Investigating Leptin Gene Variants and Methylation Status in Relation to Breastfeeding and Preventing Obesity
Abstract
1. Introduction
2. Material and Methods
2.1. Establishment of the Study Group
- Birth at term and with appropriate weight;
- Exclusive breastfeeding for six months (the study group);
- Feeding with formula with or without breast milk supplements (for the control group).
- Presence of diseases that cause obesity like Bardet–Biedl syndrome, Cushing disease etc. (the child or the family);
- History of premature delivery;
- Presence of any chronic disease.
2.2. Laboratory Analyses
DNA Isolation from Peripheral Blood Samples
2.3. Genotyping
Bisulfite Modification and Methylation-Specific PCR
2.4. Statistical Analysis
3. Results
3.1. Nutrition for the First Six Months
3.2. Duration of Exclusive Breastfeeding (DEB)
3.3. Total Breastfeeding Time (TBT)
3.4. Body Mass Index (BMI)
3.5. Family History of Obesity
3.6. Satiation Status (Does She/He Leave the Table Feeling Full or Unsatisfied?)
3.7. Maternal Support and Methylations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LEP | Leptin gene |
LEPR | Leptin receptor gene |
DEB | Duration of exclusive breastfeeding |
TBT | Total breastfeeding time |
BMI | Body mass index |
References
- Armstrong, J.; Reilly, J.J. Breastfeeding and lowering the risk of childhood obesity. Lancet 2002, 359, 2003–2004. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.L.; Loret De Mola, C.; Victora, C.G. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: A systematic review and meta-analysis. Acta Paediatr. Int. J. Paediatr. 2015, 104, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, L.; Zhu, Y.; Huang, G.; Wang, P.P. The association between breastfeeding and childhood obesity: A meta-analysis. BMC Public Health 2014, 14, 1267. [Google Scholar] [CrossRef] [PubMed]
- Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, 245–254. [Google Scholar] [CrossRef]
- Feinberg, A.P. Phenotypic plasticity and the epigenetics of human disease. Nature 2007, 447, 433–440. [Google Scholar] [CrossRef]
- Hochberg, Z.; Feil, R.; Constancia, M.; Fraga, M.; Junien, C.; Carel, J.C.; Boileau, P.; Le Bouc, Y.; Deal, C.L.; Lillycrop, K.; et al. Child health, developmental plasticity, and epigenetic programming. Endocr. Rev. 2011, 32, 159–224. [Google Scholar] [CrossRef]
- Sánchez, C.; Franco, L.; Regal, P.; Lamas, A.; Cepeda, A.; Fente, C. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients 2021, 13, 1026. [Google Scholar] [CrossRef]
- Hansen, K. Breastfeeding: A smart investment in people and in economies. Lancet 2016, 387, 416. [Google Scholar] [CrossRef]
- Verduci, E.; Banderali, G.; Barberi, S.; Radaelli, G.; Lops, A.; Betti, F.; Riva, E.; Giovannini, M. Epigenetic effects of human breast milk. Nutrients 2014, 6, 1711–1724. [Google Scholar] [CrossRef]
- Zhu, J.; Dingess, K.A. The Functional Power of the Human Milk Proteome. Nutrients 2019, 11, 1834. [Google Scholar] [CrossRef]
