Polymorphism of Genes and Their Impact on Beef Quality
Abstract
1. Introduction
2. Myostatin
3. Thyroglobulin
4. The Calpain–Calpastatin System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, N.; Panzone, L.; Kuznesof, S. The role of cooking in consumers’ quality formation: An exploratory study of beef steaks. Meat Sci. 2022, 186, 108730. [Google Scholar] [CrossRef] [PubMed]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Whitton, C.; Bogueva, D.; Marinova, D.; Phillips, C.J. Are we approaching peak meat consumption? Analysis of meat consumption from 2000 to 2019 in 35 countries and its relationship to gross domestic product. Animals 2021, 11, 3466. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, D.R.; Maza, M.T.; Prado, I.N.d.; Fiorentini, G.; Kirinus, J.K.; Campo, M.d.M. An exploratory study of the purchase and consumption of beef: Geographical and cultural differences between Spain and Brazil. Foods 2022, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Banović, M.; Chrysochou, P.; Grunert, K.G.; Rosa, P.J.; Gamito, P. The effect of fat content on visual attention and choice of red meat and differences across gender. Food Qual. Prefer. 2016, 52, 42–51. [Google Scholar] [CrossRef]
- Killinger, K.; Calkins, C.R.; Umberger, W.; Feuz, D.M.; Eskridge, K.M. Consumer visual preference and value for beef steaks differing in marbling level and color. J. Anim. Sci. 2004, 82, 3288–3293. [Google Scholar] [CrossRef]
- Morales, R.; Aguiar, A.; Subiabre, I.; Realini, C. Beef acceptability and consumer expectations associated with production systems and marbling. Food Qual. Prefer. 2013, 29, 166–173. [Google Scholar] [CrossRef]
- Frank, D.; Ball, A.; Hughes, J.; Krishnamurthy, R.; Piyasiri, U.; Stark, J.; Watkins, P.; Warner, R. Sensory and flavor chemistry characteristics of Australian beef: Influence of intramuscular fat, feed, and breed. J. Agric. Food Chem. 2016, 64, 4299–4311. [Google Scholar] [CrossRef]
- Barendse, W.; Bunch, R.; Thomas, M.; Armitage, S.; Baud, S.; Donaldson, N. The TG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle. Aust. J. Exp. Agric. 2004, 44, 669–674. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lee, S.-J. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 1997, 94, 12457–12461. [Google Scholar] [CrossRef]
- Steen, D.; Claeys, E.; Uytterhaegen, L.; De Smet, S.; Demeyer, D. Early post-mortem conditions and the calpain/calpastatin system in relation to tenderness of double-muscled beef. Meat Sci. 1997, 45, 307–319. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Ren, C.; Bai, Y.; Ijaz, M.; Hou, C.; Chen, L. Effects of protein posttranslational modifications on meat quality: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 289–331. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Database. 2019. Available online: https://www.fao.org/faostat/en/#data/QV (accessed on 7 March 2023).
- Huang, C.; Hou, C.; Ijaz, M.; Yan, T.; Li, X.; Li, Y.; Zhang, D. Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: Current trends and future prospects: A review. Trends Food Sci. Technol. 2020, 105, 416–432. [Google Scholar] [CrossRef]
- Kantono, K.; Hamid, N.; Ma, Q.; Chadha, D.; Oey, I. Consumers’ perception and purchase behaviour of meat in China. Meat Sci. 2021, 179, 108548. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.M.; Garrick, D. Increasing the accuracy of genomic prediction in pure-bred Limousin beef cattle by including cross-bred Limousin data and accounting for an F94L variant in MSTN. Anim. Genet. 2019, 50, 621–633. [Google Scholar] [CrossRef]
- Prihandini, P.W.; Primasari, A.; Aryogi, A.; Efendy, J.; Luthfi, M.; Pamungkas, D.; Hariyono, D.N.H. Genetic variation in the first intron and exon of the myostatin gene in several Indonesian cattle populations. Vet. World 2021, 14, 1197. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Pang, D.; Wang, K.; Xu, A.; Yao, C.; Li, M.; You, W.; Wang, Q.; Yu, H. The possible role of complete loss of myostatin in limiting excessive proliferation of muscle cells (C2C12) via activation of microRNAs. Int. J. Mol. Sci. 2019, 20, 643. [Google Scholar] [CrossRef] [PubMed]
- Bellinge, R.; Liberles, D.; Iaschi, S.; O’brien, P.; Tay, G. Myostatin and its implications on animal breeding: A review. Anim. Genet. 2005, 36, 1–6. [Google Scholar] [CrossRef]
