Primary Ciliary Dyskinesia: A Clinical Review
Abstract
:1. Introduction
2. Cilia and Their Role in Health and Disease
3. Clinical Features of PCD
3.1. Pulmonary Manifestations
3.2. Sinonasal and Middle Ear Involvement
3.3. Laterality Defects and Heterotaxy
3.4. Infertility and Subfertility
3.5. Hydrocephalus
4. Diagnostic Testing
4.1. Nasal Nitric Oxide (nNO) Measurements
4.2. Ciliary Ultrastructural Analyses Using Transmission Electron Microscopy (TEM)
4.3. High-Speed Video-Microscopy Analysis (HSVMA)
4.4. Immunofluorescence Microscopy
4.5. Genetics
Approved Gene Name (Other Gene Names) | TEM a Defect | nNO b | Ciliary Beat Pattern |
---|---|---|---|
DNAH5 | ODA c | Low | Immotile or stiff |
DNAI1 | ODA | Low | Minimal movement |
DNAI2 | ODA | Low | Minimal movement |
DNAL1 | ODA | Low | Immotile or weak |
NME8 (TXNDC3) | ODA (~66%) | NR d | Normal or immotile |
ODAD1 (CCDC114) | ODA | Low | Immotile or flickering |
ODAD3 (CCDC151) | ODA | Low | Immotile |
ODAD2 (ARMC4) | ODA | Low | Flickering |
ODAD4 (TTC25) | ODA | Low | Immotile or flickering |
DNAH9 | ODA (subtle) | Low or normal | Hypokinetic, reduced distal bend |
CLXN (ODAD5/EFCAB1) | ODA | NR | NR |
CCDC103 | ODA+IDA e, ODA, or normal 1 | Low or normal | Immotile or normal |
DNAAF1 (LRRC50) | ODA+IDA | NR | Immotile |
DNAAF2 (KTU) | ODA+IDA | Low | Immotile |
DNAAF3 | ODA+IDA | Low | Immotile |
DNAAF11 (LRRC6) | ODA+IDA | Low | Immotile |
DNAAF5 (HEATR2) | ODA+IDA | Low | Minimal movement |
ZYMND10 (DNAAF7) | ODA+IDA | Low | Immotile |
DNAAF4 (DYX1C1) | ODA+IDA | Low | Immotile |
SPAG1 (DNAAF13) | ODA+IDA | Low | Immotile |
DNAAF6 (PIH1D3) | ODA+IDA | Low | Immotile |
CFAP300 (C11orf70/DNAAF17) | ODA+IDA | Low | Immotile |
CFAP298 (C21orf59/DNAAF16) | ODA+IDA | Low | Immotile |
CCDC39 | IDA+MTD f,2 | Low | Immotile |
CCDC40 | IDA+MTD 2 | Low | Immotile or stiff |
TTC12 | Subtle IDA+MTD or IDA 3 | Low or normal | Variable 4 |
GAS8 (DRC4) | Normal or subtle IDA-MTD | Low or normal | Normal or variable 4 |
CCNO | Oligocilia | Low or normal | Inadequate for analysis |
MCIDAS | Oligocilia | Low | Inadequate for analysis |
FOXJ1 | Oligocilia or normal | Normal | Normal or stiff |
RSPH1 | Central pair complex | Low or normal | Reduced bending angle |
RSPH3 | Central pair complex | Low | Reduced bending angle |
RSPH4A | Central pair complex | Low or normal 5 | Rotational pattern |
RSPH9 | Central pair complex | Low or normal 6 | Rotational pattern |
STK36 | Central pair complex | Normal | Uncoordinated |
DNAJB13 | Central pair complex | Low | Reduced amplitude |
NME5 | Central pair complex | NR | NR |
CFAP74 | Normal | Normal | Rotational, partially stiff |
DNAH1 | Normal | NR | NR |
DNAH11 | Normal | Low | Hyperkinetic |
LRRC56 (DNAAF12) | Normal | Low or normal | Variable 4 |
IFT74 | Oligocilia, short cilia, MTD | Low | NR |
GAS2L2 | Normal disoriented cilia | Low or normal | Hyperkinetic, normal waveform |
HYDIN | Normal | Low or normal | Variable 4 |
CFAP221 (PCDP1) | Normal | Normal | Rotational |
SPEF2 | Normal | Low or normal | Rotational |
DRC1 (CCDC164) | Normal | Low | Hyperkinetic |
CCDC65 (DRC2) | Normal | Low | Hyperkinetic |
NEK10 | Normal, short cilia | Normal | Normal |
TP73 | Oligocilia, short cilia | NR | NR |
OFD1 | Normal | Low or normal | Variable 4 |
CFAP57 (WDR65) | Normal | Low | Symmetric waveform |
RPGR | Normal or ODA+IDA 7 | Low or normal | Variable 4 |
TUBB4B | Oligocilia, short bulbous tips | Low | NR |
5. Genotype–Phenotype Relationships in PCD
5.1. Genotype Relationship with Lung Function
5.2. Genotype Relationship with Heterotaxy and Situs Abnormalities
5.3. Genotype Relationship with Other Clinical Characteristics
5.4. Genotype Relationship with Subfertility
5.5. Genotypes with Other Associated Phenotypic Features
Gene | Chronic Cough | Bronchiectasis | Chronic Rhinitis | NRD a | Laterality Defects * | Subfertility | Hydrocephalus |
---|---|---|---|---|---|---|---|
DNAH5 | Y b | Y | Y | Y | Y | Y | NR c |
DNAI1 | Y | Y | Y | Y | Y | Y | NR |
DNAI2 | Y | Y | NR | Y | Y | Y | Y |
DNAL1 | Y | Y | Y | Y | Y | NR | NR |
NME8 | Y | Y | Y | NR | Y | Y | NR |
ODAD1 | Y | Y | Y | Y | Y | N | NR |
ODAD2 | Y | Y | Y | Y | Y | Y | NR |
ODAD3 | Y | Y | Y | NR | Y | Y | NR |
ODAD4 | Y | Y | Y | Y | Y | NR | NR |
