Improved Alzheimer’s Disease Detection by MRI Using Multimodal Machine Learning Algorithms
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Clinical Assessment
2.3. Image Acquisition
2.4. Experimental Setup
- ➢
- A learning model that can effectively predict and segregate true AD subjects from a given population.
- ➢
- The development of a novel ML classifier and validate its performance.
2.4.1. Data Pre-Processing
(a) Missing Data Handling
(b) Data Visualization
2.4.2. Data Splitting
2.4.3. Training of ML Classifiers
- ❖
- Random Forest (RF)
- ❖
- Support Vector Machines (SVM)
- ❖
- Gaussian Naive Bayes (GNB)
- ❖
- Logistic Regression (LR)
- ❖
- Gradient Boosting
- ❖
- AdaBoost
2.4.4. Model Validation
2.5. Performance Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2016, 12, 459–509. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2011, 1, a006189. [Google Scholar] [CrossRef]
- Vradenburg, G. A pivotal moment in Alzheimer’s disease and dementia: How global unity of purpose and action can beat the disease by 2025. Expert Rev. Neurother. 2015, 15, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.G.; Weiner, M.W.; Thal, L.J.; Petersen, R.C.; Jack, C.R.; Jagust, W.; Trojanowski, J.Q.; Toga, A.W.; Beckett, L. Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s Dement. 2005, 1, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Risacher, S.L.; Saykin, A.J. Neuroimaging and Other Biomarkers for Alzheimer’s Disease: The Changing Landscape of Early Detection. Annu. Rev. Clin. Psychol. 2013, 9, 621–648. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-L.; Lin, T.-J.; Chiou, G.-L.; Lee, C.-Y.; Luan, H.; Tsai, M.-J.; Potvin, P.; Tsai, C.-C. A Systematic Review of MRI Neuroimaging for Education Research. Front. Psychol. 2021, 12, 1763. [Google Scholar] [CrossRef]
- Gaubert, S.; Houot, M.; Raimondo, F.; Ansart, M.; Corsi, M.-C.; Naccache, L.; Sitt, J.D.; Habert, M.-O.; Dubois, B.; Fallani, F.D.V.; et al. A machine learning approach to screen for preclinical Alzheimer’s disease. Neurobiol. Aging 2021, 105, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Battineni, G.; Sagaro, G.G.; Chinatalapudi, N.; Amenta, F. Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis. J. Pers. Med. 2020, 10, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spooner, A.; Chen, E.; Sowmya, A.; Sachdev, P.; Kochan, N.A.; Trollor, J.; Brodaty, H. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci. Rep. 2020, 10, 20410. [Google Scholar] [CrossRef]
- Nori, V.S.; Hane, C.A.; Crown, W.H.; Au, R.; Burke, W.J.; Sanghavi, D.M.; Bleicher, P. Machine learning models to predict onset of dementia: A label learning approach. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 918–925. [Google Scholar] [CrossRef]
- Ghazi, M.M.; Nielsen, M.; Pai, A.; Cardoso, M.J.; Modat, M.; Ourselin, S.; Sørensen, L. Training recurrent neural networks robust to incomplete data: Application to Alzheimer’s disease progression modeling. Med. Image Anal. 2019, 53, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Moore, P.J.; Lyons, T.J.; Gallacher, J.; Initiative, F.T.A.D.N. Random forest prediction of Alzheimer’s disease using pairwise selection from time series data. PLoS ONE 2019, 14, e0211558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, T.; Nho, K.; Saykin, A.J. Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Front. Aging Neurosci. 2019, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Lundervold, A.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2018, 29, 102–127. [Google Scholar] [CrossRef]
- Battineni, G.; Chintalapudi, N.; Amenta, F. Comparative Machine Learning Approach in Dementia Patient Classification using Principal Component Analysis. In Proceedings of the 12th International Conference on Agents and Artificial Intelligence, Valletta, Malta, 22–24 February 2020. [Google Scholar] [CrossRef]
- Aditya, C.; Pande, M.S. Devising an interpretable calibrated scale to quantitatively assess the dementia stage of subjects with alzheimer’s disease: A machine learning approach. Inform. Med. Unlocked 2017, 6, 28–35. [Google Scholar] [CrossRef]
- Marcus, D.S.; Fotenos, A.F.; Csernansky, J.G.; Morris, J.C.; Buckner, R.L. Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults. J. Cogn. Neurosci. 2010, 22, 2677–2684. [Google Scholar] [CrossRef] [PubMed]
- Atri, A. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. N. Am. 2019, 103, 263–293. [Google Scholar] [CrossRef] [PubMed]
- Balota, D.A.; Tse, C.-S.; Hutchison, K.A.; Spieler, D.H.; Duchek, J.M.; Morris, J.C. Predicting conversion to dementia of the Alzheimer’s type in a healthy control sample: The power of errors in stroop color naming. Psychol. Aging 2010, 25, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Towards Data Science. All about Missing Data Handling. Missing Data Is a Every Day Problem…, by Baijayanta Roy. Available online: https://towardsdatascience.com/all-about-missing-data-handling-b94b8b5d2184 (accessed on 5 October 2021).