- Aiello, D.; Patel, K.; Lasagna, E. The myostatin gene: An overview of mechanisms of action and its relevance to livestock animals. Anim. Genet. 2018, 49, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Ansay, M.; Hanset, R. Anatomical, physiological and biochemical differences between conventional and double-muscled cattle in the Belgian Blue and White breed. Livest. Prod. Sci. 1979, 6, 5–13. [Google Scholar] [CrossRef]
- Hanset, R. The major gene of muscular hypertrophy in the Belgian Blue cattle breed. In Breeding for Disease Resistance in Farm Animals; Owen, J., Axford, R., Eds.; CAB International: Wallingford, UK, 1991; pp. 467–478. [Google Scholar]
- Hanset, R.; Michaux, C.; Dessy-Doize, C.; Burtonboy, G. Muscle Hypertrophy of Genetic Origin and Its Use to Improve Beef Production; Springer: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Grobet, L.; Royo Martin, L.J.; Poncelet, D.; Pirottin, D.; Brouwers, B.; Riquet, J.; Schoeberlein, A.; Dunner, S.; Ménissier, F.; Massabanda, J. A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle. Nat. Genet. 1997, 17, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Kambadur, R.; Matthews, K.G.; Somers, W.G.; Devlin, G.P.; Conaglen, J.V.; Fowke, P.J.; Bass, J.J. Myostatin, a transforming growth factor-β superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell. Physiol. 1999, 180, 1–9. [Google Scholar] [CrossRef]
- Jiao, J.; Yuan, T.; Zhou, Y.; Xie, W.; Zhao, Y.; Zhao, J.; Ouyang, H.; Pang, D. Analysis of myostatin and its related factors in various porcine tissues. J. Anim. Sci. 2011, 89, 3099–3106. [Google Scholar] [CrossRef]
- Wolfman, N.M.; McPherron, A.C.; Pappano, W.N.; Davies, M.V.; Song, K.; Tomkinson, K.N.; Wright, J.F.; Zhao, L.; Sebald, S.M.; Greenspan, D.S. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc. Natl. Acad. Sci. USA 2003, 100, 15842–15846. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lawler, A.M.; Lee, S.-J. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Trendelenburg, A.U.; Meyer, A.; Rohner, D.; Boyle, J.; Hatakeyama, S.; Glass, D.J. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol.-Cell Physiol. 2009, 296, C1258–C1270. [Google Scholar] [CrossRef]
- Bryson-Richardson, R.J.; Currie, P.D. The genetics of vertebrate myogenesis. Nat. Rev. Genet. 2008, 9, 632–646. [Google Scholar] [CrossRef]
- Amthor, H.; Huang, R.; McKinnell, I.; Christ, B.; Kambadur, R.; Sharma, M.; Patel, K. The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis. Dev. Biol. 2002, 251, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.-H.; Lee, K. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide. Int. J. Mol. Sci. 2020, 21, 1504. [Google Scholar] [CrossRef]
- Tang, L.; Zhao, T.; Kang, Y.; An, S.; Fan, X.; Sun, L. MSTN is an important myokine for weight-bearing training to attenuate bone loss in ovariectomized rats. J. Physiol. Biochem. 2022, 78, 61–72. [Google Scholar] [CrossRef]
- Xin, X.-B.; Yang, S.-P.; Li, X.; Liu, X.-F.; Zhang, L.-L.; Ding, X.-B.; Zhang, S.; Li, G.-P.; Guo, H. Proteomics insights into the effects of MSTN on muscle glucose and lipid metabolism in genetically edited cattle. Gen. Comp. Endocrinol. 2020, 291, 113237. [Google Scholar] [CrossRef] [PubMed]
- Kärst, S.; Strucken, E.M.; Schmitt, A.O.; Weyrich, A.; de Villena, F.P.; Yang, H.; Brockmann, G.A. Effect of the myostatin locus on muscle mass and intramuscular fat content in a cross between mouse lines selected for hypermuscularity. BMC Genom. 2013, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Hocquette, J.-F.; Bas, P.; Bauchart, D.; Vermorel, M.; Geay, Y. Fat partitioning and biochemical characteristics of fatty tissues in relation to plasma metabolites and hormones in normal and double-muscled young growing bulls. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1999, 122, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Zhang, F.; Wen, J.; Ye, S.; Wang, L.; Yang, Y.; Gong, P.; Jiang, S. The function of myostatin in the regulation of fat mass in mammals. Nutr. Metab. 2017, 14, 29. [Google Scholar] [CrossRef]
