A Case of Inherited t(4;10)(q26;q26.2) Chromosomal Translocation Elucidated by Multiple Chromosomal and Molecular Analyses. Case Report and Review of the Literature
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Evaluation
2.2. Cytogenetic Analyses
2.3. MLPA Technique
2.4. Array-CGH Technique
3. Results
Clinical Presentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization. Congenital Anomalies. Available online: https://www.who.int/health-topics/congenital-anomalies#tab=tab (accessed on 12 February 2021).
- Covic, M.; Ştefănescu, D.; Sandovici, I.; Gorduza, E.V. Genetică Medicală, 3rd ed.; Polirom: Iaşi, Romania, 2017. [Google Scholar]
- Shaffer, L.; Theisen, A. Disorders caused by chromosome abnormalities. Appl. Clin. Genet. 2010, 3, 159–174. [Google Scholar] [CrossRef]
- Francke, U. Quinacrine mustard fluorescence of human chromosomes: Characterization of unusual translocations. Am. J. Hum. Genet. 1972, 24, 189–213. [Google Scholar]
- Surana, R.B.; Conen, P.E. Partial trisomy 4 resulting from a 4-18 reciprocal translocation. Ann. Génét. 1972, 15, 191–194. [Google Scholar]
- Schrott, H.G.; Sakaguchi, S.; Francke, U.; Luzzatti, L.; Fialkow, P.J. Translocation, t(4q-;13q+), in three generations resulting in partial trisomy of the long arm of chromosome 4 in the fourth generation. J. Med. Genet. 1974, 11, 201–205. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Dai, Y.; Tu, Z.-G.; Li, Q.-Y. ‘Pure’ Partial Trisomy 4q26?q35.2 Resulting from a Familial Unbalanced Translocation t(4;10)(q26;q26.3). Cytogenet. Genome Res. 2009, 127, 67–72. [Google Scholar] [CrossRef]
- Battaglia, A.; Chen, Z.; Brothman, A.; Morelli, S.; Palumbos, J.; Carey, J.; Hudgins, L.; Disteche, C. Karyotype/phenotype correlations in duplication 4q: Evidence for a critical region within 4q27-28 for preaxial defects. Am. J. Med. Genet. Part A 2005, 134A, 334–337. [Google Scholar] [CrossRef]
- Cernakova, I.; Kvasnicova, M.; Lovasova, Z.; Badova, N.; Drabek, J.; Bouchalova, K.; Trojanec, R.; Hajduch, M. A DUPLICATION dup(4)(q28q35.2) DE NOVO IN A NEWBORN. Biomed. Pap. 2006, 150, 113–116. [Google Scholar] [CrossRef]
- Lewandowski, R.C.; Kukolich, M.K.; Sears, J.W.; Mankinen, C.B. Partial deletion 10q. Qual. Life Res. 1978, 42, 339–343. [Google Scholar] [CrossRef]
- Irving, M.; Hanson, H.; Turnpenny, P.; Brewer, C.; Ogilvie, C.M.; Davies, A.; Berg, J. Deletion of the distal long arm of chromosome 10; is there a characteristic phenotype? A report of 15 de novo and familial cases. Am. J. Med. Genet. 2003, 123A, 153–163. [Google Scholar] [CrossRef]
- Scigliano, S.; Grégoire, M.; Schmitt, M.; Jonveaux, P.; LeHeup, B. Terminal deletion of the long arm of chromosome. Clin. Genet. 2004, 65, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Kehrer-Sawatzki, H.; Daumiller, E.; Müller-Navia, J.; Kendziorra, H.; Rossier, E.; Du Bois, G.; Barbi, G. Interstitial deletion del(10)(q25.2q25.3∼26.11)—Case report and review of the literature. Prenat. Diagn. 2005, 25, 954–959. [Google Scholar] [CrossRef]
- Courtens, W.; Wuyts, W.; Rooms, L.; Pera, S.B.; Wauters, J. A subterminal deletion of the long arm of chromosome 10: A clinical report and review. Am. J. Med. Genet. Part A 2006, 140A, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Yatsenko, S.; Kruer, M.; Bader, P.; Corzo, D.; Schuette, J.; Keegan, C.; Nowakowska, B.; Peacock, S.; Cai, W.; Peiffer, D.; et al. Identification of critical regions for clinical features of distal 10q deletion syndrome. Clin. Genet. 2009, 76, 54–62. [Google Scholar] [CrossRef]
- Lin, S.; Zhou, Y.; Fang, Q.; Wu, J.; Zhang, Z.; Ji, Y.; Luo, Y. Chromosome 10q26 deletion syndrome: Two new cases and a review of the literature. Mol. Med. Rep. 2016, 14, 5134–5140. [Google Scholar] [CrossRef][Green Version]