- Yang, B.-S.; Di, X.; Han, T. Random forests classifier for machine fault diagnosis. J. Mech. Sci. Technol. 2008, 22, 1716–1725. [Google Scholar] [CrossRef]
- Suykens, J. Support Vector Machines: A Nonlinear Modelling and Control Perspective. Eur. J. Control. 2001, 7, 311–327. [Google Scholar] [CrossRef]
- Raizada, R.D.S.; Lee, Y.-S. Smoothness without Smoothing: Why Gaussian Naive Bayes Is Not Naive for Multi-Subject Searchlight Studies. PLoS ONE 2013, 8, e69566. [Google Scholar] [CrossRef]
- Maroco, J.; Silva, D.; Rodrigues, A.; Guerreiro, M.; Santana, I.; De Mendonça, A. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res. Notes 2011, 4, 299. [Google Scholar] [CrossRef] [Green Version]
- Singh, U.; Rizwan, M.; Alaraj, M.; Alsaidan, I. A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments. Energies 2021, 14, 5196. [Google Scholar] [CrossRef]
- Boosting and AdaBoost for Machine Learning. Available online: https://machinelearningmastery.com/boosting-and-adaboost-for-machine-learning/ (accessed on 27 August 2021).
- Watanabe, S. Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory. J. Mach. Learn. Res. 2010, 11, 3571. Available online: http://jmlr.org/papers/v11/watanabe10a.html (accessed on 7 October 2021).
- Berrar, D. Cross-Validation. Encycl. Bioinform. Comput. Biol. 2019, 1, 542–545. [Google Scholar] [CrossRef]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, X.; Bucholc, M.; Wang, H.; Glass, D.H.; Wang, H.; Clarke, D.H.; Bjourson, A.J.; Dowey, L.R.C.; O’Kane, M.; Prasad, G.; et al. A hybrid computational approach for efficient Alzheimer’s disease classification based on heterogeneous data. Sci. Rep. 2018, 8, 9774. [Google Scholar] [CrossRef]
- Turner, R.; Stubbs, T.; Davies, D.A.; Albensi, B.C. Potential New Approaches for Diagnosis of Alzheimer’s Disease and Related Dementias. Front. Neurol. 2020, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Facal, D.; Valladares-Rodriguez, S.; Lojo-Seoane, C.; Pereiro, A.X.; Anido-Rifon, L.; Juncos-Rabadán, O. Machine learning approaches to studying the role of cognitive reserve in conversion from mild cognitive impairment to dementia. Int. J. Geriatr. Psychiatry 2019, 34, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Er, F.; Iscen, P.; Sahin, S.; Çinar, N.; Karsidag, S.; Goularas, D. Distinguishing age-related cognitive decline from dementias: A study based on machine learning algorithms. J. Clin. Neurosci. 2017, 42, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Wong-Lin, K.; McClean, P.L.; McCombe, N.; Kaur, D.; Sanchez-Bornot, J.M.; Gillespie, P.; Todd, S.; Finn, D.P.; Joshi, A.; Kane, J.; et al. Shaping a data-driven era in dementia care pathway through computational neurology approaches. BMC Med. 2020, 18, 398. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.; Puterman, E.; Prather, A.A.; Ware, E.B.; Rehkopf, D.H. A data-driven prospective study of dementia among older adults in the United States. PLoS ONE 2020, 15, e0239994. [Google Scholar] [CrossRef] [PubMed]
- Goins, H.; HekmatiAthar, S.; Byfield, G.; Samuel, R.; Anwar, M. Toward Data-Driven Assessment of Caregiver’s Burden for Persons with Dementia using Machine Learning Models. In Proceedings of the 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA, 11–13 August 2020; pp. 379–384. [Google Scholar] [CrossRef]
- Anik, A.I.; Bunt, A. Data-Centric Explanations: Explaining Training Data of Machine Learning Systems to Promote Transparency. In Proceedings of the CHI’21: CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021. [Google Scholar] [CrossRef]
