Prognostic Significance of AI-Enhanced ECG for Emergency Department Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. ECG Acquisition and Preprocessing
2.3. AI Model Architecture and Training
2.4. AI-Enabled ECG Risk Stratification
2.5. Statistical Analysis
3. Results
3.1. Study Flowchart and AI-Enabled ECG Risk Categorization
3.2. Baseline Characteristics of Patients
3.3. AI-Enabled ECG Risk Prediction
3.4. Mortality Risk of AI-Enabled ECG Categorical Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECG | Electrocardiogram |
EDs | Emergency departments |
AI | Artificial intelligence |
AUC | Area Under the Curve |
KM | Kaplan–Meier |
ROC | Receiver operating characteristic |
HEART | History, ECG, Age, Risk Factors, and Troponin |
EDACS | Emergency Department Assessment of Chest Pain Score |
ACS | Acute coronary syndrome |
LLMs | Large language models |
Appendix A
Variables | Low–Low | Low–Medium | Low–High | p-Value |
---|---|---|---|---|
Number, n (%) | 7527 (91.6%) | 650 (8%) | 33 (0.4%) | <0.001 |
Age, mean ± SD | 59.73 ± 15.96 | 70.49 ± 14.69 | 61.15 ± 18.86 | <0.001 |
Gender, n (%) | <0.001 | |||
Male | 4228 (56.2%) | 290 (44.6%) | 17 (51.5%) | |
Female | 3299 (43.8%) | 360 (55.4%) | 16 (48.5%) | |
BMI, mean ± SD | 25.12 ± 4.02 | 24.30 ± 4.23 | 24.18 ± 4.33 | <0.001 |
Triage level, n (%) | <0.001 | |||
1 | 105 (1.4%) | 21 (3.2%) | 0 (0.0%) | |
2 | 2555 (33.9%) | 264 (40.6%) | 9 (27.3%) | |
3 | 4592 (61.0%) | 343 (52.8%) | 22 (66.7%) | |
4 | 274 (3.6%) | 22 (3.4%) | 2 (6.1%) | |
5 | 1 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
SBP, mean ± SD | 143.23 ± 26.19 | 143.49 ± 28.29 | 135.94 ± 30.38 | 0.296 |
DBP, mean ± SD | 81.02 ± 15.91 | 77.80 ± 16.38 | 75.29 ± 16.65 | <0.001 |
PULSE, mean ± SD | 81.11 ± 19.44 | 85.46 ± 26.52 | 94.30 ± 35.42 | <0.001 |
SPO2, mean ± SD | 98.41 ± 10.30 | 97.82 ± 3.76 | 98.36 ± 2.18 | 0.337 |
1st ECG mortality risk score, mean ± SD | 57.81 ± 22.07 | 75.68 ± 13.24 | 67.97 ± 20.81 | <0.001 |
2nd ECG mortality risk score, mean ± SD | 55.63 ± 22.20 | 90.08 ± 2.58 | 98.03 ± 1.07 | <0.001 |
Admission to discharge (hr.), mean ± SD | 5.23 ± 4.23 | 6.02 ± 5.01 | 5.77 ± 3.85 | <0.001 |
Events [all-cause mortality within 90 days], n (%) | <0.001 | |||
Alive | 6673 (99.8%) | 593 (99.0%) | 26 (92.9%) | |
Death | 16 (0.2%) | 6 (1.0%) | 2 (7.1%) |
Variables | Medium–Low | Medium–Medium | Medium–High | p-Value |
---|---|---|---|---|
Number, n (%) | 1223 (46.1%) | 1310 (49.3%) | 122 (4.6%) | <0.001 |
Age, mean ± SD | 67.14 ± 15.89 | 75.43 ± 13.20 | 74.20 ± 13.91 | <0.001 |
Gender, n (%) | 0.003 | |||
Male | 560 (45.8%) | 686 (52.4%) | 56 (45.9%) | |
Female | 663 (54.2%) | 624 (47.6%) | 66 (54.1%) | |
BMI, mean ± SD | 24.53 ± 4.13 | 24.29 ± 4.01 | 24.26 ± 4.56 | 0.369 |
Triage level, n (%) | 0.109 | |||
1 | 52 (4.3%) | 68 (5.2%) | 12 (9.8%) | |
2 | 525 (42.9%) | 598 (45.6%) | 53 (43.4%) | |
3 | 612 (50.0%) | 609 (46.5%) | 54 (44.3%) | |