DNAH9 | Y | Y | Y | Y | Y | Y | NR |
CLXN | Y | NR | Y | NR | Y | NR | NR |
CCDC103 | NR | Y | Y | NR | Y | Y | NR |
DNAAF1 | Y | Y | Y | Y | Y | Y | NR |
DNAAF2 | Y | Y | Y | Y | Y | Y | NR |
DNAAF3 | Y | Y | Y | Y | Y | Y | NR |
DNAAF11 | Y | Y | Y | Y | Y | Y | NR |
DNAAF5 | Y | Y | Y | Y | Y | Y | NR |
ZYMND10 | NR | Y | NR | NR | Y | Y | NR |
DNAAF4 | Y | Y | Y | NR | Y | Y | NR |
SPAG1 | NR | Y | Y | Y | Y | Y | NR |
DNAAF6 X | Y | Y | Y | Y | Y | Y | NR |
CFAP300 | Y | Y | Y | Y | Y | Y | NR |
CFAP298 | NR | Y | Y | Y | Y | NR | NR |
CCDC39 | Y | Y | Y | Y | Y | Y | NR |
CCDC40 | Y | Y | Y | Y | Y | Y | NR |
TTC12 | Y | Y | Y | Y | Y | Y | NR |
GAS8 | Y | NR | NR | NR | NR | Y | NR |
CCNO | Y | Y | Y | Y | NR | Y | Y |
MCIDAS | NR | Y | Y | Y | NR | Y | Y |
FOXJ1 AD | Y | Y | Y | Y | Y | Y | Y |
RSPH1 | Y | Y | Y | Y | NR | Y | NR |
RSPH3 | Y | Y | Y | Y | NR | Y | NR |
RSPH4A | Y | Y | Y | Y | NR | Y | NR |
RSPH9 | Y | Y | Y | Y | NR | Y | NR |
STK36 | Y | Y | Y | NR | NR | Y | NR |
DNAJB13 | Y | Y | Y | Y | NR | Y | NR |
NME5 | NR | NR | NR | NR | NR | NR | NR |
CFAP74 | NR | Y | Y | NR | NR | Y | NR |
DNAH1 | Y | Y | Y | Y | Y | Y | NR |
DNAH11 | Y | Y | Y | Y | Y | Y | NR |
LRRC56 | Y | Y | Y | Y | Y | Y | NR |
IFT74 + | Y | Y | Y | Y | NR | Y | NR |
GAS2L2 | Y | Y | Y | Y | NR | NR | NR |
HYDIN | Y | Y | Y | Y | NR | Y | NR |
CFAP221 | Y | Y | Y | Y | NR | NR | NR |
SPEF2 | Y | Y | Y | Y | NR | Y | NR |
DRC1 | Y | Y | Y | NR | NR | NR | NR |
CCDC65 | Y | Y | Y | Y | NR | NR | NR |
NEK10 | Y | Y | NR | Y | NR | NR | NR |
TP73 + | Y | Y | Y | Y | NR | NR | NR |
OFD1 X,^ | Y | Y | Y | Y | Y | NR | NR |
CFAP57 | NR | Y | Y | Y | NR | NR | NR |
RPGR X,^ | Y | Y | Y | NR | NR | NR | NR |
TUBB4B AD,+ | NR | Y | NR | NR | Y ? | NR | Y |
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Birkhead, M.; Otido, S.; Mabaso, T.; Mopeli, K.; Tlhapi, D.; Verwey, C.; Dangor, Z. Ultrastructure for the diagnosis of primary ciliary dyskinesia in South Africa, a resource-limited setting. Front. Pediatr. 2023, 11, 1247638. [Google Scholar] [CrossRef] [PubMed]
- Barbato, A.; Frischer, T.; Kuehni, C.E.; Snijders, D.; Azevedo, I.; Baktai, G.; Bartoloni, L.; Eber, E.; Escribano, A.; Haarman, E.; et al. Primary ciliary dyskinesia: A consensus statement on diagnostic and treatment approaches in children. Eur. Respir. J. 2009, 34, 1264–1276. [Google Scholar] [CrossRef] [PubMed]
- Goutaki, M.; Maurer, E.; Halbeisen, F.S.; Amirav, I.; Barbato, A.; Behan, L.; Boon, M.; Casaulta, C.; Clement, A.; Crowley, S.; et al. The international primary ciliary dyskinesia cohort (iPCD Cohort): Methods and first results. Eur. Respir. J. 2017, 49, 1601181. [Google Scholar] [CrossRef]
- Kuehni, C.E.; Frischer, T.; Strippoli, M.P.; Maurer, E.; Bush, A.; Nielsen, K.G.; Escribano, A.; Lucas, J.S.; Yiallouros, P.; Omran, H.; et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur. Respir. J. 2010, 36, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Afzelius, B.A.; Stenram, U. Prevalence and genetics of immotile-cilia syndrome and left-handedness. Int. J. Dev. Biol. 2006, 50, 571–573. [Google Scholar] [CrossRef]
- Hannah, W.B.; Seifert, B.A.; Truty, R.; Zariwala, M.A.; Ameel, K.; Zhao, Y.; Nykamp, K.; Gaston, B. The global prevalence and ethnic heterogeneity of primary ciliary dyskinesia gene variants: A genetic database analysis. Lancet Respir. Med. 2022, 10, 459–468. [Google Scholar] [CrossRef]
- Mitchison, H.M.; Valente, E.M. Motile and non-motile cilia in human pathology: From function to phenotypes. J. Pathol. 2017, 241, 294–309. [Google Scholar] [CrossRef]
- Ren, Z.; Mao, X.; Wang, S.; Wang, X. Cilia-related diseases. J. Cell Mol. Med. 2023, 27, 3974–3979. [Google Scholar] [CrossRef]
- Sironen, A.; Shoemark, A.; Patel, M.; Loebinger, M.R.; Mitchison, H.M. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol. Life Sci. 2020, 77, 2029–2048. [Google Scholar] [CrossRef]
- Raidt, J.; Wallmeier, J.; Hjeij, R.; Onnebrink, J.G.; Pennekamp, P.; Loges, N.T.; Olbrich, H.; Haffner, K.; Dougherty, G.W.; Omran, H.; et al. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur. Respir. J. 2014, 44, 1579–1588. [Google Scholar] [CrossRef]
- Ishikawa, T. Axoneme Structure from Motile Cilia. Cold Spring Harb. Perspect. Biol. 2017, 9, a028076. [Google Scholar] [CrossRef] [PubMed]
