Ultrasonic and Deep Eutectic Solvent for Efficient Extraction of Phenolics from Eucommia ulmoides Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Methods
2.2.1. Preparation of Deep Eutectic Solvents
2.2.2. Extraction Process of Total Phenolics and Flavonoids from Eucommia ulmoides Leaves
2.2.3. Single-Factor Experiments
2.2.4. Response Surface Optimization Experiment
2.2.5. Determination of Total Phenolic Content in Eucommia ulmoides Leaves
2.2.6. Determination of Total Flavonoid Content in Eucommia ulmoides Leaves
2.2.7. Determination of Main Active Component Content
2.2.8. Determination of Antioxidant Capacity
2.2.9. Fourier Transform Infrared Spectroscopy Testing
2.2.10. Scanning Electron Microscopy Analysis
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Effect of Extraction Solvents on Yield of Total Phenolics and Flavonoids from Eucommia ulmoides Leaves
3.2. Results of Single-Factor Experiments
3.2.1. Effect of Different Molar Ratios on Extraction Yield of Total Phenolics and Flavonoids from Eucommia ulmoides Leaves
3.2.2. Effect of Water Content on Extraction Yield of Total Phenolics and Flavonoids from Eucommia ulmoides Leaves
3.2.3. Effect of Liquid-to-Material Ratio on Extraction Yield of Total Phenolics and Flavonoids from Eucommia ulmoides Leaves
3.2.4. Effect of Ultrasonication Time on Extraction Yield of Total Phenolics and Flavonoids from Eucommia ulmoides Leaves
3.2.5. Effect of Ultrasonication Temperature on Extraction Yield of Total Phenolics and Flavonoids from Eucommia ulmoides Leaves
3.2.6. Effect of Ultrasonication Power on Extraction Yield of Total Phenolics and Flavonoids from Eucommia ulmoides Leaves
3.3. Response Surface Experiment Results
3.3.1. Regression Model Establishment and Variance Analysis
3.3.2. Response Surface Analysis and Verification Experiment
3.4. Active Component Content
3.5. Antioxidant Capacity Measurement
3.6. Analysis of Fourier Transform Infrared Spectroscopy Detection Results
3.7. Microstructure Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Le, X.-N.; Hu, S.-C.; Zheng, J.-L.; Cui, E.-L.; Zhu, Y.-H.; Zhu, M.-Q. The influence of different drying methods on bioactive components of Eucommia ulmoides Oliver male flower and the comprehensive assessment for industrial application. Ind. Crops Prod. 2022, 177, 114469. [Google Scholar] [CrossRef]
- Zheng, J.-L.; Zhu, Y.-H.; Zhang, W.; Sun, G.-T.; Zhu, M.-Q. Life cycle assessment and techno-economic analysis of joint extraction of Eucommia powder, gum, water-soluble polysaccharide and alkali-extractable polysaccharide from Eucommia leaves. Process Biochem. 2023, 124, 235–244. [Google Scholar] [CrossRef]
- Ren, N.; Gong, W.; Zhao, Y.; Zhao, D.-G.; Xu, Y. Innovation in sweet rice wine with high antioxidant activity: Eucommia ulmoides leaf sweet rice wine. Front. Nutr. 2023, 9, 1108843. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.Q.; Tie, S.S.; Liu, M.P.; Zong, W. Effects of superfine grinding on micromeritic properties of Eucommia ulmoides Oliv. leaves. Bangladesh J. Bot. 2020, 49, 1037–1044. [Google Scholar] [CrossRef]