- Fournier, B.; Murray, B.; Gutzwiller, S.; Marcaletti, S.; Marcellin, D.; Bergling, S.; Brachat, S.; Persohn, E.; Pierrel, E.; Bombard, F. Blockade of the activin receptor IIb activates functional brown adipogenesis and thermogenesis by inducing mitochondrial oxidative metabolism. Mol. Cell. Biol. 2012, 32, 2871–2879. [Google Scholar] [CrossRef]
- Braga, M.; Pervin, S.; Norris, K.; Bhasin, S.; Singh, R. Inhibition of in vitro and in vivo brown fat differentiation program by myostatin. Obesity 2013, 21, 1180–1188. [Google Scholar] [CrossRef]
- Zhao, B.; Wall, R.J.; Yang, J. Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem. Biophys. Res. Commun. 2005, 337, 248–255. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lee, S.-J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Investig. 2002, 109, 595–601. [Google Scholar] [CrossRef]
- Wiener, P.; Woolliams, J.; Frank-Lawale, A.; Ryan, M.; Richardson, R.; Nute, G.; Wood, J.; Homer, D.; Williams, J. The effects of a mutation in the myostatin gene on meat and carcass quality. Meat Sci. 2009, 83, 127–134. [Google Scholar] [CrossRef]
- Allais, S.; Levéziel, H.; Payet-Duprat, N.; Hocquette, J.-F.; Lepetit, J.; Rousset, S.; Denoyelle, C.; Bernard-Capel, C.; Journaux, L.; Bonnot, A. The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds. J. Anim. Sci. 2010, 88, 446–454. [Google Scholar] [CrossRef]
- Purfield, D.; Evans, R.; Berry, D. Reaffirmation of known major genes and the identification of novel candidate genes associated with carcass-related metrics based on whole genome sequence within a large multi-breed cattle population. BMC Genom. 2019, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Bouyer, C.; Forestier, L.; Renand, G.; Oulmouden, A. Deep intronic mutation and pseudo exon activation as a novel muscular hypertrophy modifier in cattle. PLoS ONE 2014, 9, e97399. [Google Scholar] [CrossRef] [PubMed]
- Kambadur, R.; Sharma, M.; Smith, T.P.; Bass, J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997, 7, 910–915. [Google Scholar] [CrossRef]
- Cappucio, I.; Marchitelli, C.; Serracchioli, A.; Nardone, A.; Filippini, F.; Ajmone-Marsan, P.; Valentini, A. A GT transversion introduces a stop codon at the mh locus in hypertrophic Marchigiana beef subjects. Anim. Genet 1998, 29, 51. [Google Scholar]
- Sellick, G.S.; Pitchford, W.; Morris, C.; Cullen, N.; Crawford, A.; Raadsma, H.; Bottema, C. Effect of myostatin F94L on carcass yield in cattle. Anim. Genet. 2007, 38, 440–446. [Google Scholar] [CrossRef]
- Casas, E.; Keele, J.; Shackelford, S.; Koohmaraie, M.; Sonstegard, T.; Smith, T.; Kappes, S.; Stone, R. Association of the muscle hypertrophy locus with carcass traits in beef cattle. J. Anim. Sci. 1998, 76, 468–473. [Google Scholar] [CrossRef][Green Version]
- Dunner, S.; Miranda, M.E.; Amigues, Y.; Cañón, J.; Georges, M.; Hanset, R.; Williams, J.; Ménissier, F. Haplotype diversity of the myostatin gene among beef cattle breeds. Genet. Sel. Evol. 2003, 35, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Wegner, J.; Albrecht, E.; Fiedler, I.; Teuscher, F.; Papstein, H.-J.; Ender, K. Growth-and breed-related changes of muscle fiber characteristics in cattle. J. Anim. Sci. 2000, 78, 1485–1496. [Google Scholar] [CrossRef]
- Mwashiuya, J.T.; Manyele, S.V.; Mwaluko, G. Assessment of Beef Quality Determinants based on consumer preferences. J. Serv. Sci. Manag. 2018, 11, 657. [Google Scholar] [CrossRef]
- Farmer, L.; Farrell, D. Beef-eating quality: A European journey. Animal 2018, 12, 2424–2433. [Google Scholar] [CrossRef]
- Egan, A.; Ferguson, D.; Thompson, J. Consumer sensory requirements for beef and their implications for the Australian beef industry. Aust. J. Exp. Agric. 2001, 41, 855–859. [Google Scholar] [CrossRef]
- Arthur, P.F.; Makarechian, M.; Price, M.A. Incidence of dystocia and perinatal calf mortality resulting from reciprocal crossing of double-muscled and normal cattle. Can. Vet. J. 1988, 29, 163. [Google Scholar] [PubMed]
- King, J.; Menissier, F. Muscle hypertrophy of genetic origin and its use to improve beef. In Current Topics in Veterinary Medicine and Animal Science; Springer: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Arthur, P.; Makarechian, M.; Price, M.; Berg, R. Heterosis, maternal and direct effects in double-muscled and normal cattle: I. Reproduction and growth traits. J. Anim. Sci. 1989, 67, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Rehfeldt, C.; Ott, G.; Gerrard, D.E.; Varga, L.; Schlote, W.; Williams, J.L.; Renne, U.; Bünger, L. Effects of the Compact mutant myostatin allele Mstn Cmpt-dl1Abc introgressed into a high growth mouse line on skeletal muscle cellularity. J. Muscle Res. Cell Motil. 2005, 26, 103. [Google Scholar] [CrossRef]