- Celle, L.; Lee, L.; Rintoul, N.; Savani, R.C.; Long, W.; Mennuti, M.T.; Krantz, I.D. Duplication of chromosome region 4q28.3-qter in monozygotic twins with discordant phenotypes. Am. J. Med. Genet. 2000, 94, 125–140. [Google Scholar] [CrossRef]
- Mattei, M.-G.; Mattei, J.-F.; Bernard, R.; Giraud, F. Partial trisomy 4 resulting from a complex maternal rearrangement of chromosomes 2, 4, and 18 with interstitial translocation. Qual. Life Res. 1979, 51, 55–61. [Google Scholar] [CrossRef]
- Zollino, M.; Zampino, G.; Torrioli, G.; Pomponi, M.G.; Neri, G. Further contribution to the description of phenotypes associated with partial 4q duplication. Am. J. Med. Genet. 1995, 57, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Halal, F.; Vekemans, M.; Chitayat, D. Interstitial tandem direct duplication of the long arm of chromosome 4 (q23–q27) and possible assignment of the structural gene encoding human aspartylglucosaminidase to this segment. Am. J. Med. Genet. 1991, 39, 418–421. [Google Scholar] [CrossRef]
- Jeziorowska, A.; Ciesla, W.; Houck, G.E., Jr.; Yao, X.L.; Harris, M.S.; Truszczak, B.; Skorski, M.; Jakubowski, L.; Jenkins, E.C.; Kaluzewski, B. Cytogenetic and molecular identification of a de novo direct duplication of the long arm of chromosome 4(q21.3→q31.3). Am. J. Med. Genet. 1993, 46, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Fryns, J.P.; Berghe, H.V.D. Partial duplication of the long arm of chromosome. Ann. Génét. 1980, 23, 52–53. [Google Scholar]
- Vogel, W.; Siebers, J.W.; Gunkel, J.; Haas, B.; Knörr-Gärtner, H.; Niethammer, D.G.; Noel, B. Uneinheitlicher Phänotyp bei Partialtrisomie 4q. Qual. Life Res. 1975, 28, 103–112. [Google Scholar] [CrossRef]
- Dutrillaux, B.; Laurent, C.; Forabosco, A.; Noel, B.; Suerinc, E.; Biemont, M.C.; Cotton, J.B. La trisomie 4q partielle. Apropos de trois observations. Ann. Genet. 1975, 18, 21–27. [Google Scholar]
- Taylor, K.M.; Francke, U.; Brown, M.G.; George, D.L.; Kaufhold, M.; Opitz, J.M. Inverted tandem (“mirror”) duplications in human chromosomes: Inv dup 8p, 4q, 22q. Am. J. Med. Genet. 1977, 1, 3–19. [Google Scholar] [CrossRef]
- Goodman, B.K.; Capone, G.T.; Hennessey, J.; Thomas, G.H. Familial tandem duplication of band q31.1 to q32.3 on chromo-some 4 with mild phenotypic effect. Am. J. Med. Genet. 1997, 73, 119–124. [Google Scholar] [CrossRef]
- Muraki, K.; Katano, R.; Hiraki, Y.; Ueda, K.; Fujita, H. A case of an interstitial tandem direct duplication of long arm of chromosome 4: 46, XY, dup (4) (q25q31.3) de novo. Hiroshima J. Med. Sci. 1997, 46, 105–108. [Google Scholar]
- Shashi, V.; Berry, M.N.; Santos, C.; Pettenati, M.J. Partial duplication of 4q12q13 leads to a mild phenotype. Am. J. Med. Genet. 1999, 86, 51–53. [Google Scholar] [CrossRef]
- Navarro, E.G.; Romero, M.M.; Expósito, I.L.; Velasco, C.M.; Llamas, J.G.; Ramón, F.H.; Jimenez, R.D. De novo interstitial tandem dupli-cation of chromosome 4(q21–q28). Am. J. Med. Genet. 1996, 62, 297–299. [Google Scholar] [CrossRef]
- Otsuka, T.; Fujinaka, H.; Imamura, M.; Tanaka, Y.; Hayakawa, H.; Tomizawa, S. Duplication of chromosome 4q: Renal pathology of two siblings. Am. J. Med. Genet. Part A 2005, 134A, 330–333. [Google Scholar] [CrossRef]
- Lundin, C.; Zech, L.; Sjörs, K.; Wadelius, C.; Annerén, G. Trisomy 4q syndrome: Presentation of a new case and review of the literature. Ann. Génét. 2002, 45, 53–57. [Google Scholar] [CrossRef]
- Mikelsaar, R.V.; Lurie, I.W.; EIlus, T. “Pure” partial trisomy 4q25-qter owing to a de novo 4;22 translocation. J. Med. Genet. 1996, 33, 344–345. [Google Scholar] [CrossRef][Green Version]
- Cui, Y.-X.; Wang, Y.-H.; Hao, L.-J.; Hou, L.; Li, W.; Huang, Y.-F. Partial trisomy 4q: A case report. Chin. Med. J. 2006, 119, 1136–1139. [Google Scholar] [CrossRef]
- Maltby, E.L.; Barnes, I.C.; Bennett, C.P. Duplication involving band 4q32 with minimal clinical effect. Am. J. Med. Genet. 1999, 83, 431. [Google Scholar] [CrossRef]
