Comparison of the Usefulness of Optical Coherence Tomography Angiography and Fluorescein Angiography in the Diagnosis of Diabetic Macular Edema
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design
2.3. Participants
2.4. Data Acquisition
- 3D retina (retina module): Each examination comprised 141 macular cross-sections at a resolution of 640 × 385 pixels, representing a macular volume of 2 × 7 × 7 mm.
- Retina map (retina module): This protocol is based on a grid pattern covering an outer area of 6 × 6 mm with 13 vertical and 13 horizontal scans at 0.5 mm intervals as well as an inner area of 4 × 4 mm with 8 vertical and 8 horizontal scans at 0.5 mm intervals.
- AngioVue Retina 3.0 mm (AngioVue module): This examination permits analysis of blood flow in all macular vascular layers with simultaneous visualization of en face images and OCT scans. Each OCTA exam comprises 304 × 304 A-scans with two consecutive B-scans acquired at each fixation point before progressing to subsequent areas. The registered B-scans are then compared to calculate decorrelation and eliminate artifacts resulting from ocular motion. The scanning area measures 3 × 3 mm with the fixation point centered in the fovea.
2.5. Preparation of Images for Evaluation
2.6. HbA1c Measurement
2.7. Statistical Analysis
3. Results
3.1. Descriptive Statistics of the Study Group
3.1.1. Age
3.1.2. Distribution of Patient Age Groups by Gender
3.1.3. Duration of Diabetes
3.1.4. Glycosylated Hemoglobin Concentration
3.1.5. Mean Best Corrected Visual Acuity
3.1.6. Central Retinal Thickness (CRT), Maximum Retinal Thickness (Max RT)
3.1.7. Smoking Status
3.1.8. Prevalence of Arterial Hypertension
3.2. Implementation of the Main Objectives of the Conducted Research
3.2.1. Comparison of the Number of Microaneurysms Assessed Using Different Methods
3.2.2. The Significance of Differences Between the OCTA MAs 1 and FA MAs Variables
3.2.3. The Significance of Differences Between the OCTA MAs 1 + OCTA MAs 2 a FA MAs Variables
3.2.4. Assessment of the Significance of Differences in FAZ Area Between the Superficial and Deep Plexus on OCTA
3.2.5. Assessment of the Significance of Differences in FAZ Area Between the Superficial Plexus on OCTA and Fluorescein Angiography
3.2.6. Assessment of the Significance of Differences in FAZ Area Between the Deep Plexus on OCTA and Fluorescein Angiography
3.2.7. Assessment of the Correlation Between the Degree of Macular Ischemia in Fluorescein Angiography and OCTA According to the ETDRS Report No. 11 Classification in the “Size of FAZ” Category
3.2.8. Assessment of the Correlation in the Degree of Macular Ischemia Between Fluorescein Angiography and OCTA According to the ETDRS Report No. 11 Classification in the “Outline of FAZ” Category
3.2.9. Assessment of the Correlation in the Degree of Macular Ischemia Between Fluorescein Angiography and OCTA According to the ETDRS Report No. 11 Classification in the “Capillary Loss” Category
3.2.10. Assessment of Agreement Between Fluorescein Angiography and OCTA in Evaluating the Degree of Macular Ischemia According to the ETDRS Report No. 11 Classification
3.2.11. Adverse Events Following Fluorescein Angiography
3.3. Implementation of the Remaining Research Objectives
3.3.1. The Impact of Central Retinal Thickness on Best-Corrected Visual Acuity
3.3.2. The Impact of Maximum Retinal Thickness on Best-Corrected Visual Acuity
3.3.3. The Impact of FAZ Area on Best-Corrected Visual Acuity
3.3.4. The Impact of Glycemic Control on the Number of Microaneurysms in the Macula
3.3.5. The Impact of Macular Plexus Vessel Density on Best-Corrected Visual Acuity (BCVA)
3.3.6. The Impact of Macular Plexus Vessel Density on the Evaluation of the “Capillary Loss” Parameter According to the ETDRS Report No. 11
3.3.7. The Influence of the Connections Between the Vascular Plexus of the Macula, as Seen in OCTA, on the Size of the FAZ and Best-Corrected Visual Acuity
3.3.8. Impact of Arterial Hypertension and Tobacco Smoking on the Size of the Foveal Avascular Zone (FAZ)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Anty-VEGF | vascular endothelial growth factor inhibitor |
BCVA | best corrected visual acuity |