4 | 34 (2.8%) | 35 (2.7%) | 3 (2.5%) | |
5 | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
SBP, mean ± SD | 142.53 ± 28.53 | 141.23 ± 29.05 | 137.85 ± 30.74 | 0.190 |
DBP, mean ± SD | 79.25 ± 17.85 | 75.35 ± 17.81 | 75.19 ± 18.33 | <0.001 |
PULSE, mean ± SD | 94.56 ± 30.66 | 86.87 ± 24.39 | 85.13 ± 22.96 | <0.001 |
SPO2, mean ± SD | 97.89 ± 3.18 | 98.48 ± 36.34 | 97.81 ± 2.81 | 0.839 |
1st ECG mortality risk score, mean ± SD | 90.81 ± 2.79 | 91.79 ± 2.68 | 93.05 ± 2.78 | <0.001 |
2nd ECG mortality risk score, mean ± SD | 72.20 ± 15.92 | 91.20 ± 2.58 | 97.78 ± 0.90 | <0.001 |
Admission to discharge (hr.), mean ± SD | 5.54 ± 4.11 | 5.94 ± 4.62 | 6.61 ± 5.27 | 0.009 |
Events [all-cause mortality within 90 days], n (%) | <0.001 | |||
Alive | 1102 (99.5%) | 1183 (97.6%) | 110 (94.8%) | |
Death | 6 (0.5%) | 29 (2.4%) | 6 (5.2%) |
Variables | High–Low | High–Medium | High–High | p-Value |
---|---|---|---|---|
Number, n (%) | 187 (29.1%) | 269 (41.8%) | 187 (29.1%) | <0.001 |
Age, mean ± SD | 62.45 ± 16.87 | 72.24 ± 15.46 | 74.26 ± 14.70 | <0.001 |
Gender, n (%) | 0.229 | |||
Male | 88 (47.1%) | 143 (53.2%) | 104 (55.6%) | |
Female | 99 (52.9%) | 126 (46.8%) | 83 (44.4%) | |
BMI, mean ± SD | 24.56 ± 4.10 | 23.85 ± 4.81 | 23.87 ± 4.49 | 0.252 |
Triage level, n (%) | 0.604 | |||
1 | 21 (11.2%) | 27 (10.0%) | 18 (9.6%) | |
2 | 105 (56.1%) | 149 (55.4%) | 101 (54.0%) | |
3 | 57 (30.5%) | 85 (31.6%) | 67 (35.8%) | |
4 | 4 (2.1%) | 8 (3.0%) | 1 (0.5%) | |
5 | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
SBP, mean ± SD | 135.03 ± 27.89 | 134.07 ± 29.09 | 127.95 ± 27.97 | 0.040 |
DBP, mean ± SD | 82.14 ± 18.93 | 77.45 ± 17.74 | 74.63 ± 20.66 | 0.001 |
PULSE, mean ± SD | 123.79 ± 42.57 | 105.66 ± 33.65 | 96.10 ± 30.47 | <0.001 |
SPO2, mean ± SD | 98.27 ± 2.21 | 97.21 ± 3.94 | 97.48 ± 2.85 | 0.002 |
1st ECG mortality risk score, mean ± SD | 98.14 ± 1.07 | 97.93 ± 1.00 | 98.24 ± 1.02 | 0.005 |
2nd ECG mortality risk score, mean ± SD | 68.69 ± 18.77 | 92.74 ± 2.72 | 98.27 ± 1.03 | <0.001 |
Admission to discharge (hr.), mean ± SD | 6.02 ± 4.53 | 6.61 ± 5.78 | 6.60 ± 4.81 | 0.427 |
Events [all-cause mortality within 90 days], n (%) | <0.001 | |||
Alive | 175 (100.0%) | 241 (96.8%) | 145 (90.6%) | |
Death | 0 (0.0%) | 8 (3.2%) | 15 (9.4%) |
References
- Calder, L.; Pozgay, A.; Riff, S.; Rothwell, D.; Youngson, E.; Mojaverian, N.; Cwinn, A.; Forster, A. Adverse events in patients with return emergency department visits. BMJ Qual. Saf. 2015, 24, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Newman-Toker, D.E.; Peterson, S.M.; Badihian, S.; Hassoon, A.; Nassery, N.; Parizadeh, D.; Wilson, L.M.; Jia, Y.; Omron, R.; Tharmarajah, S.; et al. AHRQ Comparative Effectiveness Reviews. In Diagnostic Errors in the Emergency Department: A Systematic Review; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2022. [Google Scholar]