- Bode, L. The functional biology of human milk oligosaccharides. Early Hum. Dev. 2015, 91, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Verduci, E.; Giannì, M.L.; Vizzari, G.; Vizzuso, S.; Cerasani, J.; Mosca, F.; Zuccotti, G.V. The Triad Mother-Breast Milk-Infant as Predictor of Future Health: A Narrative Review. Nutrients 2021, 13, 486. [Google Scholar] [CrossRef] [PubMed]
- Isganaitis, E. Developmental Programming of Body Composition: Update on Evidence and Mechanisms. Curr. Diab Rep. 2019, 19, 1–20. [Google Scholar] [CrossRef]
- Ma, J.R.; Wang, D.H. Epigenetic effects of human breastfeeding. Zhongguo Dang Dai Er Ke Za Zhi 2016, 18, 926–930. [Google Scholar]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Friedman, J.M.; Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature 1998, 395, 763–770. [Google Scholar] [CrossRef]
- Minokoshi, Y.; Kim, Y.-B.; Peroni, O.D.; Fryer, L.G.D.; Müller, C.; Carling, D.; Kahn, B.B. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002, 415, 339–343. [Google Scholar] [CrossRef]
- Marousez, L.; Lesage, J.; Eberlé, D. Epigenetics: Linking early postnatal nutrition to obesity programming? Nutrients 2019, 11, 2966. [Google Scholar] [CrossRef]
- Danaie, M.; Yeganegi, M.; Dastgheib, S.A.; Bahrami, R.; Jayervand, F.; Rahmani, A.; Aghasipour, M.; Golshan-Tafti, M.; Azizi, S.; Marzbanrad, Z.; et al. The interaction of breastfeeding and genetic factors on childhood obesity. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, X, 100334. [Google Scholar] [CrossRef]
- Bains, V.; Kaur, H.; Badaruddoza, B. Association analysis of polymorphisms in LEP (rs7799039 and rs2167270) and LEPR (rs1137101) gene towards the development of type 2 diabetes in North Indian Punjabi population. Gene 2020, 754, 144846. [Google Scholar] [CrossRef]
- Sabi, E.M.; Bin Dahman, L.S.; Mohammed, A.K.; Sumaily, K.M.; Al-Daghri, N.M. -2548G>A LEP Polymorphism Is Positively Associated with Increased Leptin and Glucose Levels in Obese Saudi Patients Irrespective of Blood Pressure Status. Medicina 2022, 58, 346. [Google Scholar] [CrossRef] [PubMed]
- García-Cardona, M.C.; Huang, F.; García-Vivas, J.M.; López-Camarillo, C.; Navarro, B.E.d.R.; Olivos, E.N.; Hong-Chong, E.; Bolaños-Jiménez, F.; A Marchat, L. DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance. Int. J. Obes. 2014, 38, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.L.; Victora, C.G. Long-Term Effects of Breastfeeding: A Systematic Review. 2013. Available online: https://www.who.int/publications/i/item/9789241505307 (accessed on 12 September 2023).