- Kowalewska-Luczak, I.; Kulig, H.; Szewczyk, K. Polimorfizm w genie tyreoglobuliny u bydła rasy jersey. Acta Sci. Polonorum. Zootech. 2010, 9, 129–134. [Google Scholar]
- van der Spek, A.H.; Fliers, E.; Boelen, A. The classic pathways of thyroid hormone metabolism. Mol. Cell. Endocrinol. 2017, 458, 29–38. [Google Scholar] [CrossRef]
- Ardicli, S.; Dincel, D.; Samli, H.; Senturk, N.; Karalar, B.; Unlu, S.; Soyudal, B.; Kubad, E.; Balci, F. Association of polymorphisms in lipid and energy metabolism-related genes with fattening performance in Simmental cattle. Anim. Biotechnol. 2022, 2, 1–13. [Google Scholar] [CrossRef]
- Dolmatova, I.; Sedykh, T.; Valitov, F.; Gizatullin, R.; Khaziev, D.; Kharlamov, A. Effect of the bovine TG5 gene polymorphism on milk-and meat-producing ability. Vet. World 2020, 13, 2046. [Google Scholar] [CrossRef]
- Gan, Q.-F.; Zhang, L.-P.; Li, J.-Y.; Hou, G.-Y.; Li, H.-D.; Gao, X.; Ren, H.-Y.; Chen, J.-B.; Xu, S.-Z. Association analysis of thyroglobulin gene variants with carcass and meat quality traits in beef cattle. J. Appl. Genet. 2008, 49, 251–255. [Google Scholar] [CrossRef]
- Ardicli, S.; Samli, H.; Dincel, D.; Ekiz, B.; Yalcintan, H.; Vatansever, B.; Balci, F. Relationship of the bovine IGF1, TG, DGAT1 and MYF5 genes to meat colour, tenderness and cooking loss. J. Hell. Vet. Med. Soc. 2018, 69, 1077–1087. [Google Scholar] [CrossRef]
- Carvalho, T.D.D.; Siqueira, F.; Torres Júnior, R.A.D.A.; Medeiros, S.R.D.; Feijó, G.L.D.; Souza Junior, M.D.D.; Blecha, I.M.Z.; Soares, C.O. Association of polymorphisms in the leptin and thyroglobulin genes with meat quality and carcass traits in beef cattle. Rev. Bras. De Zootec. 2012, 41, 2162–2168. [Google Scholar] [CrossRef]
- De la Fuente, J.; Diaz, M.; Alvarez, I.; Oliver, M.; i Furnols, M.F.; Sañudo, C.; Campo, M.; Montossi, F.; Nute, G.; Caneque, V. Fatty acid and vitamin E composition of intramuscular fat in cattle reared in different production systems. Meat Sci. 2009, 82, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Testa, M.L.; Grigioni, G.; Panea, B.; Pavan, E. Color and marbling as predictors of meat quality perception of Argentinian consumers. Foods 2021, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Beak, S.-H.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; Baik, M. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043. [Google Scholar] [CrossRef] [PubMed]
- Rincker, C.B.; Pyatt, N.A.; Berger, L.L.; Faulkner, D.B. Relationship among GeneSTAR marbling marker, intramuscular fat deposition, and expected progeny differences in early weaned Simmental steers. J. Anim. Sci. 2006, 84, 686–693. [Google Scholar] [CrossRef]
- Casas, E.; White, S.N.; Riley, D.G.; Smith, T.P.L.; Brenneman, R.A.; Olson, T.A.; Johnson, D.D.; Coleman, S.W.; Bennett, G.L.; Chase, C.C., Jr. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle1,2. J. Anim. Sci. 2005, 83, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Wood, I.A.; Moser, G.; Burrell, D.L.; Mengersen, K.L.; Hetzel, D.J.S. A meta-analytic assessment of a Thyroglobulin marker for marbling in beef cattle. Genet. Sel. Evol. 2006, 38, 479–494. [Google Scholar] [CrossRef][Green Version]
- Van Eenennaam, A.L.; Li, J.; Thallman, R.M.; Quaas, R.L.; Dikeman, M.E.; Gill, C.A.; Franke, D.E.; Thomas, M.G. Validation of commercial DNA tests for quantitative beef quality traits1,2. J. Anim. Sci. 2007, 85, 891–900. [Google Scholar] [CrossRef]
- Albrecht, E.; Gotoh, T.; Ebara, F.; Xu, J.; Viergutz, T.; Nürnberg, G.; Maak, S.; Wegner, J. Cellular conditions for intramuscular fat deposition in Japanese Black and Holstein steers. Meat Sci. 2011, 89, 13–20. [Google Scholar] [CrossRef]
- Irie, M.; Kouda, M.; Matono, H. Effect of ursodeoxycholic acid supplementation on growth, carcass characteristics, and meat quality of Wagyu heifers (Japanese Black cattle). J. Anim. Sci. 2011, 89, 4221–4226. [Google Scholar] [CrossRef]
