. Health. 2018, 7, 7–13. [Google Scholar] [CrossRef]
- Hamlett, A.; Ryan, L.; Serrano-Trespalacios, P.; Wolfinger, R. Mixed models for assessing correlation in the presence of replication. J. Air Waste Manag. Assoc. 2003, 53, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Zou, G. Confidence interval estimation for the Bland–Altman limits of agreement with multiple observations per individual. Stat. Methods Med. Res. 2013, 22, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P.M.; Saint-Maurice, P.F.; Kim, Y.; Hibbing, P.; Bai, Y.; Welk, G.J. A primer on the use of equivalence testing for evaluating measurement agreement. Med. Sci. Sports Exerc. 2018, 50, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Welk, G.J.; Nam, Y.H.; Lee, J.A.; Lee, J.-M.; Kim, Y.; Meier, N.F.; Dixon, P.M. Comparison of consumer and research monitors under semistructured settings. Med. Sci. Sports Exerc. 2016, 48, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Iversen, G.R.; Gergen, M. Statistics: The Conceptual Approach; Springer: New York, NY, USA, 2012. [Google Scholar]
- Gomersall, S.R.; Ng, N.; Burton, N.W.; Pavey, T.G.; Gilson, N.D.; Brown, W.J. Estimating physical activity and sedentary behavior in a free-living context: A pragmatic comparison of consumer-based activity trackers and ActiGraph accelerometry. J. Med. Internet Res. 2016, 18, e239. [Google Scholar] [CrossRef] [PubMed]
- Puyau, M.R.; Adolph, A.L.; Vohra, F.A.; Butte, N.F. Validation and calibration of physical activity monitors in children. Obesity 2002, 10, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Beets, M.W.; Welk, G.J. Everything you wanted to know about selecting the “right” Actigraph accelerometer cut-points for youth, but…: A systematic review. J. Sci. Med. Sport 2012, 15, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, A.V.; Rennie, K.; Kozarski, R.; Stanley, R.M.; Eston, R.G.; Parfitt, G.C.; Olds, T.S. Children’s physical activity assessed with wrist-and hip-worn accelerometers. Med. Sci. Sports Exerc. 2014, 46, 2308–2316. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Zheng, Y.; Wong, W.-K. Machine learning for activity recognition: Hip versus wrist data. Physiol. Meas. 2014, 35, 2183. [Google Scholar] [CrossRef] [PubMed]
- Kamada, M.; Shiroma, E.J.; Harris, T.B.; Lee, I.-M. Comparison of physical activity assessed using hip-and wrist-worn accelerometers. Gait Posture 2016, 44, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.J.; Rowlands, A.V.; Cliff, D.P.; Morgan, P.J.; Plotnikoff, R.C.; Lubans, D.R. Comparability and feasibility of wrist-and hip-worn accelerometers in free-living adolescents. J. Sci. Med. Sport 2017, 20, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.P.; Hall Brown, T.S.; Collier, S.R.; Sandberg, K. How consumer physical activity monitors could transform human physiology research. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2017, 312, R358–R367. [Google Scholar] [CrossRef] [PubMed]
Total | Boys | Girls | |
---|---|---|---|
n | 51 | 18 | 33 |
Age (years) | 10.30 (0.91) | 10.33 (0.91) | 10.30 (0.92) |
Race/Ethnicity (n, %) | |||
Non-Hispanic Black | 31 (60.78%) | 10 (55.56%) | 21 (63.63%) |
Hispanic | 12 (23.53%) | 6 (33.33%) | 6 (18.18%) |
Others | 8 (15.69%) | 2 (11.11%) | 6 (18.18%) |
Height (cm) | 140.18 (8.42) | 138.39 (7.36) | 141.97 (8.69) |
Weight (kg) | 41.17 (11.02) | 37.41 (7.67) | 44.92 (11.63) |
Body mass index (kg/m2) | 21.38 (4.24) | 19.53 (3.39) | 22.29 (4.36) |
Monitoring days a | 3.0 (2.0–4.0) | 3.0 (3.0–4.0) | 3.0 (2.0–4.0) |