- Heuser, T.; Raytchev, M.; Krell, J.; Porter, M.E.; Nicastro, D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J. Cell Biol. 2009, 187, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Noone, P.G.; Leigh, M.W.; Sannuti, A.; Minnix, S.L.; Carson, J.L.; Hazucha, M.; Zariwala, M.A.; Knowles, M.R. Primary ciliary dyskinesia: Diagnostic and phenotypic features. Am. J. Respir. Crit. Care Med. 2004, 169, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.D.; Ferkol, T.W.; Rosenfeld, M.; Lee, H.S.; Dell, S.D.; Sagel, S.D.; Milla, C.; Zariwala, M.A.; Pittman, J.E.; Shapiro, A.J.; et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am. J. Respir. Crit. Care Med. 2015, 191, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Leigh, M.W.; Ferkol, T.W.; Davis, S.D.; Lee, H.S.; Rosenfeld, M.; Dell, S.D.; Sagel, S.D.; Milla, C.; Olivier, K.N.; Sullivan, K.M.; et al. Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents. Ann. Am. Thorac. Soc. 2016, 13, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Vanaken, G.J.; Bassinet, L.; Boon, M.; Mani, R.; Honore, I.; Papon, J.F.; Cuppens, H.; Jaspers, M.; Lorent, N.; Coste, A.; et al. Infertility in an adult cohort with primary ciliary dyskinesia: Phenotype-gene association. Eur. Respir. J. 2017, 50, 1700314. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Shoemark, A.; MacNeill, S.J.; Bhaludin, B.; Rogers, A.; Bilton, D.; Hansell, D.M.; Wilson, R.; Loebinger, M.R. A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur. Respir. J. 2016, 48, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Ellerman, A.; Bisgaard, H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur. Respir. J. 1997, 10, 2376–2379. [Google Scholar] [CrossRef]
- Knowles, M.R.; Daniels, L.A.; Davis, S.D.; Zariwala, M.A.; Leigh, M.W. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am. J. Respir. Crit. Care Med. 2013, 188, 913–922. [Google Scholar] [CrossRef]
- Davis, S.D.; Rosenfeld, M.; Lee, H.-S.; Ferkol, T.W.; Sagel, S.D.; Dell, S.D.; Milla, C.; Pittman, J.E.; Shapiro, A.J.; Sullivan, K.M.; et al. Primary Ciliary Dyskinesia: Longitudinal Study of Lung Disease by Ultrastructure Defect and Genotype. Am. J. Respir. Crit. Care Med. 2019, 199, 190–198. [Google Scholar] [CrossRef]
- Marthin, J.K.; Petersen, N.; Skovgaard, L.T.; Nielsen, K.G. Lung function in patients with primary ciliary dyskinesia: A cross-sectional and 3-decade longitudinal study. Am. J. Respir. Crit. Care Med. 2010, 181, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.E.; Pittman, J.E.; Leigh, M.W.; Fordham, L.; Davis, S.D. Early lung disease in young children with primary ciliary dyskinesia. Pediatr. Pulmonol. 2008, 43, 514–516. [Google Scholar] [CrossRef]
- Kennedy, M.P.; Noone, P.G.; Leigh, M.W.; Zariwala, M.A.; Minnix, S.L.; Knowles, M.R.; Molina, P.L. High-resolution CT of patients with primary ciliary dyskinesia. AJR Am. J. Roentgenol. 2007, 188, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Irving, S.; Dixon, M.; Fassad, M.R.; Frost, E.; Hayward, J.; Kilpin, K.; Ollosson, S.; Onoufriadis, A.; Patel, M.P.; Scully, J.; et al. Primary Ciliary Dyskinesia Due to Microtubular Defects is Associated with Worse Lung Clearance Index. Lung 2018, 196, 231–238. [Google Scholar] [CrossRef]
- Magnin, M.L.; Cros, P.; Beydon, N.; Mahloul, M.; Tamalet, A.; Escudier, E.; Clement, A.; Le Pointe, H.D.; Blanchon, S. Longitudinal lung function and structural changes in children with primary ciliary dyskinesia. Pediatr. Pulmonol. 2012, 47, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, F.; Montella, S.; Tiddens, H.; Guidi, G.; Casotti, V.; Maglione, M.; de Jong, P.A. Structural and functional lung disease in primary ciliary dyskinesia. Chest 2008, 134, 351–357. [Google Scholar] [CrossRef]
- Maglione, M.; Bush, A.; Montella, S.; Mollica, C.; Manna, A.; Esposito, A.; Santamaria, F. Progression of lung disease in primary ciliary dyskinesia: Is spirometry less accurate than CT? Pediatr. Pulmonol. 2012, 47, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Green, K.; Buchvald, F.F.; Marthin, J.K.; Hanel, B.; Gustafsson, P.M.; Nielsen, K.G. Ventilation inhomogeneity in children with primary ciliary dyskinesia. Thorax 2012, 67, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Zafar, A.; Hall, M. In children with primary ciliary dyskinesia, which type of lung function test is the earliest determinant of decline in lung health: A systematic review. Pediatr. Pulmonol. 2023, 58, 475–483. [Google Scholar] [CrossRef]