- Kramer, M.S.; Matush, L.; Vanilovich, I.; Platt, R.W.; Bogdanovich, N.; Sevkovskaya, Z.; Dzikovich, I.; Shishko, G.; Collet, J.P.; Martin, R.M.; et al. Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5 y: Evidence from a large randomized trial. Am. J. Clin. Nutr. 2007, 86, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Fissore, M.F.; Liguori, S.A.; Oggero, R. Can hormones contained in mothers’ milk account for the beneficial effect of breast-feeding on obesity in children? Clin. Endocrinol. 2009, 71, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Liguori, S.A. Update on breast milk hormones: Leptin, ghrelin and adiponectin. Clin. Nutr. 2008, 27, 42–47. [Google Scholar] [CrossRef]
- Kwok, M.K.; Schooling, C.M.; Lam, T.H.; Leung, G.M. Does breastfeeding protect against childhood overweight? Hong Kong’s “Children of 1997” birth cohort. Int. J. Epidemiol. 2010, 39, 297–305. [Google Scholar] [CrossRef]
- Burdette, H.L.; Whitaker, R.C.; Hall, W.C.; Daniels, S.R. Breastfeeding, introduction of complementary foods, and adiposity at 5 y of age. Am. J. Clin. Nutr. 2006, 83, 550–558. [Google Scholar] [CrossRef]
- Gillman, M.W.; Rifas-Shiman, S.L.; Kleinman, K.; Oken, E.; Rich-Edwards, J.W.; Taveras, E.M. Developmental origins of childhood overweight: Potential public health impact. Obesity 2008, 16, 1651–1656. [Google Scholar] [CrossRef]
- Pomar, C.A.; Serra, F.; Palou, A.; Sánchez, J. Lower miR-26a levels in breastmilk affect gene expression in adipose tissue of offspring. FASEB J. 2021, 35, e21924. [Google Scholar] [CrossRef]
- Brion, M.J.A.; Lawlor, D.A.; Matijasevich, A.; Horta, B.; Anselmi, L.; Araújo, C.L.; Menezes, A.M.B.; Victora, C.G.; Smith, G.D. What are the causal effects of breastfeeding on, I.Q.; obesity and blood pressure? Evidence from comparing high-income with middle-income cohorts. Int. J. Epidemiol. 2011, 40, 670–680. [Google Scholar] [CrossRef]
- Ellsworth, L.; Perng, W.; Harman, E.; Das, A.; Pennathur, S.; Gregg, B. Impact of maternal overweight and obesity on milk composition and infant growth. Matern. Child. Nutr. 2020, 16, e12979. [Google Scholar] [CrossRef] [PubMed]
- Stöger, R. In vivo methylation patterns of the leptin promoter in human and mouse. Epigenetics 2006, 1, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Stöger, R. The thrifty epigenotype: An acquired and heritable predisposition for obesity and diabetes? BioEssays 2008, 30, 156–166. [Google Scholar] [CrossRef]
- Obermann-Borst, S.A.; Eilers, P.H.C.; Tobi, E.W.; De Jong, F.H.; Slagboom, P.E.; Heijmans, B.T.; Steegers-Theunissen, R.P.M. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr. Res. 2013, 74, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Modi, A.; Khokhar, M.; Sharma, P.; Joshi, R.; Mishra, S.S.; Bharshankar, R.N.; Tiwari, S.; Singh, P.K.; Bhosale, V.V.; Negi, M.P.S. Leptin DNA Methylation and Its Association with Metabolic Risk Factors in a Northwest Indian Obese Population. J. Obes. Metab. Syndr. 2021, 30, 304–311. [Google Scholar] [CrossRef]
- Daniels, T.E.; Sadovnikoff, A.I.; Ridout, K.K.; Lesseur, C.; Marsit, C.J.; Tyrka, A.R. Associations of maternal diet and placenta leptin methylation. Mol. Cell. Endocrinol. 2020, 505, 110739. [Google Scholar] [CrossRef]