- Capan, M.; Pigeon, J.; Marco, D.; Powell, J.; Groner, K. We all make choices: A decision analysis framework for disposition decision in the ED. Am. J. Emerg. Med. 2018, 36, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Cooper, A.; Carson-Stevens, A.; Donaldson, L.; Hibbert, P.; Hughes, T.; Edwards, A. Diagnostic error in the emergency department: Learning from national patient safety incident report analysis. BMC Emerg. Med. 2019, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Jarczok, M.N.; Weimer, K.; Braun, C.; Williams, D.P.; Thayer, J.F.; Gündel, H.O.; Balint, E.M. Heart rate variability in the prediction of mortality: A systematic review and meta-analysis of healthy and patient populations. Neurosci. Biobehav. Rev. 2022, 143, 104907. [Google Scholar] [CrossRef]
- Sun, X.; Yin, Y.; Yang, Q.; Huo, T. Artificial intelligence in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. J. Med. Res. 2023, 28, 242. [Google Scholar] [CrossRef]
- Sehrawat, O.; Kashou, A.H.; Noseworthy, P.A. Artificial intelligence and atrial fibrillation. J. Cardiovasc. Electrophysiol. 2022, 33, 1932–1943. [Google Scholar] [CrossRef]
- Zhang, P.I.; Hsu, C.C.; Kao, Y.; Chen, C.J.; Kuo, Y.W.; Hsu, S.L.; Liu, T.L.; Lin, H.J.; Wang, J.J.; Liu, C.F.; et al. Real-time AI prediction for major adverse cardiac events in emergency department patients with chest pain. Scand. J. Trauma. Resusc. Emerg. Med. 2020, 28, 93. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lin, C.S.; Fang, W.H.; Lou, Y.S.; Cheng, C.C.; Lee, C.C.; Lin, C. Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis. J. Pers. Med. 2022, 12, 455. [Google Scholar] [CrossRef]
- Jentzer, J.C.; Kashou, A.H.; Lopez-Jimenez, F.; Attia, Z.I.; Kapa, S.; Friedman, P.A.; Noseworthy, P.A. Mortality risk stratification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 532–541. [Google Scholar] [CrossRef]
- Lin, C.S.; Liu, W.T.; Tsai, D.J.; Lou, Y.S.; Chang, C.H.; Lee, C.C.; Fang, W.H.; Wang, C.C.; Chen, Y.Y.; Lin, W.S.; et al. AI-enabled electrocardiography alert intervention and all-cause mortality: A pragmatic randomized clinical trial. Nat. Med. 2024, 30, 1461–1470. [Google Scholar] [CrossRef]
- Tsai, D.J.; Lou, Y.S.; Lin, C.S.; Fang, W.H.; Lee, C.C.; Ho, C.L.; Wang, C.H.; Lin, C. Mortality risk prediction of the electrocardiogram as an informative indicator of cardiovascular diseases. Digit. Health 2023, 9, 20552076231187247. [Google Scholar] [CrossRef]
- Huang, P.F.; Kung, P.T.; Chou, W.Y.; Tsai, W.C. Characteristics and related factors of emergency department visits, readmission, and hospital transfers of inpatients under a DRG-based payment system: A nationwide cohort study. PLoS ONE 2020, 15, e0243373. [Google Scholar] [CrossRef] [PubMed]
- Motiejunaite, J.; Amar, L.; Vidal-Petiot, E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. Endocrinol. 2021, 82, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.M.; Alwood, S.M. Man With Dynamic ECG Changes. Ann. Emerg. Med. 2020, 75, 518–520. [Google Scholar] [CrossRef] [PubMed]