- Assawamakin, A.; Wattanasirichaigoon, D.; Tocharoentanaphol, C.; Waeteekul, S.; Tansatit, M.; Thongnoppakhun, W.; Limwongse, C. A novel maternally-derived insertional translocation resulting in partial trisomy 4q13.2-q22.1 with complex translocation t(8;20) in a family with intellectual disability. Am. J. Med. Genet. Part A 2012, 158, 901–908. [Google Scholar] [CrossRef]
- Angulo, M.A.; Castro-Magana, M.; Sherman, J.; Collipp, P.J.; Milson, J.; Trunca, C.; Derenoncourt, A.N. Endocrine abnormalities in a patient with partial trisomy 4q. J. Med. Genet. 1984, 21, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, G.; Kiyoi, Y.; Takeyama, I.; Kawana, S.; Yamamoto, M. Inherited chromosomal translocation in two families (t(4q-;13q+) and t(5q-;13q+)). Tohoku J. Exp. Med. 1977, 121, 179–184. [Google Scholar] [CrossRef]
- Jenkins, E.C.; Curcuru-Giordano, F.M.; Krishna, S.G.; Cantarella, J. De novo occurrence of 46,XX,t(4;13) (q31;q14) in a mentally retarded girl. Ann. de Génétique 1975, 18, 117–120. [Google Scholar]
- Horbinski, C.; Carter, E.M.; Heard, P.L.; Sathanoori, M.; Hu, J.; Vockley, J.; Gunn, S.; Hale, D.E.; Surti, U.; Cody, J.D. Molecular and clinical characterization of a recurrent cryptic unbalanced t(4q;18q) resulting in an 18q deletion and 4q duplication. Am. J. Med. Genet. Part A 2008, 146A, 2898–2904. [Google Scholar] [CrossRef]
- Rinaldi, R.; De Bernardo, C.; Assumma, M.; Grammatico, B.; Buffone, E.; Poscente, M.; Grammatico, P. Cytogenetic and molecular characterization of a de novo 4q24qter duplication and correlation to the associated phenotype. Am. J. Med. Genet. 2003, 118A, 122–126. [Google Scholar] [CrossRef]
- Kadotani, T.; Watanabe, Y.; Kiyuna, T.; Takeuchi, S. A case of partial trisomy 4q resulting from familial (4;9)(q23;p24) translocation. Proc. Jpn. Acad. Ser. B 1981, 57, 374–377. [Google Scholar] [CrossRef][Green Version]
- Issa, M.; Potter, A.M.; Blank, C.E. Multiple congenital defects associated with trisomy for long arm of No. J. Med. Genet. 1976, 13, 326–329. [Google Scholar] [CrossRef]
- Colla, A. Duplicación parcial del cromosoma 4 asociada con coloboma ocular bilateral. Arch. Argent. Pediatr. 2012, 110, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Baccichetti, C.; Tenconi, R.; Anglani, F.; Zacchello, F. Trisomy 4q32 leads to 4qter due to a maternal 4/21 translocation. J. Med. Genet. 1975, 12, 425–427. [Google Scholar] [CrossRef]
- Patel, V.; Raghuveer, T.; Persons, D.; Myers, S. Trisomy 4q Syndrome: A rare Syndrome Phenotypically Similar to Trisomy. Internet J. Pediatr. Neonatol. 2006, 7, 133–172. [Google Scholar]
- Cervenka, J.; Djavadi, G.R.; Gorlin, R.J. Partial trisomy 4q syndrome: Case report and review. Hum. Genet. 1976, 34, 1–7. [Google Scholar] [CrossRef]
- Biederman, B.; Bowen, P. Partial trisomy 4q due to familial 2/4 translocation. Qual. Life Res. 1976, 33, 147–153. [Google Scholar] [CrossRef]
- Bonfante, A.; Stella, M.; Rossi, G. Partial trisomy 4q: Two cases resulting from a familial translocation t(4;18)(q27;p11). Qual. Life Res. 1979, 52, 85–90. [Google Scholar] [CrossRef]
- Skrlec, I.; Wagner, J.; Puseljić, S.; Heffer, M.; Stipoljev, F. Partial monosomy 2p and partial trisomy 4q due to paternal trans-location t(2;4)(p25.1;q31.3). Coll. Antropol. 2014, 38, 759–762. [Google Scholar]
- Sag, S.O.; Gorukmez, O.; Ture, M.; Gulten, T.; Yakut, T. De novo partial trisomy distal 4q: A case report. Genet. Couns. 2014, 25, 423–428. [Google Scholar]
- Machuca, S.T.V. Duplicación parcial 4q en un neonato originado por reordenamiento der (20), t(4;20) (q21;q13.1)mat. Rev. Peru. Investig. Matern. Perinat. 2016, 5, 75–81. [Google Scholar] [CrossRef]
- El-Ruby, M.; Hemly, N.A.; Zaki, M.S. Maternal balanced translocation (4;21) leading to an offspring with partial duplica-tion of 4q and 21q without phenotypic manifestations of Down syndrome. Genet. Couns. 2007, 18, 217–226. [Google Scholar]