- Jeong, J.; Kwon, E.; Im, S.; Seo, K.; Baik, M. Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J. Anim. Sci. 2012, 90, 2044–2053. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Kang, G.; Seong, P.-N.; Park, B.; Kang, S.M. Effect of slaughter age on the antioxidant enzyme activity, color, and oxidative stability of Korean Hanwoo (Bos taurus coreanae) cow beef. Meat Sci. 2015, 108, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Jung, K.; Chung, K.; Yang, B.; Chin, K.; Suh, S.; Oh, D.; Jeon, M.; Baek, K.; Lee, S. Administration of zilpaterol hydrochloride alters feedlot performance, carcass characteristics, muscle, and fat profiling in finishing Hanwoo steers. Livest. Sci. 2013, 157, 435–441. [Google Scholar] [CrossRef]
- Jung, S.; Nam, K.C.; Lee, K.H.; Kim, J.J.; Jo, C. Meat quality traits of Longissimus dorsi muscle from carcasses of Hanwoo steers at different yield grades. Food Sci. Anim. Resour. 2013, 33, 305–316. [Google Scholar] [CrossRef][Green Version]
- Greenwood, P.L.; Siddell, J.; Walmsley, B.; Geesink, G.; Pethick, D.; McPhee, M. Postweaning substitution of grazed forage with a high-energy concentrate has variable long-term effects on subcutaneous fat and marbling in Bos taurus genotypes. J. Anim. Sci. 2015, 93, 4132–4143. [Google Scholar] [CrossRef]
- Krone, K.; Ward, A.; Madder, K.; Hendrick, S.; McKinnon, J.; Buchanan, F. Interaction of vitamin A supplementation level with ADH1C genotype on intramuscular fat in beef steers. Animal 2016, 10, 403–409. [Google Scholar] [CrossRef]
- Dinh, T.; Blanton Jr, J.; Riley, D.; Chase Jr, C.; Coleman, S.; Phillips, W.; Brooks, J.; Miller, M.; Thompson, L. Intramuscular fat and fatty acid composition of longissimus muscle from divergent pure breeds of cattle. J. Anim. Sci. 2010, 88, 756–766. [Google Scholar] [CrossRef]
- Dubovskova, M.; Selionova, M.; Chizhova, L.; Surzhikova, E.; Gerasimov, N.; Mikhailenko, A.; Dolgashova, M. Use of genetic markers of meat productivity in breeding of Hereford breed bulls. Proc. IOP Conf. Series Earth Environ. Sci. 2019, 341, 012052. [Google Scholar] [CrossRef]
- Bernard, C.; Cassar-Malek, I.; Le Cunff, M.; Dubroeucq, H.; Renand, G.; Hocquette, J.-F. New indicators of beef sensory quality revealed by expression of specific genes. J. Agric. Food Chem. 2007, 55, 5229–5237. [Google Scholar] [CrossRef]
- Gonzales-Malca, J.A.; Tirado-Kulieva, V.A.; Abanto-López, M.S.; Aldana-Juárez, W.L.; Palacios-Zapata, C.M. Bibliometric Analysis of Research on the Main Genes Involved in Meat Tenderness. Animals 2022, 12, 2976. [Google Scholar] [CrossRef] [PubMed]
- Uzabaci, E.; Dincel, D. Associations Between c. 2832A < G Polymorphism of CAST Gene and Meat Tenderness in Cattle: A Meta-Analysis CAST Geninin c. 2832A< G Polimorfizmi ile Sığırlarda Et Gevrekliği Arasındaki İlişki: Bir Meta-Analizi. Kafkas Univ. Vet. Fak. Derg. 2022, 28, 613–620. [Google Scholar]
- Koohmaraie, M.; Geesink, G. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 2006, 74, 34–43. [Google Scholar] [CrossRef]
- Gagaoua, M.; Terlouw, E.C.; Mullen, A.M.; Franco, D.; Warner, R.D.; Lorenzo, J.M.; Purslow, P.P.; Gerrard, D.; Hopkins, D.L.; Troy, D. Molecular signatures of beef tenderness: Underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Sci. 2021, 172, 108311. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; Abdelnour, S.A.; Swelum, A.A.; Arif, M. The application of gene marker-assisted selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed. Mol. Biol. Rep. 2018, 45, 1445–1456. [Google Scholar] [CrossRef]
- Brito Lopes, F.; Magnabosco, C.U.; Passafaro, T.L.; Brunes, L.C.; Costa, M.F.; Eifert, E.C.; Narciso, M.G.; Rosa, G.J.; Lobo, R.B.; Baldi, F. Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks. J. Anim. Breed. Genet. 2020, 137, 438–448. [Google Scholar] [CrossRef]
- Smith, T.P.; Thallman, R.M.; Casas, E.; Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Theory and application of genome-based approaches to improve the quality and value of beef. Outlook Agric. 2003, 32, 253–265. [Google Scholar] [CrossRef]
- Takahashi, K. Mechanism of meat tenderization during post-mortem ageing: Calcium theory. In Proceedings of the International Congress of Meat Science and Technology, Yokohama, Japan, 1–6 August 1999; pp. 230–235. [Google Scholar]