- Becer, E.; Mehmetçik, G.; Bareke, H.; Serakinci, N. Association of leptin receptor gene Q223R polymorphism on lipid profiles in comparison study between obese and non-obese subjects. Gene 2013, 529, 16–20. [Google Scholar] [CrossRef]
- Mammès, O.; Betoulle, D.; Aubert, R.; Giraud, V.; Tuzet, S.; Petiet, A.; Colas-Linhart, N.; Fumeron, F. Novel polymorphisms in the 5′ region of the LEP gene: Association with leptin levels and response to low-calorie diet in human obesity. Diabetes 1998, 47, 487–489. [Google Scholar] [CrossRef]
- Mammès, O.; Betoulle, D.; Aubert, R.; Herbeth, B.; Siest, G.; Fumeron, F. Association of the G-2548A polymorphism in the 5′ region of the LEP gene with overweight. Ann. Hum. Genet. 2000, 64 Pt 5, 391–394. [Google Scholar]
- Le Stunff, C.; Le Bihan, C.; Schork, N.J.; Bougnères, P. A common promoter variant of the leptin gene is associated with changes in the relationship between serum leptin and fat mass in obese girls. Diabetes 2000, 49, 2196–2200. [Google Scholar] [CrossRef]
- Hoffsted, J.; Eriksson, P.; Mottagui-Tabar, S.; Arner, P. A polymorphism in the leptin promoter region (-2548 G/A) influences gene expression and adipose tissue secretion of leptin. Horm. Metab. Res. 2002, 34, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Dall’Aglio, L.; Rijlaarsdam, J.; Mulder, R.H.; Neumann, A.; Felix, J.F.; Kok, R.; Bakermans-Kranenburg, M.J.; van Ijzendoorn, M.H.; Tiemeier, H.; Cecil, C.A. Epigenome-wide associations between observed maternal sensitivity and offspring DNA methylation: A population-based prospective study in children. Psychol. Med. 2022, 52, 2481–2491. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.; Knorr, S.; Antoniussen, C.S.; Bruun, J.M.; Ovesen, P.G.; Fuglsang, J.; Kampmann, U. The Impact of Lifestyle, Diet and Physical Activity on Epigenetic Changes in the Offspring-A Systematic Review. Nutrients 2021, 13, 2821. [Google Scholar] [CrossRef] [PubMed]
- Champagne, F.A.; Curley, J.P. Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci. Biobehav. Rev. 2009, 33, 593–600. [Google Scholar] [CrossRef]
- Gallardo-Escribano, C.; Buonaiuto, V.; Ruiz-Moreno, M.I.; Vargas-Candela, A.; Vilches-Perez, A.; Benitez-Porres, J.; Romance-Garcia, A.R.; Ruiz-Moreno, A.; Gomez-Huelgas, R.; Bernal-Lopez, M.R. Epigenetic approach in obesity: DNA methylation in a prepubertal population which underwent a lifestyle modification. Clin. Epigenet. 2020, 12, 21. [Google Scholar] [CrossRef]
- Hu, Y.; Qian, X.; Chen, J.; Huang, D. The status and childcare management of overweight and obesity among preschool children in Hangzhou. J. Pediatr. Endocrinol. Metab. JPEM 2023, 36, 859–864. [Google Scholar] [CrossRef]
- Sorrie, M.B.; Yesuf, M.E.; GebreMichael, T.G. Overweight/Obesity and associated factors among preschool children in Gondar City, Northwest Ethiopia: A cross-sectional study. PLoS ONE 2017, 12, e0182511. [Google Scholar] [CrossRef]