- Annerén, G.; Lübeck, P.-O. Trisomy 4q31 →qter due to a maternal 4/8 translocation. Hereditas 2008, 100, 45–49. [Google Scholar] [CrossRef]
- Romero, M.C.; Mialdea, O.G.; Company, A.V.; Tapia, M.C.; Piñera, J.G. Duplicación parcial del cromosoma 4q (q31, q35): Síndrome aurículo-acro-renal. In Anales de Pediatría; Elsevier: Amsterdam, The Netherlands, 2008; Volume 68, pp. 361–364. [Google Scholar] [CrossRef]
- Bellucco, F.T.; Fock, R.A.; de Oliveira-Júnior, H.R.; Perez, A.B.; Melaragno, M.I. Complex Small Supernumerary Marker Chromosome Leading to Partial 4q/21q Duplications: Clinical Implication and Review of the Literature. Cytogenet Genome Res 2018, 156, 173–178. [Google Scholar] [CrossRef]
- Lin, S.; Rawlins, L.; Turner, C.; Doyle, E.; Sleep, T. Novel ocular findings with 5p deletion and partial trisomy of distal 4q. Can. J. Ophthalmol. 2017, 53, e89–e90. [Google Scholar] [CrossRef]
- Mohamed, A.M.; El-Bassyouni, H.T.; El-Gerzawy, A.M.; Hammad, S.A.; Helmy, N.A.; Kamel, A.K.; Ismail, S.I.; Issa, M.Y.; Eid, O.; Zaki, M.S. Cytogenomic characterization of 1q43q44 deletion associated with 4q32.1q35.2 duplication and phenotype correlation. Mol. Cytogenet. 2018, 11, 57. [Google Scholar] [CrossRef]
- Shenoy, R.D.; Shenoy, V.; Shetty, V. Chromosomal Abnormalities in Syndromic Orofacial Clefts: Report of Three Children. Case Rep. Genet. 2018, 2018, 1928918. [Google Scholar] [CrossRef]
- Thapa, M.; Asamoah, A.; Gowans, G.C.; Platky, K.C.; Barch, M.J.; Mouchrani, P.; Rajakaruna, C.; Hersh, J.H. Molecular characterization of distal 4q duplication in two patients using oligonucleotide array-based comparative genomic hybridization (oaCGH) analysis. Am. J. Med. Genet. Part A 2014, 164, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.S.; Eid, O.M.; Eid, M.M.; Mohamed, A.M.; Sayed, I.S.; Abdel-Hamid, M.S.; Abdel-Salam, G.M. Bilateral Calcification of Basal Ganglia in a Patient with Duplication of Both 11q13.1q22.1 and 4q35.2 with New Phenotypic Features. Cytogenet. Genome Res. 2019, 159, 130–136. [Google Scholar] [CrossRef]
- Bonnet, C.; Zix, C.; Grégoire, M.-J.; Brochet, K.; Duc, M.; Rousselet, F.; Philippe, C.; Jonveaux, P. Characterization of mosaic supernumerary ring chromosomes by array-CGH: Segmental aneusomy for proximal 4q in a child with tall stature and obesity. Am. J. Med. Genet. Part A 2006, 140, 233–237. [Google Scholar] [CrossRef]
- Matoso, E.; Melo, J.B.; Ferreira, S.I.; Jardim, A.; Castelo, T.M.; Weise, A.; Carreira, I.M. Insertional translocation leading to a 4q13 duplication including theEPHA5gene in two siblings with attention-deficit hyperactivity disorder. Am. J. Med. Genet. Part A 2013, 161, 1923–1928. [Google Scholar] [CrossRef]
- Mehta, L.; Duckett, D.P.; Young, I.D. Behaviour disorder in monosomy 10qter. J. Med. Genet. 1987, 24, 185–186. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, S.; Akiba, T.; Katoh, M.; Satoh, T. Terminal deletion of chromosome 10q: Clinical features and literature review. Pediatr. Int. 1999, 41, 565–567. [Google Scholar] [CrossRef]
- Miller, N.D.; Nance, M.A.; Wohler, E.S.; Hoover-Fong, J.E.; Lisi, E.; Thomas, G.H.; Pevsner, J. Molecular (SNP) analyses of overlapping hemizygous deletions of 10q25.3 to 10qter in four patients: Evidence for HMX2 and HMX3 as candidate genes in hearing and vestibular function. Am. J. Med. Genet. Part A 2009, 149A, 669–680. [Google Scholar] [CrossRef]
- Sangu, N.; Okamoto, N.; Shimojima, K.; Ondo, Y.; Nishikawa, M.; Yamamoto, T. A de novo microdeletion in a patient with inner ear abnormalities suggests that the 10q26.13 region contains the responsible gene. Hum. Genome Var. 2016, 3, 16008. [Google Scholar] [CrossRef] [PubMed]
- Online Mendelian Inheritance in Man (OMIMTM). Available online: http://www.ncbi.nlm.nih.gov/omim/ (accessed on 29 November 2021).