- Da Silva, D.T.; Pauletto, R.; da Silva Cavalheiro, S.; Bochi, V.C.; Rodrigues, E.; Weber, J.; da Silva, C.d.B.; Morisso, F.D.P.; Barcia, M.T.; Emanuelli, T. Natural deep eutectic solvents as a biocompatible tool for the extraction of blueberry anthocyanins. J. Food Compos. Anal. 2020, 89, 103470. [Google Scholar] [CrossRef]
- Radmard, J.; Mohamadi Sani, A.; Arianfar, A.; Mahmoodzadeh Vaziri, B. Efficient extraction of oleoresin from Ferula gummosa roots by natural deep eutectic solvent and its structure and chemical characterizations. Sci. Rep. 2024, 14, 148. [Google Scholar] [CrossRef]
- García-Roldán, A.; Piriou, L.; Jauregi, P. Natural deep eutectic solvents as a green extraction of polyphenols from spent coffee ground with enhanced bioactivities. Front. Plant Sci. 2023, 13, 1072592. [Google Scholar] [CrossRef]
- Saha, S.K.; Chakraborty, R. Effect of deep eutectic solvent’s characteristics on extraction and bioactivity of polyphenols from Sapodilla pulp. Chem. Pap. 2021, 75, 691–702. [Google Scholar] [CrossRef]
- Kutlu, N.; Kamiloğlu, A.; Abca, T.E.; Yilmaz, Ö. Ultrasound-assisted deep eutectic solvent extraction of bioactive compounds from persimmon calyx. J. Food Sci. 2024, 89, 294–305. [Google Scholar] [CrossRef]
- Vo, T.P.; Tran, T.Q.D.; Phan, T.H.; Huynh, H.D.; Vo, T.T.Y.; Vo, N.M.K.; Ha, M.P.; Le, T.N.; Nguyen, D.Q. Ultrasonic-assisted and enzymatic-assisted extraction to recover tannins, flavonoids, and terpenoids from used tea leaves using natural deep eutectic solvents. Int. J. Food Sci. Technol. 2023, 58, 5855–5864. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Int. J. Biol. Macromol. 2017, 95, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Sui, X.; Pan, X.; Yang, Y.; Sui, H.; Xu, T.; Ge, P. An integrated process by ultrasonic enhancement in the deep eutectic solvents system for extraction and separation of chlorogenic acid from Eucommia ulmoides leaves. Ultrason. Sonochem. 2023, 99, 106588. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Ren, X.; Shi, X.; Zhong, K.; Zhang, Z.; Wang, Z. Study on enhanced extraction and seasonal variation of secondary metabolites in Eucommia ulmoides leaves using deep eutectic solvents. J. Pharm. Biomed. Anal. 2022, 209, 114514. [Google Scholar] [CrossRef]
- Duan, X.; Song, Y.H.; Chen, J.L.; Li, L.L.; Liu, W.C.; Cao, W.W.; Ren, G.Y.; Wang, Z.K. Effects of different drying methods on the quality and volatile components of Eucommia ulmoides male flowers. Trans. Chin. Soc. Agric. Eng. 2024, 40, 101–110. [Google Scholar] [CrossRef]
- Kutlu, N.; Gerçek, Y.C.; Çelik, S.; Bayram, S.; Ecem Bayram, N. An optimization study for amino acid extraction from bee bread using choline chloride-acetic acid deep eutectic solvent and determination of individual phenolic profile. J. Food Meas. Charact. 2023, 18, 1026–1037. [Google Scholar] [CrossRef]
- Valcarcel, J.; Reilly, K.; Gaffney, M.; O’Brien, N.M. Antioxidant activity, total phenolic and total flavonoid content in sixty varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato Res. 2015, 58, 221–244. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, W.; Chen, B.; Pan, H.; Zhu, M.; Pang, X.; Zhang, Q. Deep eutectic solvents in the extraction of active compounds from Eucommia ulmoides Oliv. leaves. J. Food Meas. Charact. 2022, 16, 3410–3422. [Google Scholar] [CrossRef]