- Gabayan, G.Z.; Asch, S.M.; Hsia, R.Y.; Zingmond, D.; Liang, L.J.; Han, W.; McCreath, H.; Weiss, R.E.; Sun, B.C. Factors associated with short-term bounce-back admissions after emergency department discharge. Ann. Emerg. Med. 2013, 62, 136–144.e131. [Google Scholar] [CrossRef]
- Gabayan, G.Z.; Derose, S.F.; Asch, S.M.; Yiu, S.; Lancaster, E.M.; Poon, K.T.; Hoffman, J.R.; Sun, B.C. Patterns and predictors of short-term death after emergency department discharge. Ann. Emerg. Med. 2011, 58, 551–558.e552. [Google Scholar] [CrossRef]
- Gabayan, G.Z.; Sun, B.C.; Asch, S.M.; Timmermans, S.; Sarkisian, C.; Yiu, S.; Lancaster, E.M.; Poon, K.T.; Kellermann, A.L.; Ryan, G.; et al. Qualitative factors in patients who die shortly after emergency department discharge. Acad. Emerg. Med. 2013, 20, 778–785. [Google Scholar] [CrossRef]
- Mark, D.G.; Huang, J.; Kene, M.V.; Sax, D.R.; Cotton, D.M.; Lin, J.S.; Bouvet, S.C.; Chettipally, U.K.; Anderson, M.L.; McLachlan, I.D.; et al. Automated Retrospective Calculation of the EDACS and HEART Scores in a Multicenter Prospective Cohort of Emergency Department Chest Pain Patients. Acad. Emerg. Med. 2020, 27, 1028–1038. [Google Scholar] [CrossRef]
- Flaws, D.; Than, M.; Scheuermeyer, F.X.; Christenson, J.; Boychuk, B.; Greenslade, J.H.; Aldous, S.; Hammett, C.J.; Parsonage, W.A.; Deely, J.M.; et al. External validation of the emergency department assessment of chest pain score accelerated diagnostic pathway (EDACS-ADP). Emerg. Med. J. 2016, 33, 618–625. [Google Scholar] [CrossRef]
- Masson, S.; Latini, R.; Anand, I.S.; Barlera, S.; Angelici, L.; Vago, T.; Tognoni, G.; Cohn, J.N. Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan Heart Failure Trial). J. Am. Coll. Cardiol. 2008, 52, 997–1003. [Google Scholar] [CrossRef]
- Chiang, C.H.; Chiang, C.H.; Pickering, J.W.; Stoyanov, K.M.; Chew, D.P.; Neumann, J.T.; Ojeda, F.; Sörensen, N.A.; Su, K.Y.; Kavsak, P.; et al. Performance of the European Society of Cardiology 0/1-Hour, 0/2-Hour, and 0/3-Hour Algorithms for Rapid Triage of Acute Myocardial Infarction: An International Collaborative Meta-analysis. Ann. Intern. Med. 2022, 175, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.G.; Evans, A.T. High-Sensitivity Cardiac Troponin Algorithms and the Value of Likelihood Ratios. J. Gen. Intern. Med. 2023, 38, 2189–2193. [Google Scholar] [CrossRef] [PubMed]
- Fesmire, F.M.; Percy, R.F.; Bardoner, J.B.; Wharton, D.R.; Calhoun, F.B. Usefulness of automated serial 12-lead ECG monitoring during the initial emergency department evaluation of patients with chest pain. Ann. Emerg. Med. 1998, 31, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Raghunath, S.; Ulloa Cerna, A.E.; Jing, L.; vanMaanen, D.P.; Stough, J.; Hartzel, D.N.; Leader, J.B.; Kirchner, H.L.; Stumpe, M.C.; Hafez, A.; et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 2020, 26, 886–891. [Google Scholar] [CrossRef]