- Martin, C.L.; Waggoner, D.J.; Wong, A.; Uhrig, S.; A Roseberry, J.; Hedrick, J.F.; Pack, S.; Russell, K.L.; Zackai, E.H.; Dobyns, W.; et al. “Molecular rulers” for calibrating phenotypic effects of telomere imbalance. J. Med. Genet. 2002, 39, 734–740. [Google Scholar] [CrossRef]
- Ravnan, J.B.; Tepperberg, J.H.; Papenhausen, P.; Lamb, A.N.; Hedrick, J.; Eash, D.; Ledbetter, D.H.; Martin, C.L. Subtelomere FISH analysis of 11 688 cases: An evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J. Med. Genet. 2006, 43, 478–489. [Google Scholar] [CrossRef]
- Riegel, M.; Baumer, A.; Jamar, M.; Delbecque, K.; Herens, C.; Verloes, A.; Schinzel, A. Submicroscopic terminal deletions and duplications in retarded patients with unclassified malformation syndromes. Qual. Life Res. 2001, 109, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wu, Q.; Zhang, L.; Wang, X.; Dan, S.; Deng, D.; Sun, L.; Yao, L.; Ma, Y.; Wang, L. Detection of submicroscopic chromosomal aberrations by array-based comparative genomic hybridization in fetuses with congenital heart disease. Ultrasound Obstet. Gynecol. 2013, 43, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, M.; Srebniak, M.; Tomaszewska, A. Chromosome abnormalities without phenotypic consequences. J. Appl. Genet. 2007, 48, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Navarro, P.; Oldfield, A.; Legoupi, J.; Festuccia, N.; Dubois, A.; Attia, M.; Schoorlemmer, J.; Rougeulle, C.; Chambers, I.; Avner, P. Molecular coupling of Tsix regulation and pluripotency. Nat. Cell Biol. 2010, 468, 457–460. [Google Scholar] [CrossRef]
- Tian, L.; Wu, X.; Lin, Y.; Liu, Z.; Xiong, F.; Han, Z.; Zhou, Y.; Zeng, Q.; Wang, Y.; Deng, J.; et al. Characterization and potential function of a novel pre-implantation embryo-specific RING finger protein: TRIML. Mol. Reprod. Dev. 2009, 76, 656–664. [Google Scholar] [CrossRef]
- Ji, Y.; Eichler, E.E.; Schwartz, S.; Nicholls, R.D. Structure of Chromosomal Duplicons and their Role in Mediating Human Genomic Disorders. Genome Res. 2000, 10, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Peoples, R.; Franke, Y.; Wang, Y.-K.; Pérez-Jurado, L.; Paperna, T.; Cisco, M.; Francke, U. A Physical Map, Including a BAC/PAC Clone Contig, of the Williams-Beuren Syndrome–Deletion Region at 7q11. Am. J. Hum. Genet. 2000, 66, 47–68. [Google Scholar] [CrossRef] [PubMed]
- Potocki, L.; Chen, K.-S.; Park, S.S.; Osterholm, D.E.; Withers, M.A.; Kimonis, V.; Summers, A.M.; Meschino, W.S.; Anyane-Yeboa, K.; Kashork, C.D.; et al. Molecular mechanism for duplication 17p11.2—The homologous recombination reciprocal of the Smith-Magenis microdeletion. Nat. Genet. 2000, 24, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Yobb, T.M.; Somerville, M.J.; Willatt, L.; Firth, H.V.; Harrison, K.; MacKenzie, J.; Gallo, N.; Morrow, B.E.; Shaffer, L.G.; Babcock, M.; et al. Microduplication and Triplication of 22q11.2: A Highly Variable Syndrome. Am. J. Hum. Genet. 2005, 76, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Weckselblatt, B.; Rudd, M.K. Human Structural Variation: Mechanisms of Chromosome Rearrangements. Trends Genet. 2015, 31, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-P.; Lin, M.-H.; Chern, S.-R.; Chen, Y.-T.; Wu, P.-S.; Kuo, Y.-L.; Lee, M.-S.; Wang, W. Directly transmitted 4.5-Mb triplication of 4q12-q13.1: Prenatal diagnosis and molecular cytogenetic characterization. Taiwan. J. Obstet. Gynecol. 2014, 53, 123–125. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, C.-P.; Su, Y.-N.; Chen, Y.-T.; Chen, W.-L.; Hsu, L.J.; Wang, W. Prenatal diagnosis of directly transmitted benign 4q12-q13.1 quadruplication associated with tandem segmental amplifications of the LPHN3 gene. Taiwan. J. Obstet. Gynecol. 2011, 50, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, B.; Melchior, L.; Jensen, L.R.; Groth, C.; Glenthøj, B.; Rizzo, R.; Debes, N.M.; Skov, L.; Brøndum-Nielsen, K.; Paschou, P.; et al. Intragenic deletions affecting two alternative transcripts of the IMMP2L gene in patients with Tourette syndrome. Eur. J. Hum. Genet. 