- Koohmaraie, M. The role of Ca(2+)-dependent proteases (calpains) in post mortem proteolysis and meat tenderness. Biochimie 1992, 74, 239–245. [Google Scholar] [CrossRef]
- Watanabe, A.; Daly, C.; Devine, C. The effects of the ultimate pH of meat on tenderness changes during ageing. Meat Sci. 1996, 42, 67–78. [Google Scholar] [CrossRef]
- Bhat, Z.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Role of calpain system in meat tenderness: A review. Food Sci. Hum. Wellness 2018, 7, 196–204. [Google Scholar] [CrossRef]
- Dransfield, E. Meat tenderness–the µ-calpain hypothesis. In Proceedings of the 45th International Congress of Meat Science and Technology, Yokohama, Japan, 1–6 August 1999. [Google Scholar]
- Kurebayashi, N.; Harkins, A.; Baylor, S. Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers. Biophys. J. 1993, 64, 1934–1960. [Google Scholar] [CrossRef]
- Jeacocke, R.E. The concentrations of free magnesium and free calcium ions both increase in skeletal muscle fibres entering rigor mortis. Meat Sci. 1993, 35, 27–45. [Google Scholar] [CrossRef]
- Ilian, M.A.; Bekhit, A.E.-D.; Bickerstaffe, R. The relationship between meat tenderization, myofibril fragmentation and autolysis of calpain 3 during post-mortem aging. Meat Sci. 2004, 66, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Ilian, M.A.; Morton, J.D.; Bekhit, A.E.-D.; Roberts, N.; Palmer, B.; Sorimachi, H.; Bickerstaffe, R. Effect of preslaughter feed withdrawal period on longissimus tenderness and the expression of calpains in the ovine. J. Agric. Food Chem. 2001, 49, 1990–1998. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J.; Jia, C.; Zhao, R. Gene expression of calpain 3 and PGC-1α is correlated with meat tenderness in the longissimus dorsi muscle of Sutai pigs. Livest. Sci. 2012, 147, 119–125. [Google Scholar] [CrossRef]
- Koohmaraie, M. Effect of pH, temperature, and inhibitors on autolysis and catalytic activity of bovine skeletal muscle μ-calpain. J. Anim. Sci. 1992, 70, 3071–3080. [Google Scholar] [CrossRef]
- Thomson, B.; Dobbie, P.; Singh, K.; Speck, P. Post-mortem kinetics of meat tenderness and the components of the calpain system in bull skeletal muscle. Meat Sci. 1996, 44, 151–157. [Google Scholar] [CrossRef]
- Boehm, M.L.; Kendall, T.L.; Thompson, V.F.; Goll, D.E. Changes in the calpains and calpastatin during postmortem storage of bovine muscle. J. Anim. Sci. 1998, 76, 2415–2434. [Google Scholar] [CrossRef]
- Pringle, T.; Harrelson, J.; West, R.; Williams, S.; Johnson, D. Calcium-activated tenderization of strip loin, top sirloin, and top round steaks in diverse genotypes of cattle. J. Anim. Sci. 1999, 77, 3230–3237. [Google Scholar] [CrossRef]
- Morris, C.; Cullen, N.; Hickey, S.; Dobbie, P.; Veenvliet, B.; Manley, T.; Pitchford, W.; Kruk, Z.; Bottema, C.; Wilson, T. Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey× Limousin, Angus and Hereford-cross cattle. Anim. Genet. 2006, 37, 411–414. [Google Scholar] [CrossRef] [PubMed]
- White, S.; Casas, E.; Wheeler, T.; Shackelford, S.; Koohmaraie, M.; Riley, D.; Chase Jr, C.; Johnson, D.; Keele, J.; Smith, T. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 2005, 83, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Basson, A.; Strydom, P.E.; van Marle-Köster, E.; Webb, E.C.; Frylinck, L. Sustained Effects of Muscle Calpain System Genotypes on Tenderness Phenotypes of South African Beef Bulls during Ageing up to 20 Days. Animals 2022, 12, 686. [Google Scholar] [CrossRef] [PubMed]
- Avilés, C.; Juárez, M.; Peña, F.; Domenech, V.; Clemente, I.; Molina, A. Association of single nucleotide polymorphisms in CAPN1 and CAST genes with beef tenderness from Spanish commercial feedlots. Czech. J. Anim. Sci. 2013, 58, 479–487. [Google Scholar] [CrossRef]
- Page, B.; Casas, E.; Heaton, M.; Cullen, N.; Hyndman, D.; Morris, C.; Crawford, A.; Wheeler, T.; Koohmaraie, M.; Keele, J. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 2002, 80, 3077–3085. [Google Scholar] [CrossRef]