- Chen, Y.J.; Lin, C.S.; Lin, C.; Tsai, D.J.; Fang, W.H.; Lee, C.C.; Wang, C.H.; Chen, S.J. An AI-Enabled Dynamic Risk Stratification for Emergency Department Patients with ECG and CXR Integration. J. Med. Syst. 2023, 47, 81. [Google Scholar] [CrossRef]
- Liu, W.T.; Lin, C.S.; Tsao, T.P.; Lee, C.C.; Cheng, C.C.; Chen, J.T.; Tsai, C.S.; Lin, W.S.; Lin, C. A Deep-Learning Algorithm-Enhanced System Integrating Electrocardiograms and Chest X-rays for Diagnosing Aortic Dissection. Can. J. Cardiol. 2022, 38, 160–168. [Google Scholar] [CrossRef]
- Hathaway, W.R.; Peterson, E.D.; Wagner, G.S.; Granger, C.B.; Zabel, K.M.; Pieper, K.S.; Clark, K.A.; Woodlief, L.H.; Califf, R.M.; for the GUSTO-I Investigators. Prognostic Significance of the Initial Electrocardiogram in Patients with Acute Myocardial Infarction. JAMA 1998, 279, 387–391. [Google Scholar] [CrossRef]
- Pham, H.N.; Holmstrom, L.; Chugh, H.; Uy-Evanado, A.; Nakamura, K.; Zhang, Z.; Salvucci, A.; Jui, J.; Reinier, K.; Chugh, S.S. Dynamic electrocardiogram changes are a novel risk marker for sudden cardiac death. Eur. Heart J. 2024, 45, 809–819. [Google Scholar] [CrossRef]
- Howard, J.P.; Vasudevan, N.; Sarkar, S.; Landman, S.; Koehler, J.; Keene, D. Dynamic risk stratification of worsening heart failure using a deep learning-enabled implanted ambulatory single-lead electrocardiogram. Eur. Heart J. Digit. Health 2024, 5, 435–443. [Google Scholar] [CrossRef]
- van Doorn, W.; Helmich, F.; van Dam, P.; Jacobs, L.H.J.; Stassen, P.M.; Bekers, O.; Meex, S.J.R. Explainable Machine Learning Models for Rapid Risk Stratification in the Emergency Department: A Multicenter Study. J. Appl. Lab. Med. 2024, 9, 212–222. [Google Scholar] [CrossRef]
- Lin, C.; Liu, W.-T.; Chang, C.-H.; Lee, C.-C.; Hsing, S.-C.; Fang, W.-H.; Tsai, D.-J.; Chen, K.-C.; Lee, C.-H.; Cheng, C.-C.; et al. Artificial Intelligence–Powered Rapid Identification of ST-Elevation Myocardial Infarction via Electrocardiogram (ARISE)—A Pragmatic Randomized Controlled Trial. NEJM AI 2024, 1, AIoa2400190. [Google Scholar] [CrossRef]
- Wouters, P.C.; van de Leur, R.R.; Vessies, M.B.; van Stipdonk, A.M.W.; Ghossein, M.A.; Hassink, R.J.; Doevendans, P.A.; van der Harst, P.; Maass, A.H.; Prinzen, F.W.; et al. Electrocardiogram-based deep learning improves outcome prediction following cardiac resynchronization therapy. Eur. Heart J. 2023, 44, 680–692. [Google Scholar] [CrossRef]
- Harskamp, R.E.; De Clercq, L. Performance of ChatGPT as an AI-assisted decision support tool in medicine: A proof-of-concept study for interpreting symptoms and management of common cardiac conditions (AMSTELHEART-2). Acta Cardiol. 2024, 79, 358–366. [Google Scholar] [CrossRef]
Variables | Total (n = 11,508) |
---|---|
Age, mean ± SD | 63.64 ± 16.63 |
Gender, n (%) | |
Male | 6172 (53.6%) |
Female | 5336 (46.4%) |