2014, 22, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Pope, B.; Tsumagari, K.; Battaglia, D.; Ryba, T.; Hiratani, I.; Ehrlich, M.; Gilbert, D.M. DNA Replication Timing Is Maintained Genome-Wide in Primary Human Myoblasts Independent of D4Z4 Contraction in FSH Muscular Dystrophy. PLoS ONE 2011, 6, e27413. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Matsumura, T.; Goto, K.; Yamanaka, G.; Lee, J.H.; Zhang, C.; Hayashi, Y.K.; Arahata, K. Chromosome 4q;10q translocations; Comparison with different ethnic populations and FSHD patients. BMC Neurol. 2002, 2, 7. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gug, C.; Rațiu, A.; Navolan, D.; DrĂgan, I.; Groza, I.-M.; Păpurică, M.; Vaida, M.-A.; Mozoș, I.; Jurcă, M.C. Incidence and Spectrum of Chromosome Abnormalities in Miscarriage Samples: A Retrospective Study of 330 Cases. Cytogenet. Genome Res. 2019, 158, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Gug, C.; Stoicanescu, D.; Mozos, I.; Nussbaum, L.; Cevei, M.; Stambouli, D.; Pavel, A.G.; Doros, G. De novo 8p21.3→p23.3 Duplication With t(4;8)(q35;p21.3) Translocation Associated With Mental Retardation, Autism Spectrum Disorder, and Congenital Heart Defects: Case Report With Literature Review. Front. Pediatr. 2020, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Gug, C.; Huțanu, D.; Vaida, M.; Doroş, G.; Popa, C.; Stroescu, R.; Furău, G.; Furău, C.; Grigoriță, L.; Mozos, I. De novo unbalanced translocation t(15;22)(q26.2;q12) with velo-cardio-facial syndrome: A case report and review of the literature. Exp. Ther. Med. 2018, 16, 3589–3595. [Google Scholar] [CrossRef] [PubMed]
- Stene, J.; Stengel-Rutkowski, S. Genetic risks of familial reciprocal and Robertsonian translocation carriers. In The Cytogenetics of Mammalian Autosomal Rearran-Gements; Daniel, A., Ed.; Alan R Liss, Inc.: New York, NY, USA, 1988; pp. 1–54. [Google Scholar]
No | Reference | Chromosome 4 Region | Type of Anomaly |
---|---|---|---|
1 | Mattei et al., 1979 [18] | q12–q13 | IH, t(2;4) mat |
2 | Zollino et al., 1995 [19] | q13.3–q22.2 | DN, dup(4)(q13.3q22.2) |
3 | Halal et al., 1991 [20] | q23–q27 | DN, dup(4)(q23q27) |
4 | Jeziorowska et al., 1993 [21] | q21.3–q31.3 | DN, dup(4)(q21.3q31.3) |
5 | Fryns, 1980 [22] | q25–q31 | DN, dup(4)(q25q31) |
6 | Vogel et al., 1975 [23] | q22–q34 | DN, dup(4)(q22q34) |
7 | Dutrillaux et al., 1975 [24] | q22–q34 | DN, dup(4)(q22q34) |
8 | Taylor et al., 1977 [25] | q26–q35 | DN, dup(4)(q26q35) |
9 | Goodman et al., 1997 [26] | q31.1–q32.3 | IH, dup(4)(q31.1q32.3) |
10 | Muraki et al., 1997 [27] | q25–q31.3 | DN, dup(4)(q25q31.3) |
11 | Shashi et al., 1999 [28] | q12–q13 | DN, dup(4)(q12q13) |
12 | Guillen Navarro et al., 1996 [29] | q21–q28 | DN, dup(4)(q21q28) |
13 | Otsuka et al., Case 1, 2005 [30] | q31.22–q35.2 | IH, dup(4)(q31.22q35.2) |
14 | Otsuka et al., Case 2, 2005 [30] | q31.22–q35.2 | IH, dup(4)(q31.22q35.2) |
15 | Lundin et al., 2002 [31] | q27–q35 | DN, t(4;7)(q27;p22) |
16 | Mikelsaar et al., 1996 [32] | q25–qter | DN, t(4;22)(q25;p11) |
17 | Cui et al., 2006 [33] | q27–q35 | DN, t(4;5)(q27;q35) |
18 | Maltby et al., 1999 [34] | q31–q33 | IH, dup(4)(q31q33) |
19 | Assawamakin et al., 2012 [35] | q13.2–q22.1 | IH, der(8)(20qter–>20q12::4q22.1–>q21.21::4q13.3–>4q13.2::8q22.1–>8p11.12::8q22.3–>qter),der(20)(20pter –>20q12::4q13.3–>q21.21::8q22.3–>q22.1::8p11.12–>pter) |
20 | Angulo et al., 1984 [36] | q31–qter | IH, t(4;12)(q31;q24) |
21 | Watanabe et al., 1977 [37] | q33–qter | IH, t(4;13)(q33;q33) |
22 | Schrott et al., 1974 [6] | q26–qter | IH, t(4;13)(q26;q34) |
23 | Jenkins et al., 1975 [38] | q31–qter | DN, t(4;13)(q31;q14) |
24 | Zhang et al., 2009 [7] | q25–qter | IH, t(4;10)(q26;q26.3) |
25 | Cernakova et al., 2006 [9] | q28–q35.2 | DN, dup(4)(q28q35.2) |
26 | Horbinski et al., 2008 [39] | q35–qter | DN, t(4;18)(q35;q23) |
27 | Rinaldi et al., 2005 [40] | q24–q35 | DN, t(4;14)(q24;p12) |