- Kinghorn, B.; McNamara, S.; Genatossio, A.; Sullivan, E.; Siegel, M.; Bauer, I.; Clem, C.; Johnson, R.C.; Davis, M.; Griffiths, A.; et al. Comparison of Multiple Breath Washout and Spirometry in Children with Primary Ciliary Dyskinesia and Cystic Fibrosis and Healthy Controls. Ann. Am. Thorac. Soc. 2020, 17, 1085–1093. [Google Scholar] [CrossRef]
- Frija-Masson, J.; Bassinet, L.; Honore, I.; Dufeu, N.; Housset, B.; Coste, A.; Papon, J.F.; Escudier, E.; Burgel, P.R.; Maitre, B. Clinical characteristics, functional respiratory decline and follow-up in adult patients with primary ciliary dyskinesia. Thorax 2017, 72, 154–160. [Google Scholar] [CrossRef]
- Despotes, K.A.; Choate, R.; Addrizzo-Harris, D.; Aksamit, T.R.; Barker, A.; Basavaraj, A.; Daley, C.L.; Eden, E.; Dimango, A.; Fennelly, K.; et al. Nutrition and Markers of Disease Severity in Patients With Bronchiectasis. Chronic Obstr. Pulm. Dis. J. COPD Found. 2020, 7, 390–403. [Google Scholar] [CrossRef]
- Steinkamp, G.; Wiedemann, B. Relationship between nutritional status and lung function in cystic fibrosis: Cross sectional and longitudinal analyses from the German CF quality assurance (CFQA) project. Thorax 2002, 57, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.R.; Cote, C.G.; Marin, J.M.; Casanova, C.; Montes de Oca, M.; Mendez, R.A.; Pinto Plata, V.; Cabral, H.J. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004, 350, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Maglione, M.; Bush, A.; Nielsen, K.G.; Hogg, C.; Montella, S.; Marthin, J.K.; Di Giorgio, A.; Santamaria, F. Multicenter analysis of body mass index, lung function, and sputum microbiology in primary ciliary dyskinesia. Pediatr. Pulmonol. 2014, 49, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Holtrop, M.; Heltshe, S.; Shabanova, V.; Keller, A.; Schumacher, L.; Fernandez, L.; Jain, R. A Prospective Study of the Effects of Sex Hormones on Lung Function and Inflammation in Women with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2021, 18, 1158–1166. [Google Scholar] [CrossRef]
- Brooke-Hollidge, A.; Conway, J.; Lewis, A. Gender differences in non-cystic fibrosis bronchiectasis severity and bacterial load: The potential role of hormones. Ther. Adv. Respir. Dis. 2021, 15, 17534666211035311. [Google Scholar] [CrossRef]
- Harness-Brumley, C.L.; Elliott, A.C.; Rosenbluth, D.B.; Raghavan, D.; Jain, R. Gender differences in outcomes of patients with cystic fibrosis. J. Womens Health 2014, 23, 1012–1020. [Google Scholar] [CrossRef]
- Mullowney, T.; Manson, D.; Kim, R.; Stephens, D.; Shah, V.; Dell, S. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics 2014, 134, 1160–1166. [Google Scholar] [CrossRef]
- Jain, K.; Padley, S.P.; Goldstraw, E.J.; Kidd, S.J.; Hogg, C.; Biggart, E.; Bush, A. Primary ciliary dyskinesia in the paediatric population: Range and severity of radiological findings in a cohort of patients receiving tertiary care. Clin. Radiol. 2007, 62, 986–993. [Google Scholar] [CrossRef]
- Dettmer, S.; Ringshausen, F.; Vogel-Claussen, J.; Fuge, J.; Faschkami, A.; Shin, H.O.; Schwerk, N.; Welte, T.; Wacker, F.; Rademacher, J. Computed tomography in adult patients with primary ciliary dyskinesia: Typical imaging findings. PLoS ONE 2018, 13, e0191457. [Google Scholar] [CrossRef] [PubMed]
- Bercusson, A.; Jarvis, G.; Shah, A. CF Fungal Disease in the Age of CFTR Modulators. Mycopathologia 2021, 186, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, J.; Dettmer, S.; Fuge, J.; Vogel-Claussen, J.; Shin, H.O.; Shah, A.; Pedro, P.I.; Wilson, R.; Welte, T.; Wacker, F.; et al. The Primary Ciliary Dyskinesia Computed Tomography Score in Adults with Bronchiectasis: A Derivation und Validation Study. Respiration 2021, 100, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Irving, S.J.; Ives, A.; Davies, G.; Donovan, J.; Edey, A.J.; Gill, S.S.; Nair, A.; Saunders, C.; Wijesekera, N.T.; Alton, E.W.; et al. Lung clearance index and high-resolution computed tomography scores in primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 2013, 188, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Tadd, K.; Morgan, L.; Rosenow, T.; Schultz, A.; Susanto, C.; Murray, C.; Robinson, P. CF derived scoring systems do not fully describe the range of structural changes seen on CT scans in PCD. Pediatr. Pulmonol. 2019, 54, 471–477. [Google Scholar] [CrossRef]