BMI, mean ± SD | 24.86 ± 4.09 |
Triage level, n (%) | |
1 | 324 (2.8%) |
2 | 4359 (37.9%) |
3 | 6441 (56.0%) |
4 | 383 (3.3%) |
5 | 1 (0.0%) |
SBP, mean ± SD | 142.30 ± 27.19 |
DBP, mean ± SD | 79.78 ± 16.70 |
PULSE, mean ± SD | 85.00 ± 24.28 |
SpO2, mean ± SD | 98.28 ± 14.89 |
1st ECG mortality risk score, mean ± SD | 68.84 ± 24.06 |
2nd ECG mortality risk score, mean ± SD | 65.73 ± 24.15 |
Admission to discharge(hr.), mean ± SD | 5.47 ± 4.39 |
Event [all-cause mortality within 90 days], n (%) | |
Alive | 10,248 (99.1%) |
Death | 88 (0.9%) |
Variables | Low Risk | Medium Risk | High Risk | p-Value |
---|---|---|---|---|
Number, n (%) | 8210 (71.3%) | 2655 (23.1%) | 643 (5.6%) | <0.001 |
Age, mean ± SD | 60.59 ± 16.13 | 71.56 ± 15.09 | 69.98 ± 16.40 | <0.001 |
Gender, n (%) | <0.001 | |||
Male | 4535 (55.2%) | 1302 (49.0%) | 335 (52.1%) | |
Female | 3675 (44.8%) | 1353 (51.0%) | 308 (47.9%) | |
BMI, mean ± SD | 25.05 ± 4.04 | 24.40 ± 4.09 | 24.07 ± 4.52 | <0.001 |
Triage level, n (%) | <0.001 | |||
1 | 126 (1.5%) | 132 (5.0%) | 66 (10.3%) | |
2 | 2828 (34.4%) | 1176 (44.3%) | 355 (55.2%) | |
3 | 4957 (60.4%) | 1275 (48.0%) | 209 (32.5%) | |
4 | 298 (3.6%) | 72 (2.7%) | 13 (2.0%) | |
5 | 1 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
SBP, mean ± SD | 143.23 ± 26.38 | 141.67 ± 28.90 | 132.54 ± 28.53 | <0.001 |
DBP, mean ± SD | 80.74 ± 15.97 | 77.14 ± 17.95 | 77.97 ± 19.18 | <0.001 |
PULSE, mean ± SD | 81.50 ± 20.23 | 90.33 ± 27.67 | 108.21 ± 37.20 | <0.001 |
SpO2, mean ± SD | 98.37 ± 9.92 | 98.18 ± 25.60 | 97.60 ± 3.23 | 0.429 |
1st ECG mortality risk score, mean ± SD | 59.26 ± 22.04 | 91.39 ± 2.80 | 98.08 ± 1.03 | <0.001 |
2nd ECG mortality risk score, mean ± SD | 58.53 ± 23.35 | 82.75 ± 14.73 | 87.36 ± 15.93 | <0.001 |
Admission to discharge (hr.), mean ± SD | 5.30 ± 4.30 | 5.79 ± 4.44 | 6.44 ± 5.16 | <0.001 |
Events [all-cause mortality within 90 days], n (%) | <0.001 | |||
Alive | 7292 (99.7%) | 2395 (98.3%) | 561 (96.1%) | |
Death | 24 (0.3%) | 41 (1.7%) | 23 (3.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.-T.; Chen, S.-J.; Lin, C.; Lin, C.-S.; Hu, H.-F. Prognostic Significance of AI-Enhanced ECG for Emergency Department Patients. Diagnostics 2025, 15, 1874. https://doi.org/10.3390/diagnostics15151874
Su Y-T, Chen S-J, Lin C, Lin C-S, Hu H-F. Prognostic Significance of AI-Enhanced ECG for Emergency Department Patients. Diagnostics. 2025; 15(15):1874. https://doi.org/10.3390/diagnostics15151874
Chicago/Turabian StyleSu, Yu-Te, Sy-Jou Chen, Chin Lin, Chin-Sheng Lin, and Hsiao-Feng Hu. 2025. "Prognostic Significance of AI-Enhanced ECG for Emergency Department Patients" Diagnostics 15, no. 15: 1874. https://doi.org/10.3390/diagnostics15151874
APA StyleSu, Y.-T., Chen, S.-J., Lin, C., Lin, C.-S., & Hu, H.-F. (2025). Prognostic Significance of AI-Enhanced ECG for Emergency Department Patients. Diagnostics, 15(15), 1874. https://doi.org/10.3390/diagnostics15151874