- Koch, T.; Iliffe, S. Implementing the National Dementia Strategy in England: Evaluating innovative practices using a case study methodology. Dementia 2011, 10, 487–498. [Google Scholar] [CrossRef]
- Veluppal, A.; Sadhukhan, D.; Gopinath, V.; Swaminathan, R. Detection of Mild Cognitive Impairment using Kernel Density Estimation based texture analysis of the Corpus Callosum in brain MR images. IRBM 2021, in press. [Google Scholar] [CrossRef]
- Richhariya, B.; Tanveer, M.; Rashid, A. Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomed. Signal Process. Control. 2020, 59, 101903. [Google Scholar] [CrossRef]
Subjects | 78 D | 72 ND |
---|---|---|
Male | 40 D | 22 ND |
Female | 38 D | 50 ND |
Age range (years) | 60–96 | |
Median | 77.0 | |
Mean ± SD | 77.01 ± 7.3 |
Non-Demented | Demented | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Age | N | n | Mean | Male | Female | Convert | n | Mean | Male | Female | CDR (0.5/1) |
60s | 34 | 23 | 65.71 | 6 | 17 | 3 | 11 | 65.67 | 8 | 3 | 8/3 |
70s | 71 | 35 | 74.91 | 11 | 24 | 4 | 36 | 73.97 | 20 | 16 | 29/7 |
80s | 41 | 26 | 84.30 | 9 | 17 | 7 | 15 | 82.33 | 7 | 8 | 13/2 |
90s | 4 | 2 | 92.50 | 0 | 2 | 0 | 2 | 93.00 | 1 | 1 | 1/1 |
Total | 150 | 86 | 75.82 | 26 | 59 | 14 | 64 | 74.95 | 36 | 29 | 52/13 |
Features | Description |
---|---|
Subject ID | Subject identification number |
MRI ID | Image identification number of an individual subject |
Visit | Number of subject visits |
Gender | Male/Female |
Hand | Right/Left-handed |
EDUC | Subject education level (in years) |
SES | Socioeconomic status |
MMSE | Mini-mental state examination score |
CDR | Clinical dementia rating score |
e-TIV | Estimated total intracranial volume result |
n-WBV | Normalized whole brain volume result |
ASF | Atlas scaling factor |
Age | Subject age while scanning |
Group | Demented/Nondemented/Converted |
MR delay | Magnetic resonance (MR) delay is the delay time that is before the image procurement |
Classification | 1 | 0 |
---|---|---|
D = 1 | TP | FN |
ND = 0 | FP | TN |
N | Classifier | Accuracy | Precision | Recall | F-Score | AUROC |
---|---|---|---|---|---|---|
1. | Gradient boosting | 97.58 | 0.98 | 0.96 | 0.97 | 0.981 |
2. | SVM | 96.77 | 0.98 | 0.95 | 0.96 | 0.968 |
3. | LR | 96.77 | 0.98 | 0.95 | 0.96 | 0.977 |
4. | RF | 96.77 | 0.96 | 0.96 | 0.96 | 0.983 |
5. | AdaBoosting | 96.77 | 0.96 | 0.96 | 0.96 | 0.971 |
6. | NB | 95.96 | 0.96 | 0.95 | 0.95 | 0.980 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battineni, G.; Hossain, M.A.; Chintalapudi, N.; Traini, E.; Dhulipalla, V.R.; Ramasamy, M.; Amenta, F. Improved Alzheimer’s Disease Detection by MRI Using Multimodal Machine Learning Algorithms. Diagnostics 2021, 11, 2103. https://doi.org/10.3390/diagnostics11112103
Battineni G, Hossain MA, Chintalapudi N, Traini E, Dhulipalla VR, Ramasamy M, Amenta F. Improved Alzheimer’s Disease Detection by MRI Using Multimodal Machine Learning Algorithms. Diagnostics. 2021; 11(11):2103. https://doi.org/10.3390/diagnostics11112103
Chicago/Turabian StyleBattineni, Gopi, Mohmmad Amran Hossain, Nalini Chintalapudi, Enea Traini, Venkata Rao Dhulipalla, Mariappan Ramasamy, and Francesco Amenta. 2021. "Improved Alzheimer’s Disease Detection by MRI Using Multimodal Machine Learning Algorithms" Diagnostics 11, no. 11: 2103. https://doi.org/10.3390/diagnostics11112103
APA StyleBattineni, G., Hossain, M. A., Chintalapudi, N., Traini, E., Dhulipalla, V. R., Ramasamy, M., & Amenta, F. (2021). Improved Alzheimer’s Disease Detection by MRI Using Multimodal Machine Learning Algorithms. Diagnostics, 11(11), 2103. https://doi.org/10.3390/diagnostics11112103