- Hoang-Thi, T.N.; Revel, M.P.; Burgel, P.R.; Bassinet, L.; Honore, I.; Hua-Huy, T.; Martin, C.; Maitre, B.; Chassagnon, G. Automated computed tomographic scoring of lung disease in adults with primary ciliary dyskinesia. BMC Pulm. Med. 2018, 18, 194. [Google Scholar] [CrossRef]
- Chowdhary, T.; Bracken, J.; Morgan, L.; Schultz, A.; Robinson, P. The SPEC score-A quantifiable CT scoring system for primary ciliary dyskinesia. Pediatr. Pulmonol. 2023, 59, 72–80. [Google Scholar] [CrossRef]
- Kinghorn, B.; Rosenfeld, M.; Sullivan, E.; Onchiri, F.; Ferkol, T.W.; Sagel, S.D.; Dell, S.D.; Milla, C.; Shapiro, A.J.; Sullivan, K.M.; et al. Airway Disease in Children with Primary Ciliary Dyskinesia: Impact of Ciliary Ultrastructure Defect and Genotype. Ann. Am. Thorac. Soc. 2023, 20, 539–547. [Google Scholar] [CrossRef]
- Smith, L.J.; West, N.; Hughes, D.; Marshall, H.; Johns, C.S.; Stewart, N.J.; Chan, H.F.; Rao, M.; Capener, D.J.; Bray, J.; et al. Imaging Lung Function Abnormalities in Primary Ciliary Dyskinesia Using Hyperpolarized Gas Ventilation MRI. Ann. Am. Thorac. Soc. 2018, 15, 1487–1490. [Google Scholar] [CrossRef]
- Nyilas, S.; Bauman, G.; Pusterla, O.; Sommer, G.; Singer, F.; Stranzinger, E.; Heyer, C.; Ramsey, K.; Schlegtendal, A.; Benzrath, S.; et al. Structural and Functional Lung Impairment in Primary Ciliary Dyskinesia. Assessment with Magnetic Resonance Imaging and Multiple Breath Washout in Comparison to Spirometry. Ann. Am. Thorac. Soc. 2018, 15, 1434–1442. [Google Scholar] [CrossRef]
- Piatti, G.; De Santi, M.M.; Farolfi, A.; Zuccotti, G.V.; D’Auria, E.; Patria, M.F.; Torretta, S.; Consonni, D.; Ambrosetti, U. Exacerbations and Pseudomonas aeruginosa colonization are associated with altered lung structure and function in primary ciliary dyskinesia. BMC Pediatr. 2020, 20, 158. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Cymberknoh, M.; Weigert, N.; Gileles-Hillel, A.; Breuer, O.; Simanovsky, N.; Boon, M.; De Boeck, K.; Barbato, A.; Snijders, D.; Collura, M.; et al. Clinical impact of Pseudomonas aeruginosa colonization in patients with Primary Ciliary Dyskinesia. Respir. Med. 2017, 131, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Bequignon, E.; Dupuy, L.; Zerah-Lancner, F.; Bassinet, L.; Honore, I.; Legendre, M.; Devars du Mayne, M.; Escabasse, V.; Crestani, B.; Maitre, B.; et al. Critical Evaluation of Sinonasal Disease in 64 Adults with Primary Ciliary Dyskinesia. J. Clin. Med. 2019, 8, 619. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.T.; Papon, J.F.; Alexandru, M.; Anagiotos, A.; Armengot, M.; Boon, M.; Burgess, A.; Crowley, S.; Dheyauldeen, S.A.D.; Emiralioglu, N.; et al. Sinonasal disease among patients with primary ciliary dyskinesia: An international study. ERJ Open Res. 2023, 9, 701–2022. [Google Scholar] [CrossRef] [PubMed]
- Zawawi, F.; Shapiro, A.J.; Dell, S.; Wolter, N.E.; Marchica, C.L.; Knowles, M.R.; Zariwala, M.A.; Leigh, M.W.; Smith, M.; Gajardo, P.; et al. Otolaryngology Manifestations of Primary Ciliary Dyskinesia: A Multicenter Study. Otolaryngol. Head. Neck Surg. 2022, 166, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Oktem, S.; Karadag, B.; Erdem, E.; Gokdemir, Y.; Karakoc, F.; Dagli, E.; Ersu, R. Sleep disordered breathing in patients with primary ciliary dyskinesia. Pediatr. Pulmonol. 2013, 48, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, F.; Esposito, M.; Montella, S.; Cantone, E.; Mollica, C.; De Stefano, S.; Mirra, V.; Carotenuto, M. Sleep disordered breathing and airway disease in primary ciliary dyskinesia. Respirology 2014, 19, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Plantier, D.B.; Pilan, R.R.M.; Athanazio, R.; Olm, M.A.K.; Gebrim, E.M.S.; Voegels, R.L. Computed Tomography Evaluation of the Paranasal Sinuses in Adults with Primary Ciliary Dyskinesia. Int. Arch. Otorhinolaryngol. 2023, 27, e130–e137. [Google Scholar] [CrossRef] [PubMed]