28 | Kadotani et al., 1981 [41] | q32–qter | IH, t(4;9)(q23;p24) |
29 | Issa et al., 1976 [42] | q31–qter | IH, t(4;9)(q31;q34) |
30 | Collia et al., 2012 [43] | q12–q22 | DN, dup(4)(q11q22) |
31 | Baccichetti et al., 1975 [44] | q32–qter | IH, t(4;21)(q32;q22) |
32 | Patel et al., 2006 [45] | q25–qter | IH, t(4;18)(q25;q22) |
33 | Cervenka et al., 1976 [46] | q25–qter | IH, t(X;4)(q27;q25) |
34 | Biederman and Bowen 1976 [47] | q21–qter | IH, t(2;4)(p25;q21) |
35 | Bonfante et al., case A, 1979 [48] | q27–qter | IH, t(4;18)(q27;p11) |
36 | Bonfante et al., case B, 1979 [48] | q27–qter | IH, t(4;18)(q27;p11) |
37 | Škrlec et al., 2014 [49] | q31.3–qter | IH, t(2;4)(p25.1;q31.3) |
38 | Gorukmez et al., 2014 [50] | q21–q35 | DN, dup(4)(q21q35) |
39 | Vargas Machuca et al., 2016 [51] | q21–qter | IH, t(4;20)(q21;q13.1) |
40 | El-Ruby et al., 2007 [52] | q25–qter | IH, t(4;21)(q25;q22) |
41 | Anneren et al., 1984 [53] | q31–qter | IH, t(4;8)(q31;p23) |
42 | Carrascosa Romero et al., 2008 [54] | q31–q35 | DN, dup(4)( q31q35) |
43 | Bellucco et al., 2018 [55] | q32.1–q35.2 | 47,XX,+der(21)t(4; 21)(q32.1;q21.2)mat. arr[GRCh37/hg19] 4q32. 1q35.2 (158907036_190957460)x3,21q11.2q21.2(15016486_25605895)x3 |
44 | Lin et al., 2018 [56] | q32.3–qter | ND, t(4;5)(q32.3;p14.2) |
45 | Mohamed et al., 2018 [57] | q32.1–q35.2 | DN 46,XX,add1(q44) |
46 | Shenoy et al., 2018 [58] | q27q35.2 | IH, t(4;21)(q27;q22) |
47 | Thapa et al., case A, 2014 [59] | q32.1–q35.2 | ND, dup(4)(q32.1q35.2) |
48 | Thapa et al., case B, 2014 [59] | q32.2–q34.3 | ND,dup(4)(q32.2q34.3) |
49 | Zaki et al., 2019 [60] | q35.2 | DN, dup(4)(q35.2) |
50 | This case | q26–qter | IH, t(4;10)(q26;q26.3) |
No | Reference | Chromosome 4 Region | a | b | c | d | e | f | g | h | i | j | k |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Mattei et al., 1979 [18] | q12–q13 | + | + | + | + | − | + | − | − | − | − | − |
2 | Zollino et al., 1995 [19] | q13.3–q22.2 | − | + | − | − | − | − | + | − | − | − | − |
3 | Halal et al., 1991 [20] | q23–q27 | + | + | + | + | − | − | − | − | − | + | − |
4 | Jeziorowska et al., 1993 [21] | q21.3–q31.3 | + | + | + | + | + | + | + | + | + | − | + |
5 | Fryns, 1980 [22] | q25–q31 | + | + | − | − | + | + | − | + | − | − | − |
6 | Vogel et al., 1975 [23] | q22–q34 | + | + | − | + | + | + | + | + | + | − | + |
7 | Dutrillaux et al., 1975 [24] | q22–q34 | + | + | + | + | + | + | + | + | + | − | + |
8 | Taylor et al., 1977 [25] | q26–q35 | + | + | + | + | + | + | + | + | − | + | ND |
9 | Goodman et al., 1997 [26] | q31.1–q32.3 | + | + | − | + | − | ND | ND | − | − | + | − |
10 | Muraki et al., 1997 [27] | q25–q31.3 | + | + | − | − | − | − | − | + | − | − | − |
11 | Shashi et al., 1999 [28] | q12–q13 | + | + | + | + | + | − | − | + | − | − | − |
12 | Guillen Navarro et al., 1996 [29] | q21–q28 | + | + | − | + | + | ND | + | + | + | − | − |
13 | Otsuka et al., Case 1, 2005 [30] | q31.22–q35.2 | + | + | + | + | + | + | + | + | + | − | + |
14 | Otsuka et al., Case 2, 2005 [30] | q31.22–q35.2 | + | + | + | + | + | + | + | + | + | − | + |
15 | Lundin et al., 2002 [31] | q27–q35 | + | + | + | + | + | ND | − | − | + | − | − |
16 | Mikelsaar et al., 1996 [32] | q25–qter | + | + | + | + | + | + | − | + | − | − | − |
17 | Cui et al., 2006 [33] | q27–q35 | + | + | − | + | + | ND | − | − | + | − | − |
18 | Maltby et al., 1999 [34] | q31–q33 | − | − | − | − | − | ND | − | − | − | − | − |
19 | Assawamakin et al., 2012 [35] | q13.2–q22.1 | − | + | + | − | − | ND | − | − | − | + | − |
20 | Angulo et al., 1984 [36] | q31–qter | + | + | − | + | + | + | ND | + | − | − | + |
21 | Watanabe et al., 1977 [37] | q33–qter | + | + | + | − | + | ND | − | + | ND | − | + |
22 | Schrott et al., 1974 [6] | q26–qter | + | + | + | − | − | ND | + | − | ND | − | + |
23 | Jenkins et al., 1975 [38] | q31–qter | + | + | − | + | + | ND | − | + | ND | + | − |
24 | Zhang et al., 2009 [7] | q25–qter | + | + | + | + | + | + | + | + | − | − | − |