- Twells, L.K.; Newhook, L.A. Obesity prevalence estimates in a Canadian regional population of preschool children using variant growth references. BMC Pediatr. 2011, 11, 1–6. [Google Scholar] [CrossRef]
Exclusive Breastfed (n = 46) (%) | Breastfed + Formula (n = 54) (%) | p | ||
---|---|---|---|---|
LEPR 668 A/G Genotype | AA | 24 (52.2%) | 32 (59.3%) | 0.776 |
AG | 19 (41.3%) | 19 (35.2%) | ||
GG | 3 (6.5%) | 3 (5.6%) | ||
LEPR 668 A/G Allele | A | 67 (72.8%) | 83 (76.9%) | 0.512 |
G | 25 (27.2%) | 25 (23.1%) | ||
LEP 2548 G/A Genotype | GG | 12 (26.1%) | 24 (44.4%) | 0.160 |
GA | 22 (47.8%) | 20 (37.0%) | ||
AA | 12 (26.1%) | 10 (18.5%) | ||
LEP 2548 G/A Allele | G | 46 (50.0%) | 68 (63.0%) | 0.065 |
A | 46 (50.0%) | 40 (37.0%) | ||
LEP-Methylation 31 nt | Methylated | 35 (76.1%) | 46 (85.2%) | 0.248 |
Unmethylated | 11 (23.9%) | 8 (14.8%) | ||
LEP-Methylation 51 nt | Methylated | 24 (52.2%) | 27 (50.0%) | 0.828 |
Unmethylated | 22 (47.8%) | 27 (50.0%) |
Duration of Exclusive Breastfeeding (n = 100) (%) | p | ||
---|---|---|---|
LEPR 668 A/G Genotype | AA | 6.0 Months (3.0–6.0) | 0.805 * |
AG | 6.0 Months (3.6–6.0) | ||
GG | 5.5 Months (3.5–6.0) | ||
LEP 2548 G/A Genotype | GG | 5.5 Months (3.0–6.0) | 0.510 * |
GA | 6.0 Months (3.0–6.0) | ||
AA | 6.0 Months (3.3–6.0) | ||
LEP-Methylation 31 nt | Methylated | 6.0 Months (3.0–6.0) | 0.485 ** |
Unmethylated | 6.0 Months (3.5–6.0) | ||
LEP-Methylation 51 nt | Methylated | 6.0 Months (3.0–6.0) | 0.791 ** |
Unmethylated | 6.0 Months (3.0–6.0) |
Duration of Total Breastfeeding n = 100 (%) | p | ||
---|---|---|---|
LEPR 668 A/G Genotype | AA | 9.5 Months (5.8–24.0) | 0.774 * |
AG | 10.5 Months (5.0–22.5) | ||
GG | 6.0 Months (6.0–15.0) | ||
LEP 2548 G/A Genotype | GG | 7.0 Months (5.8–24.0) | 0.826 * |
GA | 11.0 Months (4.3–20.8) | ||
AA | 11.0 Months (6.0–24.0) | ||
LEP-Methylation 31 nt | Methylated | 8.0 Months (5.0–24.0) | 0.401 ** |
Unmethylated | 12.0 Months (6.0–21.5) | ||
LEP-Methylation 51 nt | Methylated | 12.0 Months (5.0–24.0) | 0.572 ** |
Unmethylated | 9.0 Months (6.0–23.0) |
Weakness BMI n = 41 (%) | Normal BMI n = 57 (%) | p | ||
---|---|---|---|---|
LEPR 668 A/G Genotype | AA | 19 (46.3%) | 35 (61.4%) | 0.075 |
AG | 21 (51.2%) | 17 (29.8%) | ||
GG | 1 (2.4%) | 5 (8.8%) | ||
LEPR 668 A/G Allele | A | 59 (72.0%) | 87 (76.3%) | 0.489 |
G | 23 (28.0%) | 27 (23.7%) | ||
LEP 2548 G/A Genotype | GG | 20 (35.1%) | 14 (34.1%) | 0.348 |
GA | 27 (47.4%) | 15 (36.6%) | ||
AA | 10 (17.5%) | 12 (29.3%) | ||
LEP 2548 G/A Allele | G | 67 (58.8%) | 43 (52.4%) | 0.378 |
A | 47 (41.2%) | 39 (47.6%) | ||
LEP-Methylation 31 nt | Methylated | 47 (82.5%) | 33 (80.5%) | 0.804 |
Unmethylated | 10 (17.5%) | 8 (19.5%) | ||
LEP-Methylation 51 nt | Methylated | 31 (54.4%) | 19 (45.6%) | 0.432 |
Unmethylated | 26 (46.3%) | 22 (53.7%) |
None n = 33 (%) | Positive n = 26 (%) | Overweight n = 41 (%) | p Value | ||
---|---|---|---|---|---|