- Alanin, M.C.; Aanaes, K.; Hoiby, N.; Pressler, T.; Skov, M.; Nielsen, K.G.; Johansen, H.K.; von Buchwald, C. Sinus surgery can improve quality of life, lung infections, and lung function in patients with primary ciliary dyskinesia. Int. Forum Allergy Rhinol. 2017, 7, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Plantier, D.B.; Pinna, F.R.; Olm, M.A.K.; Athanazio, R.; Pilan, R.R.M.; Voegels, R.L. Outcomes of Endoscopic Sinus Surgery for Chronic Rhinosinusitis in Adults with Primary Ciliary Dyskinesia. Int. Arch. Otorhinolaryngol. 2023, 27, e423–e427. [Google Scholar] [CrossRef]
- Sommer, J.U.; Schafer, K.; Omran, H.; Olbrich, H.; Wallmeier, J.; Blum, A.; Hormann, K.; Stuck, B.A. ENT manifestations in patients with primary ciliary dyskinesia: Prevalence and significance of otorhinolaryngologic co-morbidities. Eur. Arch. Otorhinolaryngol. 2011, 268, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Goutaki, M.; Lam, Y.T.; Alexandru, M.; Anagiotos, A.; Armengot, M.; Boon, M.; Burgess, A.; Caversaccio, N.; Crowley, S.; Dheyauldeen, S.A.D.; et al. Characteristics of Otologic Disease Among Patients With Primary Ciliary Dyskinesia. JAMA Otolaryngol. Head. Neck Surg. 2023, 149, 587–596. [Google Scholar] [CrossRef]
- Andersen, T.N.; Alanin, M.C.; von Buchwald, C.; Nielsen, L.H. A longitudinal evaluation of hearing and ventilation tube insertion in patients with primary ciliary dyskinesia. Int. J. Pediatr. Otorhinolaryngol. 2016, 89, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Wolter, N.E.; Dell, S.D.; James, A.L.; Campisi, P. Middle ear ventilation in children with primary ciliary dyskinesia. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 1565–1568. [Google Scholar] [CrossRef] [PubMed]
- Baird, S.M.; Wong, D.; Levi, E.; Robinson, P. Otolaryngological burden of disease in children with primary ciliary dyskinesia in Victoria, Australia. Int. J. Pediatr. Otorhinolaryngol. 2023, 173, 111722. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.J.; Zariwala, M.A.; Ferkol, T.; Davis, S.D.; Sagel, S.D.; Dell, S.D.; Rosenfeld, M.; Olivier, K.N.; Milla, C.; Daniel, S.J.; et al. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr. Pulmonol. 2016, 51, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Majithia, A.; Fong, J.; Hariri, M.; Harcourt, J. Hearing outcomes in children with primary ciliary dyskinesia—A longitudinal study. Int. J. Pediatr. Otorhinolaryngol. 2005, 69, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Noone, P.G.; Bali, D.; Carson, J.L.; Sannuti, A.; Gipson, C.L.; Ostrowski, L.E.; Bromberg, P.A.; Boucher, R.C.; Knowles, M.R. Discordant organ laterality in monozygotic twins with primary ciliary dyskinesia. Am. J. Med. Genet. 1999, 82, 155–160. [Google Scholar] [CrossRef]
- Barber, A.T.; Shapiro, A.J.; Davis, S.D.; Ferkol, T.W.; Atkinson, J.J.; Sagel, S.D.; Dell, S.D.; Olivier, K.N.; Milla, C.E.; Rosenfeld, M.; et al. Laterality Defects in Primary Ciliary Dyskinesia: Relationship to Ultrastructural Defect or Genotype. Ann. Am. Thorac. Soc. 2023, 20, 397–405. [Google Scholar] [CrossRef]
- Best, S.; Shoemark, A.; Rubbo, B.; Patel, M.P.; Fassad, M.R.; Dixon, M.; Rogers, A.V.; Hirst, R.A.; Rutman, A.; Ollosson, S.; et al. Risk factors for situs defects and congenital heart disease in primary ciliary dyskinesia. Thorax 2019, 74, 203–205. [Google Scholar] [CrossRef]
- Shapiro, A.J.; Davis, S.D.; Ferkol, T.; Dell, S.D.; Rosenfeld, M.; Olivier, K.N.; Sagel, S.D.; Milla, C.; Zariwala, M.A.; Wolf, W.; et al. Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: Insights into situs ambiguus and heterotaxy. Chest 2014, 146, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Brueckner, M. Cilia propel the embryo in the right direction. Am. J. Med. Genet. 2001, 101, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.P.; Omran, H.; Leigh, M.W.; Dell, S.; Morgan, L.; Molina, P.L.; Robinson, B.V.; Minnix, S.L.; Olbrich, H.; Severin, T.; et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 2007, 115, 2814–2821. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.R.; Ostrowski, L.E.; Leigh, M.W.; Sears, P.R.; Davis, S.D.; Wolf, W.E.; Hazucha, M.J.; Carson, J.L.; Olivier, K.N.; Sagel, S.D.; et al. Mutations in RSPH1 Cause Primary Ciliary Dyskinesia with a Unique Clinical and Ciliary Phenotype. Am. J. Respir. Crit. Care Med. 2014, 189, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Wallmeier, J.; Al-Mutairi, D.A.; Chen, C.T.; Loges, N.T.; Pennekamp, P.; Menchen, T.; Ma, L.; Shamseldin, H.E.; Olbrich, H.; Dougherty, G.W.; et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Genet. 2014, 46, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Boon, M.; Wallmeier, J.; Ma, L.; Loges, N.T.; Jaspers, M.; Olbrich, H.; Dougherty, G.W.; Raidt, J.; Werner, C.; Amirav, I.; et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Commun. 2014, 5, 4418. [Google Scholar] [CrossRef] [PubMed]