- Rothe, J.; Fischer, R.; Cotterchio, C.; Gastl, M.; Becker, T. Analytical determination of antioxidant capacity of hop-derived compounds in beer using specific rapid assays (ORAC, FRAP) and ESR-spectroscopy. Eur. Food Res. Technol. 2023, 249, 81–93. [Google Scholar] [CrossRef]
- Li, Y.; Ma, D.; Sun, D.; Wang, C.; Zhang, J.; Xie, Y.; Guo, T. Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. Crop J. 2015, 3, 328–334. [Google Scholar] [CrossRef]
- Cui, Z.; Djocki, A.V.E.; Yao, J.; Wu, Q.; Zhang, D.; Nan, S.; Gao, J.; Li, C. COSMO-SAC-supported evaluation of natural deep eutectic solvents for the extraction of tea polyphenols and process optimization. J. Mol. Liq. 2021, 328, 115406. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, M.; Tan, T.; Yan, A.; Guo, L.; Jiang, K.; Tan, C.; Wan, Y. Deep eutectic solvents used as extraction solvent for the determination of flavonoids from Camellia oleifera flowers by high-performance liquid chromatography. Phytochem. Anal. 2018, 29, 639–648. [Google Scholar] [CrossRef]
- Guo, N.; Zou, Y.-P.; Li, H.-K.; Kou, P.; Liu, Z.-M.; Fu, Y.-J. Effective extraction and recovery of linarin from Chrysanthemum indicum L. flower using deep eutectic solvents. Microchem. J. 2020, 159, 105586. [Google Scholar] [CrossRef]
- Patil, S.S.; Rathod, V.K. Extraction and purification of curcuminoids from Curcuma longa using microwave assisted deep eutectic solvent based system and cost estimation. Process Biochem. 2023, 126, 61–71. [Google Scholar] [CrossRef]
- Zuo, J.; Geng, S.; Kong, Y.; Ma, P.; Fan, Z.; Zhang, Y.; Dong, A. Current progress in natural deep eutectic solvents for the extraction of active components from plants. Crit. Rev. Anal. Chem. 2023, 53, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Jiao, P.; He, X.; Ma, S.; Wang, S.; Niu, Q. Ultrasonic-Assisted Extraction of Antioxidants from Perilla frutescens Leaves Based on Tailor-Made Deep Eutectic Solvents: Optimization and Antioxidant Activity. Molecules 2023, 28, 7554. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Xu, L.; Meng, J.; Chang, M.; Cheng, Y.; Geng, X.; Guo, D.; Liu, R. Ultrasound-assisted deep eutectic solvents extraction of polysaccharides from Morchella importuna: Optimization, physicochemical properties, and bioactivities. Front. Nutr. 2022, 9, 912014. [Google Scholar] [CrossRef]
- Yang, Z.; Yue, S.-J.; Gao, H.; Zhang, Q.; Xu, D.-Q.; Zhou, J.; Li, J.-J.; Tang, Y.-P. Natural deep eutectic solvent-ultrasound assisted extraction: A green approach for ellagic acid extraction from Geum japonicum. Front. Nutr. 2023, 9, 1079767. [Google Scholar] [CrossRef]
- Wu, M.; Liu, P.; Wang, S.; Zhong, C.; Zhao, X. Ultrasonic Microwave-assisted micelle combined with fungal pretreatment of Eucommia ulmoides leaves significantly improved the extraction efficiency of total flavonoids and gutta-percha. Foods 2021, 10, 2399. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel. J. Sci. Food Agric. 2019, 99, 1969–1979. [Google Scholar] [CrossRef]
- Ozbek Yazici, S.; Ozmen, İ. Ultrasound assisted extraction of phenolic compounds from Capparis ovata var canescens fruit using deep eutectic solvents. J. Food Process. Preserv. 2022, 46, e16286. [Google Scholar] [CrossRef]