CRT | central foveal thickness |
DCP | deep capillary plexus |
DD | disc diameter |
DME | diabetic macular edema |
DR | diabetic retinopathy |
DRIL | disorganization of retinal inner layers |
EDTA | ethylenediaminetetraacetic acid |
ETDRS | Early Treatment Diabetic Retinopathy Study |
FA | fluorescein angiography |
FAZ | foveal avascular zone |
HbA1c | glycated hemoglobin |
HPLC | high-performance liquid chromatography |
ILM | internal limiting membrane |
IRMA | intraretinal microvascular abnormalities |
MAs | microaneurysms |
Max RT | maximum retinal thickness |
MCP | middle capillary plexus |
NGSP | National Glycohemoglobin Standardization Program |
NVD | neovascularization at the disc |
NVE | neovascularization elsewhere |
OCT | optical coherence tomography |
OCTA | optical coherence tomography angiography |
OGTT | oral glucose tolerance test |
SCP | superficial capillary plexus |
SD-OCT | spectral domain optical coherence tomography |
SRF | subretinal fluid |
SSADA | split spectrum amplitude decorrelation angiography |
SSI | signal strength index |
VD | vessel density |
VEGF | vascular endothelial growth factor |
References
- Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 412–418. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Hsu, C.-C.; Hwang, S.-J.; Lin, K.-D.; Lin, P.-C.; Huang, Y.-F.; Lee, C.-H.; Chang, C.-I.; Huang, M.-C. Inter-Relations between Dietary Patterns and Glycemic Control-Related Biomarkers on Risk of Retinopathy in Type 2 Diabetes. Nutrients 2024, 16, 2274. [Google Scholar] [CrossRef]
- WHO Mortality Database [Internet]; World Health Organization: Geneva, Switzerland, 2016. Available online: http://apps.who.int/healthinfo/statistics/mortality/causeofdeath_query/ (accessed on 12 January 2016).
- Bowling, B.K. Kanski’s Clinical Ophthalmology; Edra Urban & Partner: Wrocław, Poland, 2017. [Google Scholar]
- Rai, B.B.; Maddess, T.; Nolan, C.J. Functional diabetic retinopathy: A new concept to improve management of diabetic retinal diseases. Surv. Ophthalmol. 2025, 70, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Lachin, J.M.; Nathan, D.M. On behalf of the DCCT/EDIC Research Group. Understanding Metabolic Memory: The Prolonged Influence of Glycemia During the Diabetes Control and Complications Trial (DCCT) on Future Risks of Complications During the Study of the Epidemiology of Diabetes Interventions and Complications (EDIC). Diabetes Care 2021, 44, 2216–2224. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (Suppl. S1), S27–S49. [Google Scholar] [CrossRef]
- Squirrell, D.; Dinakaran, S.; Dhingra, S.; Mody, C.; Brand, C.; Talbot, J. Oral Fluorescein Angiography with the Scanning Laser Ophthalmoscope in Diabetic Retinopathy: A Case-Controlled Comparison with Intravenous Fluorescein Angiography. Eye 2005, 19, 411–417. [Google Scholar] [CrossRef]
- Ricardi, F.; Reibaldi, M.; Bandello, F.; Borelli, E. Chapter 5—Fluorescein angiography. In Retinal and Choroidal Vascular Diseases of the Eye; Academic Press: Cambridge, MA, USA, 2024; pp. 71–79. [Google Scholar]
- Samara, W.A.; Say, E.A.; Khoo, C.T.; Higgins, T.P.; Magrath, G.; Ferenczy, S.; Shields, C.L. Correlation of Foveal Avascular Zone Size with Foveal Morphology in Normal Eyes Using Optical Coherence Tomography Angiography. Retina 2015, 35, 2188–2195. [Google Scholar] [CrossRef] [PubMed]
- Rabiolo, A.; Parravano, M.; Querques, L.; Cicinelli, M.V.; Carnevali, A.; Sacconi, R.; Centoducati, T.; Vujosevic, S.; Bandello, F.; Querques, G. Ultra-Wide-Field Fluorescein Angiography in Diabetic Retinopathy: A Narrative Review. Clin. Ophthalmol. 2017, 11, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Al-Sheikh, M.; Akil, H.; Pfau, M.; Sadda, S.R. Swept-Source OCT Angiography Imaging of the Foveal Avascular Zone and Macular Capillary Network Density in Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3907–3913. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, F.; Motulsky, E.H.; Gregori, G.; Chu, Z.; Chen, C.-L.; Li, C.; De Sisternes, L.; Durbin, M.; Rosenfeld, P.J.; et al. A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography. Investig. Ophthalmol. Vis. Sci. 2018, 59, 203–211. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 15 July 2025).