- Castleman, V.H.; Romio, L.; Chodhari, R.; Hirst, R.A.; de Castro, S.C.; Parker, K.A.; Ybot-Gonzalez, P.; Emes, R.D.; Wilson, S.W.; Wallis, C.; et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am. J. Hum. Genet. 2009, 84, 197–209. [Google Scholar] [CrossRef]
- Li, A.H.; Hanchard, N.A.; Azamian, M.; D’Alessandro, L.C.A.; Coban-Akdemir, Z.; Lopez, K.N.; Hall, N.J.; Dickerson, H.; Nicosia, A.; Fernbach, S.; et al. Genetic architecture of laterality defects revealed by whole exome sequencing. Eur. J. Hum. Genet. 2019, 27, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.; Chopra, J.; Dossett, C.; Shepherd, E.; Bercusson, A.; Carroll, M.; Walker, W.; Lucas, J.S.; Cheong, Y. The impact of primary ciliary dyskinesia on female and male fertility: A narrative review. Hum. Reprod. Update 2023, 29, 347–367. [Google Scholar] [CrossRef]
- Hoque, M.; Kim, E.N.; Chen, D.; Li, F.Q.; Takemaru, K.I. Essential Roles of Efferent Duct Multicilia in Male Fertility. Cells 2022, 11, 341. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, Y.; Peng, H.; Tang, C.; Hennig, G.W.; Wang, Z.; Wang, L.; Yu, T.; Klukovich, R.; Zhang, Y.; et al. Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proc. Natl. Acad. Sci. USA 2019, 116, 3584–3593. [Google Scholar] [CrossRef]
- Zariwala, M.A.; Knowles, M.R.; Leigh, M.W. Primary Ciliary Dyskinesia. 2009 Jan 24 [Updated 2019 Dec 5]. In GeneReviews((R)); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993‣2023. [Google Scholar]
- Bleau, G.; Richer, C.L.; Bousquet, D. Absence of dynein arms in cilia of endocervical cells in a fertile woman. Fertil. Steril. 1978, 30, 362–363. [Google Scholar] [CrossRef] [PubMed]
- Raidt, J.; Werner, C.; Menchen, T.; Dougherty, G.W.; Olbrich, H.; Loges, N.T.; Schmitz, R.; Pennekamp, P.; Omran, H. Ciliary function and motor protein composition of human fallopian tubes. Hum. Reprod. 2015, 30, 2871–2880. [Google Scholar] [CrossRef] [PubMed]
- Halbert, S.A.; Patton, D.L.; Zarutskie, P.W.; Soules, M.R. Function and structure of cilia in the fallopian tube of an infertile woman with Kartagener’s syndrome. Hum. Reprod. 1997, 12, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Blyth, M.; Wellesley, D. Ectopic pregnancy in primary ciliary dyskinesia. J. Obstet. Gynaecol. 2008, 28, 358. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.K.; Lee, R.K.; Su, J.T.; Liu, W.Y.; Lin, M.H.; Hwu, Y.M. A successful pregnancy with in vitro fertilization and embryo transfer in an infertile woman with Kartagener’s syndrome: A case report. J. Assist. Reprod. Genet. 1998, 15, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Onoufriadis, A.; Paff, T.; Antony, D.; Shoemark, A.; Micha, D.; Kuyt, B.; Schmidts, M.; Petridi, S.; Dankert-Roelse, J.E.; Haarman, E.G.; et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2013, 92, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, D.; You, Y.; Peng, B. Successful pregnancy in patient with Kartagener’s syndrome and infertility: Case report and published work review. Clin. Exp. Obstet. Gynecol. 2018, 45, 791–793. [Google Scholar] [CrossRef]
- Westlander, G.; Barry, M.; Petrucco, O.; Norman, R. Different fertilization rates between immotile testicular spermatozoa and immotile ejaculated spermatozoa for ICSI in men with Kartagener’s syndrome: Case reports. Hum. Reprod. 2003, 18, 1286–1288. [Google Scholar] [CrossRef]
- Maddirevula, S.; Awartani, K.; Coskun, S.; Alnaim, L.F.; Ibrahim, N.; Abdulwahab, F.; Hashem, M.; Alhassan, S.; Alkuraya, F.S. A genomics approach to females with infertility and recurrent pregnancy loss. Human. Genet. 2020, 139, 605–613. [Google Scholar] [CrossRef]