- Casas, E.; White, S.; Wheeler, T.; Shackelford, S.; Koohmaraie, M.; Riley, D.; Chase Jr, C.; Johnson, D.; Smith, T. Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 2006, 84, 520–525. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, S.-C.; Chai, H.-H.; Cho, S.-H.; Kim, H.-C.; Lim, D.; Choi, B.-H.; Dang, C.-G.; Sharma, A.; Gondro, C. Mutations in calpastatin and μ-calpain are associated with meat tenderness, flavor and juiciness in Hanwoo (Korean cattle): Molecular modeling of the effects of substitutions in the calpastatin/μ-calpain complex. Meat Sci. 2014, 96, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Rubio Lozano, M.S.; Alfaro-Zavala, S.; Sifuentes-Rincón, A.M.; Parra-Bracamonte, G.M.; Braña Varela, D.; Medina, R.D.M.; Pérez Linares, C.; Ríos Rincón, F.; Sánchez Escalante, A.; Torrescano Urrutia, G. Meat tenderness genetic and genomic variation sources in commercial beef cattle. J. Food Qual. 2016, 39, 150–156. [Google Scholar] [CrossRef]
- Smith, T.; Thomas, M.; Bidner, T.; Paschal, J.; Franke, D. Single nucleotide polymorphisms in Brahman steers and their association with carcass and tenderness traits. Genet. Mol. Res 2009, 8, 39–46. [Google Scholar] [CrossRef]
- Pinto, L.; Ferraz, J.B.S.; Meirelles, F.V.; Eler, J.P.; Rezende, F.M.d.; Carvalho, M.; Almeida, H.; Silva, R. Association of SNPs on CAPN 1 and CAST genes with tenderness in Nellore cattle. Genet. Mol. Res. 2010, 9, 1431–1442. [Google Scholar] [CrossRef]
- Pinto, L.F.B.; Ferraz, J.B.S.; Pedrosa, V.B.; Eler, J.P.; Meirelles, F.V.; Bonin, M.d.N.; Rezende, F.M.D.; Carvalho, M.E.; Cucco, D.D.C.; Silva, R.C.G.D. Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle. Genet. Mol. Res. 2011, 10, 2057–2064. [Google Scholar]
- Rosa, A.F.; Moncau, C.T.; Poleti, M.D.; Fonseca, L.D.; Balieiro, J.C.; Silva, S.L.; Eler, J.P. Proteome changes of beef in Nellore cattle with different genotypes for tenderness. Meat Sci. 2018, 138, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kök, S.; Atalay, S. The Use of various SNPs in CAST and CAPN1 genes to determine the meat tenderness in Turkish grey cattle. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 1–8. [Google Scholar]
- Calvo, J.; Iguácel, L.; Kirinus, J.; Serrano, M.; Ripoll, G.; Casasús, I.; Joy, M.; Pérez-Velasco, L.; Sarto, P.; Albertí, P. A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness. Meat Sci. 2014, 96, 775–782. [Google Scholar] [CrossRef]
- Schenkel, F.S.; Miller, S.P.; Jiang, Z.; Mandell, I.B.; Ye, X.; Li, H.; Wilton, J.W. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle1. J. Anim. Sci. 2006, 84, 291–299. [Google Scholar] [CrossRef]
- Barendse, W.; Harrison, B.E.; Hawken, R.J.; Ferguson, D.M.; Thompson, J.M.; Thomas, M.B.; Bunch, R.J. Epistasis Between Calpain 1 and Its Inhibitor Calpastatin Within Breeds of Cattle. Genetics 2007, 176, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, R.; Liu, R.; Zhao, G.; Zheng, M.; Cui, H.; Li, Q.; Song, J.; Wang, J.; Wen, J. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens. PLoS ONE 2016, 11, e0159722. [Google Scholar] [CrossRef] [PubMed]
- Cônsolo, N.R.B.; Ferrari, V.B.; Mesquita, L.G.; Goulart, R.S.; e Silva, L.F.P. Zilpaterol hydrochloride improves beef yield, changes palatability traits, and increases calpain-calpastatin gene expression in Nellore heifers. Meat Sci. 2016, 121, 375–381. [Google Scholar] [CrossRef]
- Malheiros, J.M.; Enríquez-Valencia, C.E.; da Silva Duran, B.O.; de Paula, T.G.; Curi, R.A.; de Vasconcelos Silva, J.A.I.; Dal-Pai-Silva, M.; de Oliveira, H.N.; Chardulo, L.A.L. Association of CAST2, HSP90AA1, DNAJA1 and HSPB1 genes with meat tenderness in Nellore cattle. Meat Sci. 2018, 138, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Muroya, S.; Neath, K.E.; Nakajima, I.; Oe, M.; Shibata, M.; Ojima, K.; Chikuni, K. Differences in mRNA expression of calpains, calpastatin isoforms and calpain/calpastatin ratios among bovine skeletal muscles. Anim. Sci. J. 2012, 83, 252–259. [Google Scholar] [CrossRef]
- Allais, S.; Journaux, L.; Levéziel, H.; Payet-Duprat, N.; Raynaud, P.; Hocquette, J.-F.; Lepetit, J.; Rousset, S.; Denoyelle, C.; Bernard-Capel, C. Effects of polymorphisms in the calpastatin and µ-calpain genes on meat tenderness in 3 French beef breeds. J. Anim. Sci. 2011, 89, 1–11. [Google Scholar] [CrossRef]