- Revelle, W. Psych: Procedures for Personality and Psychological Research; Northwestern University: Evanston, IL, USA, 2021; Available online: https://cran.r-project.org/src/contrib/Archive/psych/psych_2.1.6.tar.gz (accessed on 15 July 2025).
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef]
- Klein, R.; Klein, B.E.; Moss, S.E.; Cruickshanks, K.J. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XV. The long-term incidence of macular edema. Ophthalmology 1995, 102, 7–16. [Google Scholar] [CrossRef]
- Browning, D.J.; Fraser, C.M.; Clark, S. The relationship of macular thickness to clinically graded diabetic retinopathy severity in eyes without clinically detected diabetic macular edema. Ophthalmology 2008, 115, 533–900. [Google Scholar] [CrossRef]
- Diabetes Control and Complications Trial Research Group. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Ophthalmology 1995, 102, 647–661. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Tang, F.Y.; Ng, D.S.; Lam, A.; Luk, F.; Wong, R.; Chan, C.; Mohamed, S.; Fong, A.; Lok, J.; Tso, T.; et al. Determinants of Quantitative Optical Coherence Tomography Angiography Metrics in Patients with Diabetes. Sci. Rep. 2017, 7, 2575. [Google Scholar] [CrossRef]
- Wilkinson, C.P.; Ferris III, F.L.; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T.; et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Ishibazawa, A.; Nagaoka, T.; Takahashi, A.; Omae, T.; Tani, T.; Sogawa, K.; Yokota, H.; Yoshida, A. Optical coherence tomography angiography in diabetic retinopathy: A prospective pilot study. Am. J. Ophthalmol. 2015, 160, 35–44.e1. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Moon, B.G.; Cho, A.R.; Yoon, Y.H. Optical Coherence Tomography Angiography of DME and Its Association with Anti-VEGF Treatment Response. Ophthalmology 2016, 123, 2368–2375. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, N.; Nozaki, M.; Takase, N.; Yoshida, M.; Ogura, Y. New Insights into Microaneurysms in the Deep Capillary Plexus Detected by Optical Coherence Tomography Angiography in Diabetic Macular Edema. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT348–OCT355. [Google Scholar] [CrossRef]
- Moore, J.; Bagley, S.; Ireland, G.; McLeod, D.; Boulton, M.E. Three dimensional analysis of microaneurysms in the human diabetic retina. J. Anat. 1999, 194 Pt 1, 89–100. [Google Scholar] [CrossRef]
- Horii, T.; Murakami, T.; Nishijima, K.; Sakamoto, A.; Ota, M.; Yoshimura, N. Optical coherence tomographic characteristics of microaneurysms in diabetic retinopathy. Am. J. Ophthalmol. 2010, 150, 840–848. [Google Scholar] [CrossRef]
- Ho, J.; Dans, K.; You, Q.; Nudleman, E.D.; Freeman, W.R. Comparison of 3 mm × 3 mm versus 6 mm × 6 mm optical coherence tomography angiography scan sizes in the evaluation of non-proliferative diabetic retinopathy. Retina 2019, 39, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Tokayer, J.; Jia, Y.; Dhalla, A.H.; Huang, D. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed. Opt. Express 2013, 4, 1909–1924. [Google Scholar] [CrossRef] [PubMed]
- Stitt, A.W.; Gardiner, T.A.; Archer, D.B. Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br. J. Ophthalmol. 1995, 79, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Miwa, Y.; Murakami, T.; Suzuma, K.; Uji, A.; Yoshitake, S.; Fujimoto, M.; Yoshitake, T.; Tamura, Y.; Yoshimura, N. Relationship between Functional and Structural Changes in Diabetic Vessels in Optical Coherence Tomography Angiography. Sci. Rep. 2016, 6, 29064. [Google Scholar] [CrossRef]