- Baghaei Ali Mohammadzadeh, P.; Sorouraddin, S.M.; Farajzadeh, M.A.; Afshar Mogaddam, M.R. Organic solventless dispersive liquid–liquid microextraction based on deep eutectic solvents as extraction and dispersive solvents; application for the extraction of Co (II) and Ni (II) ions from water and juice samples. J. Iran. Chem. Soc. 2023, 20, 339–349. [Google Scholar] [CrossRef]
- Xia, B.; Liu, Q.; Sun, D.; Wang, Y.; Wang, W.; Liu, D. Ultrasound-assisted deep eutectic solvent extraction of polysaccharides from Anji White tea: Characterization and comparison with the Conventional Method. Foods 2023, 12, 588. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Su, M.; Hu, A.; Wang, H. Extraction and recovery of chlorogenic acid from sunflower disks using a high-efficiency system composed of deep eutectic solvents and macroporous resins. J. Food Process. Preserv. 2022, 46, e16856. [Google Scholar] [CrossRef]
Group | Components of Deep Eutectic Solvent | |||
---|---|---|---|---|
Hydrogen Bond Acceptor | Hydrogen Bond Donor | Molar Ratio | Water Content | |
DES-1 | choline chloride | lactic acid | 1:2 | 30% |
DES-2 | choline chloride | ethylene glycol | 1:3 | 30% |
DES-3 | choline chloride | urea | 1:2 | 30% |
DES-4 | betaine | lactic acid | 1:2 | 30% |
DES-5 | betaine | ethylene glycol | 1:3 | 30% |
DES-6 | choline chloride | glycerol | 1:2 | 30% |
DES-7 | choline chloride | citric acid | 1:2 | 30% |
Number | A: Molar Ratio | B: Water Content/% | C: Liquid-to-Material Ratio/(mL·g−1) | D: Ultrasonication Time/min | E: Ultrasonication Temperature/°C | F: Ultrasonication Power/% |
---|---|---|---|---|---|---|
1 | 1:1, 1:2 1:3, 1:4 1:5 | 30 | 40:1 | 50 | 50 | 60 |
2 | 1:4 | 10, 20, 30, 40, 50 | 40:1 | 50 | 50 | 60 |
3 | 1:4 | 30 | 10:1, 20:1, 30:1, 40:1, 50:1 | 50 | 50 | 60 |
4 | 1:4 | 30 | 40:1 | 30, 40, 50, 60, 70 | 50 | 60 |
5 | 1:4 | 30 | 40:1 | 50 | 30, 40, 50, 60, 70 | 60 |
6 | 1:4 | 30 | 40:1 | 50 | 50 | 40, 50, 60, 70, 80 |
Levels | Factors | |||
---|---|---|---|---|
A: Liquid-to-Material Ratio (mL/g) | B: Time (min) | C: Temperature (°C) | D: Power (%) | |
−1 | 30:1 | 40 | 40 | 50 |
0 | 40:1 | 50 | 50 | 60 |
1 | 50:1 | 60 | 60 | 70 |
Number | A Liquid-to-Material Ratio (g/mL) | B Time (min) | C Temperature (°C) | D Power (%) | Total Phenolic Content (mg GAE/g DW) | Total Flavonoid Content (mg RE/g DW) | Score |
---|---|---|---|---|---|---|---|
1 | −1 | −1 | 0 | 0 | 12.00 ± 0.36 | 36.94 ± 0.25 | 25.38 ± 0.04 |
2 | 1 | −1 | 0 | 0 | 15.92 ± 0.60 | 37.00 ± 0.35 | 27.23 ± 0.14 |
3 | −1 | 1 | 0 | 0 | 15.19 ± 0.77 | 35.24 ± 0.11 | 25.95 ± 0.41 |
4 | 1 | 1 | 0 | 0 | 12.57 ± 0.19 | 28.05 ± 1.22 | 20.88 ± 0.87 |
5 | 0 | 0 | −1 | −1 | 11.66 ± 0.69 | 21.78 ± 0.21 | 17.09 ± 0.21 |
6 | 0 | 0 | 1 | −1 | 14.28 ± 0.41 | 30.86 ± 0.55 | 23.18 ± 0.32 |
7 | 0 | 0 | −1 | 1 | 14.49 ± 0.25 | 30.87 ± 0.16 | 23.28 ± 0.03 |
8 | 0 | 0 | 1 | 1 | 15.70 ± 0.30 | 35.90 ± 0.70 | 26.54 ± 0.39 |
9 | −1 | 0 | 0 | −1 | 12.21 ± 0.19 | 25.87 ± 0.20 | 19.54 ± 0.12 |
10 | 1 | 0 | 0 | −1 | 10.21 ± 0.04 | 19.94 ± 0.36 | 15.43 ± 0.20 |
11 | −1 | 0 | 0 | 1 | 12.40 ± 0.16 | 27.39 ± 0.07 | 20.44 ± 0.07 |