- Johnston, D.; Graser, H.-U. Estimated gene frequencies of GeneSTAR markers and their size of effects on meat tenderness, marbling, and feed efficiency in temperate and tropical beef cattle breeds across a range of production systems. J. Anim. Sci. 2010, 88, 1917–1935. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tait Jr, R.; Shackelford, S.; Wheeler, T.; King, D.; Keele, J.; Casas, E.; Smith, T.; Bennett, G. CAPN1, CAST, and DGAT1 genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in a beef cattle population selected for haplotype and allele equalization. J. Anim. Sci. 2014, 92, 5382–5393. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Dobson, H.; Smith, R. What is stress, and how does it affect reproduction? Anim. Reprod. Sci. 2000, 60, 743–752. [Google Scholar] [CrossRef]
SNP | |||
---|---|---|---|
Reference | Breed | Position | Mutation |
[24] | Belgian Blue | c.821 | Del11 |
[10] | Blonde d’Aquitaine | c.821 | Del11 |
[45] | g.3811 | T > G | |
[46] | Charolaise | c.610 | C > T |
[46] | Limousine | c.821 | Del11 |
[47] | c.610 | C > T | |
[48] | g.433 | C > A | |
[47] | Marchigiana | g.874 | G > T |
[46] | Piedmontese | c.938 | G > A |
Reference | Breed | Muscle | CAPN SNP |
---|---|---|---|
[108] | Angus, Charolaise, Brahman, and Nguni | Longissimus thoracis et lumborum | CAPN1 184+, CAPN1 187+, CAPN1 4751+, and CAPN2 780+ |
[109] | Charolaise, Limousine, and Retinta | Longissimus dorsi | CAPN1+ |
[106] | Jersey–Limousine cross, Angus, and Hereford cross | Longissimus dorsi | CAPN1: c.947C > G+ |
[110] | Piedmontese–Angus cross and Jersey-Limousine cross | Longissimus thoracis | 38 SNPs+ |
[111] | Angus, Red Angus, Beefmaster, Brangus, Hereford, Bonsmara, Romosinuano, Brahman, Limousine, Charolaise, Gelbvieh, and Simmental | No data | CAPN1+ |
[107] | Brangus, Beefmaster, Bonsmara, Brahman, Romosinuano, Hereford, and Angus | Longissimus | CAPN1 316+, CAPN1 4753+, and CAPN1 530+ |
[112] | Hanwoo | Longissimus lumborum | CAPN1:c.1589G > A+, CAPN1:c.658C > T+, CAPN1:c.948G > C+, and CAPN1:c.580A > G+ |
[113] | B. taurus, B. indicus, and crosses | Longissimus dorsi | CAPN1 316+ and CAPN1 4751+ |
[114] | Brahman | Longissimus dorsi | CAPN316+ and CAPN4751+ |
[115] | Nellore | Longissimus dorsi | CAPN1 316+, CAPN1 4751+, CAPN1 530+, and CAPN1 4753+ |
[116] | Nellore | Longissimus dorsi | CAPN1 4751− |
[117] | Nellore | Longissimus dorsi | CAPN1 4751+ |
[118] | Turkish Grey | Longissimus dorsi | CAPN1 316+ and CAPN1 4751+ |
[119] | Parda de Montaña and Pirenaica | Longissimus thoracis | CAPN1 316−, CAPN1 530−, and CAPN1 4751− |
Reference | Breed | Muscle | CAST SNP |
---|---|---|---|
[108] | Angus, Charolaise, Brahman, and Nguni | Longissimus thoracis et lumborum | CAST 736+ and CAST 763+ |
[109] | Charolaise, Limousine, and Retinta | Longissimus dorsi | CAST+ |
[106] | Jersey–Limousine cross, Angus–Hereford, and other crosses | Longissimus dorsi | CAST: c.2959A > G+ |
[111] | Angus, Red Angus, Beefmaster, Brangus, Hereford, Bonsmara, Romosinuano, Brahman Limousine, Charolaise, Gelbvieh, and Simmental | No data | CAST+ |
[112] | Hanwoo | Longissimus lumborum | CAST:c.182A > G+, CAST:c.1985G > C+, and CAST:c.1526T > C+ |
[113] | B. taurus, B. indicus, and crosses | Longissimus dorsi | CAST-T1− |
[114] | Brahman | Longissimus dorsi | CAST+ |
[115] | Nellore | Longissimus dorsi | UOGCAST+ and WSUCAST+ |
[117] | Nellore | Longissimus dorsi | UOGCAST+ |
[118] | Turkish Grey | Longissimus dorsi | UOGCAST+ |
[119] | Parda de Montaña and Pirenaica | Longissimus thoracis | CAST1+, CAST2+, CAST3−, CAST4+, and CAST5− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostusiak, P.; Slósarz, J.; Gołębiewski, M.; Grodkowski, G.; Puppel, K. Polymorphism of Genes and Their Impact on Beef Quality. Curr. Issues Mol. Biol. 2023, 45, 4749-4762. https://doi.org/10.3390/cimb45060302
Kostusiak P, Slósarz J, Gołębiewski M, Grodkowski G, Puppel K. Polymorphism of Genes and Their Impact on Beef Quality. Current Issues in Molecular Biology. 2023; 45(6):4749-4762. https://doi.org/10.3390/cimb45060302
Chicago/Turabian StyleKostusiak, Piotr, Jan Slósarz, Marcin Gołębiewski, Grzegorz Grodkowski, and Kamila Puppel. 2023. "Polymorphism of Genes and Their Impact on Beef Quality" Current Issues in Molecular Biology 45, no. 6: 4749-4762. https://doi.org/10.3390/cimb45060302
APA StyleKostusiak, P., Slósarz, J., Gołębiewski, M., Grodkowski, G., & Puppel, K. (2023). Polymorphism of Genes and Their Impact on Beef Quality. Current Issues in Molecular Biology, 45(6), 4749-4762. https://doi.org/10.3390/cimb45060302