- Bresnick, G.H.; Condit, R.; Syrjala, S.; Palta, M.; Groo, A.; Korth, K. Abnormalities of the foveal avascular zone in diabetic retinopathy. Arch. Ophthalmol. 1984, 102, 1286–1293. [Google Scholar] [CrossRef]
- Mansour, A.M.; Schachat, A.; Bodiford, G.; Haymond, R. Foveal avascular zone in diabetes mellitus. Retina 1993, 13, 125–128. [Google Scholar] [CrossRef]
- Takase, N.; Nozaki, M.; Kato, A.; Ozeki, H.; Yoshida, M.; Ogura, Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 2015, 35, 2377–2383. [Google Scholar] [CrossRef]
- Henke, S.; Papapostolou, I.; Heimes, B.; Lommatzsch, A.; Pauleikhoff, D.; Spital, G. OCT-Angiography in diabetic maculopathy: Comparison between microaneurysms and the foveal avascular zone with fluorescein angiography. Ophthalmologe 2018, 115, 941–947. (In German) [Google Scholar] [CrossRef]
- Mastropasqua, R.; Toto, L.; Mastropasqua, A.; Aloia, R.; De Nicola, C.; A Mattei, P.; Di Marzio, G.; Di Nicola, M.; Di Antonio, L. Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by optical coherence tomography angiography. Int. J. Ophthalmol. 2017, 10, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Gong, R.; Liu, W.; Xu, G. Optical coherence tomography angiography metrics in different stages of diabetic macular edema. Eye Vis. 2022, 9, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Braham, I.Z.; Kaouel, H.; Boukari, M.; Ammous, I.; Errais, K.; Boussen, I.M.; Zhioua, R. Optical coherence tomography angiography analysis of microvascular abnormalities and vessel density in treatment-naïve eyes with diabetic macular edema. BMC Ophthalmol. 2022, 22, 418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bradley, P.D.; Sim, D.A.; Keane, P.A.; Cardoso, J.; Agrawal, R.; Tufail, A.; Egan, C.A. The Evaluation of Diabetic Macular Ischemia Using Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, 626–631. [Google Scholar] [CrossRef]
- Cennamo, G.; Romano, M.R.; Nicoletti, G.; Velotti, N.; de Crecchio, G. Optical coherence tomography angiography versus fluorescein angiography in the diagnosis of ischaemic diabetic maculopathy. Acta Ophthalmol. 2017, 95, e36–e42. [Google Scholar] [CrossRef]
- Spaide, R.F.; Klancnik, J.M., Jr.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef]
- Miura, M.; Hong, Y.J.; Yasuno, Y.; Muramatsu, D.; Iwasaki, T.; Goto, H. Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography. Am. J. Ophthalmol. 2015, 159, 528–538.e3. [Google Scholar] [CrossRef]
- Rodrigues, T.M.; Marques, J.P.; Soares, M.; Simão, S.; Melo, P.; Martins, A.; Figueira, J.; Murta, J.N.; Silva, R. Macular OCT-angiography parameters to predict the clinical stage of nonproliferative diabetic retinopathy: An exploratory analysis. Eye 2019, 33, 1240–1247. [Google Scholar] [CrossRef]
- Khan, M.I.; Weinstock, R.S. Chapter 16: Carbohydrates. In Henry’s Clinical Diagnosis and Management by Laboratory Methods, 22nd ed.; McPherson, R.A., Pincus, M.R., Eds.; Saunders Elsevier: Philadelphia, PA, USA, 2011; pp. 210–225. [Google Scholar]
- Use of Glycated Hemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2011.