25 | Cernakova et al., 2006 [9] | q28–q35.2 | + | + | + | + | + | − | + | + | − | + | − |
26 | Horbinski et al., 2008 [39] | q35–qter | + | + | + | + | + | − | − | + | − | + | − |
27 | Rinaldi et al., 2005 [40] | q24–q35 | + | + | + | ND | + | ND | + | + | + | + | + |
28 | Kadotani et al., 1981 [41] | q32–qter | + | ND | + | ND | + | ND | + | + | + | ND | ND |
29 | Issa et al., 1976 [42] | q31–qter | + | + | − | ND | + | ND | − | + | − | − | ND |
30 | Collia et al., 2012 [43] | q12–q22 | − | − | − | + | + | ND | − | + | − | − | − |
31 | Baccichetti et al., 1975 [44] | q32–qter | + | + | + | − | + | − | + | + | − | ND | − |
32 | Patel et al., 2006 [45] | q25–qter | + | + | + | ND | + | ND | + | + | + | − | + |
33 | Cervenka et al., 1976 [46] | q25–qter | + | + | + | + | + | − | − | + | + | − | + |
34 | Biederman and Bowen, 1976 [47] | q21–qter | + | + | + | ND | + | + | + | + | + | − | ND |
35 | Bonfante et al., case A, 1979 [48] | q27–qter | + | + | − | − | − | − | + | + | − | + | − |
36 | Bonfante et al., case B, 1979 [48] | q27–qter | + | + | − | + | + | − | − | + | − | − | − |
37 | Škrlec et al., 2014 [49] | q31.3–qter | − | + | − | + | − | ND | ND | + | − | − | − |
38 | Gorukmez et al., 2014 [50] | q21–q35 | + | + | + | − | + | + | + | + | + | + | + |
39 | Vargas Machuca et al., 2016 [51] | q21–qter | + | ND | + | ND | + | ND | + | + | − | + | − |
40 | El-Ruby et al., 2007 [52] | q25–qter | + | + | + | − | + | − | − | + | + | − | − |
41 | Anneren et al., 1984 [53] | q31–qter | + | + | + | + | + | ND | − | + | − | − | − |
42 | Carrascosa Romero et al., 2008 [54] | q31–q35 | − | + | + | ND | + | + | + | + | − | − | + |
43 | Bellucco et al., 2018 [55] | q32.1–q35.2 | + | + | + | − | + | − | − | − | − | − | − |
44 | Lin et al., 2018 [56] | q32.3–qter | ND | + | ND | ND | ND | ND | ND | ND | + | + | + |
45 | Mohamed et al., 2018 [57] | q32.1–q35.2 | + | + | + | − | − | ND | + | + | − | − | − |
46 | Shenoy et al., 2018 [58] | q27q35.2 | + | ND | + | ND | ND | ND | + | + | ND | + | + |
47 | Thapa et al., case A, 2014 [59] | q32.1–q35.2 | + | + | ND | − | + | + | + | + | − | ND | − |
48 | Thapa et al., case B, 2014 [59] | q32.2–q34.3 | + | + | ND | − | ND | ND | − | + | + | ND | − |
49 | Zaki et al., 2019 [60] | q35.2 | − | + | + | ND | ND | ND | ND | + | − | − | − |
50 | This case | q26–qter | + | + | + | + | + | + | + | + | − | + | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, R.; Grămescu, M.; Caba, L.; Pânzaru, M.-C.; Butnariu, L.; Braha, E.; Popa, S.; Rusu, C.; Cardos, G.; Zeleniuc, M.; et al. A Case of Inherited t(4;10)(q26;q26.2) Chromosomal Translocation Elucidated by Multiple Chromosomal and Molecular Analyses. Case Report and Review of the Literature. Genes 2021, 12, 1957. https://doi.org/10.3390/genes12121957
Popescu R, Grămescu M, Caba L, Pânzaru M-C, Butnariu L, Braha E, Popa S, Rusu C, Cardos G, Zeleniuc M, et al. A Case of Inherited t(4;10)(q26;q26.2) Chromosomal Translocation Elucidated by Multiple Chromosomal and Molecular Analyses. Case Report and Review of the Literature. Genes. 2021; 12(12):1957. https://doi.org/10.3390/genes12121957
Chicago/Turabian StylePopescu, Roxana, Mihaela Grămescu, Lavinia Caba, Monica-Cristina Pânzaru, Lăcrămioara Butnariu, Elena Braha, Setalia Popa, Cristina Rusu, Georgeta Cardos, Monica Zeleniuc, and et al. 2021. "A Case of Inherited t(4;10)(q26;q26.2) Chromosomal Translocation Elucidated by Multiple Chromosomal and Molecular Analyses. Case Report and Review of the Literature" Genes 12, no. 12: 1957. https://doi.org/10.3390/genes12121957
APA StylePopescu, R., Grămescu, M., Caba, L., Pânzaru, M.-C., Butnariu, L., Braha, E., Popa, S., Rusu, C., Cardos, G., Zeleniuc, M., Martiniuc, V., Gug, C., Păduraru, L., Stamatin, M., Diaconu, C. C., & Gorduza, E. V. (2021). A Case of Inherited t(4;10)(q26;q26.2) Chromosomal Translocation Elucidated by Multiple Chromosomal and Molecular Analyses. Case Report and Review of the Literature. Genes, 12(12), 1957. https://doi.org/10.3390/genes12121957