Sedentary | Light | MVPA | |
---|---|---|---|
Polar Active Watch (PAW) | |||
MET thresholds#1 (PAW#1) | 19.07 | 19.33 | 19.02 |
(16.84–21.30) † | (17.29–21.37) †,‡ | (16.45–21.59) ‡ | |
MET thresholds#2 (PAW#2) | 4.57 | 32.48 | 20.76 |
(3.62–5.52) * | (30.23–34.73) *,‡ | (18.18–23.34) ‡ | |
MET thresholds#3 (PAW#3) b | - | 21.62 | 16.82 |
(19.58–23.66) *,† | (14.25–19.39) *,† | ||
ActiGraph GT3X+ | 12.34 | 30.46 | 15.03 |
(10.69–13.99) *,†,‡ | (28.56–32.35) *,†,‡ | (13.01–17.06) *,† | |
ActiGraph GT9X | 14.16 | 31.22 | 12.39 |
(12.13–16.19) *,†,‡ | (29.29–33.14) *,‡ | (10.22–14.56) *,†,‡ |
Polar Active Watch (PAW) MET Thresholds#1 (PAW#1) | Polar Active Watch (PAW) MET Thresholds#2 (PAW#2) | Polar Active Watch (PAW) MET Thresholds#3 (PAW#3) | |||||||
---|---|---|---|---|---|---|---|---|---|
Correlation b | MAPE c | Mean Ratio d | Correlation b | MAPE c | Mean Ratio d | Correlation b | MAPE c | Mean Ratio d | |
ActiGraph GT3X+ | |||||||||
Sedentary | 0.65 | 121.68 | 2.06 | 0.48 | 69.92 | 0.44 | - | - | - |
(0.54–0.76) | (84.87–158.49) | (1.68–2.44) | (0.28–0.69) | (63.39–76.44) | (0.33–0.57) | ||||
Light PA | 0.20 | 47.00 | 0.72 | 0.32 | 35.50 | 1.15 | 0.16 | 30.50 | 0.77 |
(−0.03–0.43) | (40.44–53.57) | (0.63–0.80) | (0.13–0.52) | (28.39–42.61) | (1.06–1.24) | (−0.06–0.39) | (34.20–44.82) | (0.69–0.86) | |
MVPA | 0.67 | 88.34 | 1.69 | 0.71 | 98.38 | 1.88 | 0.64 | 69.16 | 1.40 |
(0.54–0.80) | (60.24–116.44) | (1.38–2.00) | (0.58–0.83) | (67.69–129.06) | (1.56–2.19) | (0.49–0.78) | (47.10–91.22) | (1.15–1.65) | |
ActiGraph GT9X | |||||||||
Sedentary | 0.66 | 122.73 | 2.07 | 0.45 | 79.84 | 0.51 | - | - | - |
(0.49–0.82) | (53.9–191.57) | (1.36–2.78) | (0.20–0.70) | (55.21–104.46) | (0.20–0.82) | ||||
Light PA | 0.49 | 40.94 | 0.62 | 0.20 | 34.48 | 1.11 | 0.54 | 35.06 | 0.69 |
(0.31–0.68) | (36.22–45.65) | (0.56–0.69) | (0.00–0.40) | (28.00–40.96) | (1.01–1.20) * | (0.37–0.72) | (30.70–39.41) | (0.63–0.76) | |
MVPA | 0.74 | 128.04 | 2.20 | 0.72 | 168.56 | 2.63 | 0.75 | 94.33 | 1.80 |
(0.59–0.90) | (84.08–172.00) | (1.75–2.66) | (0.57–0.87) | (97.48–239.64) | (1.91–3.35) | (0.61–0.90) | (57.50–131.16) | (1.42–2.19) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Lochbaum, M. Comparison of Polar Active Watch and Waist- and Wrist-Worn ActiGraph Accelerometers for Measuring Children’s Physical Activity Levels during Unstructured Afterschool Programs. Int. J. Environ. Res. Public Health 2018, 15, 2268. https://doi.org/10.3390/ijerph15102268
Kim Y, Lochbaum M. Comparison of Polar Active Watch and Waist- and Wrist-Worn ActiGraph Accelerometers for Measuring Children’s Physical Activity Levels during Unstructured Afterschool Programs. International Journal of Environmental Research and Public Health. 2018; 15(10):2268. https://doi.org/10.3390/ijerph15102268
Chicago/Turabian StyleKim, Youngdeok, and Marc Lochbaum. 2018. "Comparison of Polar Active Watch and Waist- and Wrist-Worn ActiGraph Accelerometers for Measuring Children’s Physical Activity Levels during Unstructured Afterschool Programs" International Journal of Environmental Research and Public Health 15, no. 10: 2268. https://doi.org/10.3390/ijerph15102268
APA StyleKim, Y., & Lochbaum, M. (2018). Comparison of Polar Active Watch and Waist- and Wrist-Worn ActiGraph Accelerometers for Measuring Children’s Physical Activity Levels during Unstructured Afterschool Programs. International Journal of Environmental Research and Public Health, 15(10), 2268. https://doi.org/10.3390/ijerph15102268