12 | 1 | 0 | 0 | 1 | 12.83 ± 0.47 | 29.66 ± 0.69 | 21.86 ± 0.38 |
13 | 0 | −1 | −1 | 0 | 16.63 ± 0.24 | 39.01 ± 0.62 | 28.63 ± 0.39 |
14 | 0 | 1 | −1 | 0 | 13.87 ± 0.80 | 30.76 ± 0.24 | 22.93 ± 0.40 |
15 | 0 | −1 | 1 | 0 | 17.07 ± 0.18 | 39.30 ± 0.35 | 29.00 ± 0.12 |
16 | 0 | 1 | 1 | 0 | 17.59 ± 1.01 | 44.40 ± 0.58 | 31.98 ± 0.43 |
17 | −1 | 0 | −1 | 0 | 13.21 ± 0.59 | 30.08 ± 0.40 | 22.27 ± 0.24 |
18 | 1 | 0 | −1 | 0 | 11.74 ± 0.25 | 23.48 ± 0.24 | 18.04 ± 0.18 |
19 | −1 | 0 | 1 | 0 | 15.02 ± 0.27 | 32.98 ± 0.39 | 24.66 ± 0.12 |
20 | 1 | 0 | 1 | 0 | 16.06 ± 0.44 | 37.23 ± 0.39 | 27.42 ± 0.41 |
21 | 0 | −1 | 0 | −1 | 15.40 ± 0.28 | 35.24 ± 0.11 | 26.04 ± 0.19 |
22 | 0 | 1 | 0 | −1 | 12.14 ± 0.28 | 24.14 ± 0.48 | 18.58 ± 0.31 |
23 | 0 | −1 | 0 | 1 | 16.23 ± 0.48 | 37.38 ± 0.49 | 27.58 ± 0.46 |
24 | 0 | 1 | 0 | 1 | 14.66 ± 0.51 | 32.56 ± 0.50 | 24.27 ± 0.50 |
25 | 0 | 0 | 0 | 0 | 18.25 ± 0.27 | 47.02 ± 0.84 | 33.69 ± 0.32 |
26 | 0 | 0 | 0 | 0 | 17.78 ± 0.20 | 47.18 ± 0.58 | 33.55 ± 0.43 |
27 | 0 | 0 | 0 | 0 | 18.12 ± 0.03 | 45.67 ± 0.96 | 32.90 ± 0.53 |
28 | 0 | 0 | 0 | 0 | 17.30 ± 0.43 | 45.74 ± 0.20 | 32.56 ± 0.26 |
29 | 0 | 0 | 0 | 0 | 17.44 ± 0.41 | 47.08 ± 0.48 | 33.34 ± 0.44 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
model | 763.38 | 14 | 54.53 | 66.83 | ˂0.0001 | ** |
A | 4.54 | 1 | 4.54 | 5.56 | 0.0334 | * |
B | 30.98 | 1 | 30.98 | 37.96 | ˂0.0001 | ** |
C | 77.73 | 1 | 77.73 | 95.26 | ˂0.0001 | ** |
D | 48.41 | 1 | 48.41 | 59.34 | ˂0.0001 | ** |
AB | 11.96 | 1 | 11.96 | 14.66 | 0.0018 | ** |
AC | 12.22 | 1 | 12.22 | 14.97 | 0.0017 | ** |
AD | 7.65 | 1 | 7.65 | 9.38 | 0.0084 | ** |
BC | 18.86 | 1 | 18.86 | 23.11 | 0.0003 | ** |
BD | 4.31 | 1 | 4.31 | 5.29 | 0.0374 | * |
CD | 2.00 | 1 | 2.00 | 2.45 | 0.1400 | |
A2 | 286.23 | 1. | 286.23 | 350.80 | ˂0.0001 | ** |
B2 | 19.29 | 1 | 19.29 | 23.64 | 0.0003 | ** |
C2 | 75.11 | 1 | 75.11 | 92.06 | ˂0.0001 | ** |
D2 | 345.77 | 1 | 345.77 | 423.76 | ˂0.0001 | ** |
residuals | 11.42 | 14 | 0.82 | |||
lack of fit | 10.54 | 10 | 1.05 | 4.77 | 0.0727 | |
pure error | 0.88 | 4 | 0.22 | |||
total sum | 774.81 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Song, Y.; Wei, X.; Duan, X.; Liu, K.; Cao, W.; Li, L.; Ren, G. Ultrasonic and Deep Eutectic Solvent for Efficient Extraction of Phenolics from Eucommia ulmoides Leaves. Foods 2025, 14, 972. https://doi.org/10.3390/foods14060972
Chen J, Song Y, Wei X, Duan X, Liu K, Cao W, Li L, Ren G. Ultrasonic and Deep Eutectic Solvent for Efficient Extraction of Phenolics from Eucommia ulmoides Leaves. Foods. 2025; 14(6):972. https://doi.org/10.3390/foods14060972
Chicago/Turabian StyleChen, Junliang, Yanhong Song, Xinyu Wei, Xu Duan, Ke Liu, Weiwei Cao, Linlin Li, and Guangyue Ren. 2025. "Ultrasonic and Deep Eutectic Solvent for Efficient Extraction of Phenolics from Eucommia ulmoides Leaves" Foods 14, no. 6: 972. https://doi.org/10.3390/foods14060972
APA StyleChen, J., Song, Y., Wei, X., Duan, X., Liu, K., Cao, W., Li, L., & Ren, G. (2025). Ultrasonic and Deep Eutectic Solvent for Efficient Extraction of Phenolics from Eucommia ulmoides Leaves. Foods, 14(6), 972. https://doi.org/10.3390/foods14060972