LEPR 668 A/G Genotype | AA | 19 (57.6%) | 14 (53.8%) | 23 (56.1%) | 0.882 |
AG | 11 (33.3%) | 11 (42.3%) | 16 (39.0%) | ||
GG | 3 (9.1%) | 1 (3.8%) | 2 (4.9%) | ||
LEPR 668 A/G Allele | A | 49 (74.2%) | 39 (75.0%) | 62 (75.6%) | 0.982 |
G | 17 (25.8%) | 13 (25.0%) | 20 (24.4%) | ||
LEP 2548 G/A Genotype | GG | 8 (24.2%) | 11 (42.3%) | 17 (41.5%) | 0.535 |
GA | 17 (51.5%) | 10 (38.5%) | 15 (36.6%) | ||
AA | 8 (24.2%) | 5 (19.2%) | 9 (22.0%) | ||
LEP 2548 G/A Allele | G | 33 (50.0%) | 32 (61.5%) | 49 (59.8%) | 0.366 |
A | 33 (50.0%) | 20 (38.5%) | 33 (40.2%) | ||
LEP-Methylation 31 nt | Methylated | 26 (78.8%) | 20 (76.9%) | 35 (85.4%) | 0.640 |
Unmethylated | 7 (21.2%) | 6 (23.1%) | 6 (14.6%) | ||
LEP-Methylation 51 nt | Methylated | 15 (45.5%) | 11 (42.3%) | 25 (61.0%) | 0.244 |
Unmethylated | 18 (54.5%) | 15 (57.7%) | 16 (39.0%) |
None n = 35 (%) | Positive n = 65 (%) | p | ||
---|---|---|---|---|
LEPR 668 A/G Genotype | AA | 22 (62.9%) | 34 (52.3%) | 0.585 |
AG | 11 (31.4%) | 27 (41.5%) | ||
GG | 2 (5.7%) | 4 (6.2%) | ||
LEPR 668 A/G Allele | A | 55 (78.6%) | 95 (73.1%) | 0.392 |
G | 15 (21.4%) | 35 (26.9%) | ||
LEP 2548 G/A Genotype | GG | 12 (34.3%) | 24 (36.9%) | 0.267 |
GA | 18 (51.4%) | 24 (36.9%) | ||
AA | 5 (14.3%) | 17 (26.2%) | ||
LEP 2548 G/A Allele | G | 42 (60.0%) | 72 (55.4%) | 0.529 |
A | 28 (40.0%) | 58 (44.6%) | ||
LEP-Methylation 31 nt | Methylated | 26 (74.3%) | 55 (84.6%) | 0.209 |
Unmethylated | 9 (25.7%) | 10 (15.4%) | ||
LEP-Methylation 51 nt | Methylated | 16 (45.7%) | 35 (53.8%) | 0.438 |
Unmethylated | 19 (54.3%) | 30 (46.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilic, A.; Pehlivan, S.; Varkal, M.A.; Tuncel, F.C.; Kandemir, I.; Ozcetin, M.; Poyrazoglu, S.; Kardelen, A.D.; Ozdemir, I.; Yildiz, I. Investigating Leptin Gene Variants and Methylation Status in Relation to Breastfeeding and Preventing Obesity. Children 2024, 11, 1293. https://doi.org/10.3390/children11111293
Kilic A, Pehlivan S, Varkal MA, Tuncel FC, Kandemir I, Ozcetin M, Poyrazoglu S, Kardelen AD, Ozdemir I, Yildiz I. Investigating Leptin Gene Variants and Methylation Status in Relation to Breastfeeding and Preventing Obesity. Children. 2024; 11(11):1293. https://doi.org/10.3390/children11111293
Chicago/Turabian StyleKilic, Ayse, Sacide Pehlivan, Muhammet Ali Varkal, Fatima Ceren Tuncel, Ibrahim Kandemir, Mustafa Ozcetin, Sükran Poyrazoglu, Asli Derya Kardelen, Irem Ozdemir, and Ismail Yildiz. 2024. "Investigating Leptin Gene Variants and Methylation Status in Relation to Breastfeeding and Preventing Obesity" Children 11, no. 11: 1293. https://doi.org/10.3390/children11111293
APA StyleKilic, A., Pehlivan, S., Varkal, M. A., Tuncel, F. C., Kandemir, I., Ozcetin, M., Poyrazoglu, S., Kardelen, A. D., Ozdemir, I., & Yildiz, I. (2024). Investigating Leptin Gene Variants and Methylation Status in Relation to Breastfeeding and Preventing Obesity. Children, 11(11), 1293. https://doi.org/10.3390/children11111293