- ACCORD Study Group; ACCORD Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. 2010, 363, 233–244. [Google Scholar] [CrossRef]
- Gozlan, J.; Ingrand, P.; Lichtwitz, O.; Cazet-Supervielle, A.; Benoudis, L.; Boissonnot, M.; Hadjadj, S.; Leveziel, N. Retinal microvascular alterations related to diabetes assessed by optical coherence tomography angiography: A cross-sectional analysis. Medicine 2017, 96, e6427. [Google Scholar] [CrossRef]
- Aitchison, R.T.; Kennedy, G.J.; Shu, X.; Mansfield, D.C.; Kir, R.; Hui, J.; Shahani, U. Measuring the foveal avascular zone in diabetes: A study using optical coherence tomography angiography. J. Diabetes Investig. 2022, 13, 668–676. [Google Scholar] [CrossRef]
- Conrath, J.; Giorgi, R.; Ridings, B.; Raccah, D. Metabolic factors and the foveal avascular zone of the retina in diabetes mellitus. Diabetes Metab. 2005, 31, 465–470. [Google Scholar] [CrossRef]
- Gu, Q.; Pan, T.; Cheng, R.; Huang, J.; Zhang, K.; Zhang, J.; Yang, Y.; Cheng, P.; Liu, Q.; Shen, H. Macular vascular and photoreceptor changes for diabetic macular edema at early stage. Sci. Rep. 2024, 14, 20544. [Google Scholar] [CrossRef]
- Chan, G.; Balaratnasingam, C.; Yu, P.K.; Morgan, W.H.; McAllister, I.L.; Cringle, S.J.; Yu, D.-Y. Quantitative morphometry of perifoveal capillary networks in the human retina. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5502–5514. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.E.Z.; Yu, P.K.; Balaratnasingam, C.; Cringle, S.J.; Morgan, W.H.; McAllister, I.L.; Yu, D.-Y. Quantitative confocal imaging of the retinal microvasculature in the human retina. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5728–5736. [Google Scholar] [CrossRef] [PubMed]
- Savastano, M.C.; Lumbroso, B.; Rispoli, M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina 2015, 35, 2196–2203. [Google Scholar] [CrossRef] [PubMed]
- Nesper, P.L.; Fawzi, A.A. Human Parafoveal Capillary Vascular Anatomy and Connectivity Revealed by Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3858–3867. [Google Scholar] [CrossRef]
- Provis, J.M. Development of the primate retinal vasculature. Prog. Retin. Eye Res. 2001, 20, 799–821. [Google Scholar] [CrossRef]
- Rosenfeld, P.J. Optical Coherence Tomography and the Development of Antiangiogenic Therapies in Neovascular Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT14–OCT26. [Google Scholar] [CrossRef]
- Lira, R.P.; Oliveira, C.L.; Marques, M.V.; Silva, A.R.; Pessoa, C.C. Adverse reactions of fluorescein angiography: A prospective study. Arq. Bras. Oftalmol. 2007, 70, 615–618. [Google Scholar] [CrossRef]
- Kwiterovich, K.A.; Maguire, M.G.; Murphy, R.P.; Schachat, A.P.; Bressler, N.M.; Bressler, S.B.; Fine, S.L. Frequency of adverse systemic reactions after fluorescein angiography: Results of a prospective study. Ophthalmology 1991, 98, 1139–1142. [Google Scholar] [CrossRef]
- Haritoglou, C.; Kernt, M.; Neubauer, A.; Gerss, J.; Oliveira, C.M.; Kampik, A.; Ulbig, M. Microaneurysm formation rate as a predictive marker for progression to clinically significant macular edema in nonproliferative diabetic retinopathy. Retina 2014, 34, 157–164. [Google Scholar] [CrossRef]
- Nunes, S.; Pires, I.; Rosa, A.; Duarte, L.; Bernardes, R.; Cunha-Vaz, J. Microaneurysm turnover is a biomarker for diabetic retinopathy progression to clinically significant macular edema: Findings for type 2 diabetics with nonproliferative retinopathy. Ophthalmologica 2009, 223, 292–297. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K. Image Artifacts in Optical Coherence Tomography Angiography. Retina 2015, 35, 2163–2180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horii, T.; Murakami, T.; Nishijima, K.; Akagi, T.; Uji, A.; Arakawa, N.; Muraoka, Y.; Yoshimura, N. Relationship between fluorescein pooling and optical coherence tomographic reflectivity of cystoid spaces in diabetic macular edema. Ophthalmology 2012, 119, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Pichi, F.; Smith, S.D.; Abboud, E.B.; Neri, P.; Woodstock, E.; Hay, S.; Levine, E.; Baumal, C.R. Wide-Field Optical Coherence Tomography Angiography for the Detection of Proliferative Diabetic Retinopathy. Graefe′s Arch. Clin. Exp. Ophthalmol. 2020, 258, 1901–1909. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhu, Y.; Wang, J.C.; Lu, Y.; Zeng, R.; Katz, R.; Vingopoulos, F.; Le, R.; Laíns, I.; Wu, D.M.; et al. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy. Br. J. Ophthalmol. 2021, 105, 577–581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, Q.Z.; Li, S.Y.; Yao, Y.O.; Jin, E.Z.; Qu, J.F.; Zhao, M.W. Comparison of 24 × 20 mm2 swept-source OCTA and fluorescein angiography for the evaluation of lesions in diabetic retinopathy. Int. J. Ophthalmol. 2022, 15, 1798–1805. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
N | M | SD | Mdn | Min | Max | Sk. | Kurt. | W | p | |
---|---|---|---|---|---|---|---|---|---|---|
Age | 98 | 63.97 | 7.11 | 65 | 36 | 76 | −1.22 | 2.68 | 0.92 | <0.001 |
BCVA | 98 | 0.55 | 0.14 | 0.5 | 0.2 | 0.8 | −0.28 | 0.17 | 0.9 | <0.001 |
CRT | 98 | 427.3 | 109.25 | 404 | 220 | 790 | 1.3 | 2.25 | 0.9 | <0.001 |
Max RT | 98 | 487.24 | 102.11 | 465.5 | 332 | 790 | 1.05 | 0.9 | 0.91 | <0.001 |
HbA1c | 98 | 7.8 | 1.48 | 7.55 | 5.2 | 11.4 | 0.53 | 0.01 | 0.96 | 0.009 |
OCTA FAZ 1 | 98 | 0.49 | 0.33 | 0.41 | 0.09 | 1.98 | 2.03 | 5.95 | 0.82 | <0.001 |
OCTA FAZ 2 | 98 | 0.52 | 0.33 | 0.43 | 0.14 | 2.01 | 2.12 | 6.4 | 0.81 | <0.001 |
OCTA VD 1 | 98 | 46.43 | 5.87 | 46.45 | 31.9 | 57.9 | −0.24 | −0.23 | 0.98 | 0.231 |
OCTA VD 2 | 98 | 47.27 | 5.74 | 47.3 | 32.4 | 59.6 | −0.2 | −0.04 | 0.98 | 0.297 |
OCTA MAs 1 | 98 | 0.84 | 1.6 | 0 | 0 | 14 | 5.91 | 46.95 | 0.46 | <0.001 |
OCTA MAs 2 | 98 | 2.41 | 2.27 | 2 | 0 | 8 | 0.55 | −0.85 | 0.88 | <0.001 |
AF FAZ | 98 | 0.46 | 0.32 | 0.38 | 0.09 | 1.99 | 2.11 | 6.44 | 0.81 | <0.001 |
AF MAs | 98 | 5.47 | 4.93 | 5 | 0 | 17 | 0.48 | −0.96 | 0.9 | <0.001 |
Diabetes | 98 | 15.21 | 8.7 | 15 | 0.7 | 35 | 0.11 | −0.62 | 0.96 | 0.015 |
Vision | 98 | 10.08 | 12.44 | 6 | 1 | 60 | 2.5 | 6.2 | 0.66 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niewiem, A.; Broniarek, K.; Michalska-Małecka, K. Comparison of the Usefulness of Optical Coherence Tomography Angiography and Fluorescein Angiography in the Diagnosis of Diabetic Macular Edema. Diagnostics 2025, 15, 1873. https://doi.org/10.3390/diagnostics15151873
Niewiem A, Broniarek K, Michalska-Małecka K. Comparison of the Usefulness of Optical Coherence Tomography Angiography and Fluorescein Angiography in the Diagnosis of Diabetic Macular Edema. Diagnostics. 2025; 15(15):1873. https://doi.org/10.3390/diagnostics15151873
Chicago/Turabian StyleNiewiem, Alfred, Krzysztof Broniarek, and Katarzyna Michalska-Małecka. 2025. "Comparison of the Usefulness of Optical Coherence Tomography Angiography and Fluorescein Angiography in the Diagnosis of Diabetic Macular Edema" Diagnostics 15, no. 15: 1873. https://doi.org/10.3390/diagnostics15151873
APA StyleNiewiem, A., Broniarek, K., & Michalska-Małecka, K. (2025). Comparison of the Usefulness of Optical Coherence Tomography Angiography and Fluorescein Angiography in the Diagnosis of Diabetic Macular Edema. Diagnostics, 15(15), 1873. https://doi.org/10.3390/diagnostics15151873