- Duy, P.Q.; Greenberg, A.B.W.; Butler, W.E.; Kahle, K.T. Rethinking the cilia hypothesis of hydrocephalus. Neurobiol. Dis. 2022, 175, 105913. [Google Scholar] [CrossRef]
- Behan, L.; Dimitrov, B.D.; Kuehni, C.E.; Hogg, C.; Carroll, M.; Evans, H.J.; Goutaki, M.; Harris, A.; Packham, S.; Walker, W.T.; et al. PICADAR: A diagnostic predictive tool for primary ciliary dyskinesia. Eur. Respir. J. 2016, 47, 1103–1112. [Google Scholar] [CrossRef]
- Rocca, M.S.; Piatti, G.; Michelucci, A.; Guazzo, R.; Bertini, V.; Vinanzi, C.; Caligo, M.A.; Valetto, A.; Foresta, C. A novel genetic variant in DNAI2 detected by custom gene panel in a newborn with Primary Ciliary Dyskinesia: Case report. BMC Med. Genet. 2020, 21, 220. [Google Scholar] [CrossRef] [PubMed]
- Robson, E.A.; Dixon, L.; Causon, L.; Dawes, W.; Benenati, M.; Fassad, M.; Hirst, R.A.; Kenia, P.; Moya, E.F.; Patel, M.; et al. Hydrocephalus and diffuse choroid plexus hyperplasia in primary ciliary dyskinesia-related MCIDAS mutation. Neurol. Genet. 2020, 6, e482. [Google Scholar] [CrossRef]
- Shapiro, A.J.; Kaspy, K.; Daniels, M.L.A.; Stonebraker, J.R.; Nguyen, V.H.; Joyal, L.; Knowles, M.R.; Zariwala, M.A. Autosomal dominant variants in FOXJ1 causing primary ciliary dyskinesia in two patients with obstructive hydrocephalus. Mol. Genet. Genomic Med. 2021, 9, e1726. [Google Scholar] [CrossRef] [PubMed]
- Núnez-Ollé, M.; Jung, C.; Terré, B.; Balsiger, N.A.; Plata, C.; Roset, R.; Pardo-Pastor, C.; Garrido, M.; Rojas, S.; Alameda, F.; et al. Constitutive Cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility. Oncotarget 2017, 8, 99261–99273. [Google Scholar] [CrossRef] [PubMed]
- Dodd, D.O.; Mechaussier, S.; Yeyati, P.L.; McPhie, F.; Anderson, J.R.; Khoo, C.J.; Shoemark, A.; Gupta, D.K.; Attard, T.; Zariwala, M.A.; et al. Ciliopathy patient variants reveal organelle-specific functions for TUBB4B in axonemal microtubules. Science 2024, 384, eadf5489. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Umair, Z.; Kumar, S.; Goutam, R.S.; Park, S.; Kim, J. The regulatory roles of motile cilia in CSF circulation and hydrocephalus. Fluids Barriers CNS 2021, 18, 31. [Google Scholar] [CrossRef]
- Olstad, E.W.; Ringers, C.; Hansen, J.N.; Wens, A.; Brandt, C.; Wachten, D.; Yaksi, E.; Jurisch-Yaksi, N. Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development. Curr. Biol. 2019, 29, 229–241.e226. [Google Scholar] [CrossRef]
- Vieira, J.P.; Lopes, P.; Silva, R. Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J. Child. Neurol. 2012, 27, 938–941. [Google Scholar] [CrossRef]
- Shapiro, A.J.; Davis, S.D.; Polineni, D.; Manion, M.; Rosenfeld, M.; Dell, S.D.; Chilvers, M.A.; Ferkol, T.W.; Zariwala, M.A.; Sagel, S.D.; et al. Diagnosis of Primary Ciliary Dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 197, e24–e39. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.S.; Barbato, A.; Collins, S.A.; Goutaki, M.; Behan, L.; Caudri, D.; Dell, S.; Eber, E.; Escudier, E.; Hirst, R.A.; et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2017, 49, 1601090. [Google Scholar] [CrossRef] [PubMed]
- Castillo, M.; Freire, E.; Romero, V.I. Primary ciliary dyskinesia diagnosis and management and its implications in America: A mini review. Front. Pediatr. 2023, 11, 1091173. [Google Scholar] [CrossRef] [PubMed]
- Schreck, L.D.; Pedersen, E.S.L.; Cizeau, I.; Muller, L.; Kruljac, C.; Lucas, J.S.; Goutaki, M.; COVID-PCD Patient Advisory Group; Kuehni, C.E. Diagnostic testing in people with primary ciliary dyskinesia: An international participatory study. PLOS Glob. Public Health 2023, 3, e0001522. [Google Scholar] [CrossRef]
- Narang, I.; Ersu, R.; Wilson, N.M.; Bush, A. Nitric oxide in chronic airway inflammation in children: Diagnostic use and pathophysiological significance. Thorax 2002, 57, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Leigh, M.W.; Hazucha, M.J.; Chawla, K.K.; Baker, B.R.; Shapiro, A.J.; Brown, D.E.; Lavange, L.M.; Horton, B.J.; Qaqish, B.; Carson, J.L.; et al. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann. Am. Thorac. Soc. 2013, 10, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Stout, S.L.; Wyatt, T.A.; Adams, J.J.; Sisson, J.H. Nitric oxide-dependent cilia regulatory enzyme localization in bovine bronchial epithelial cells. J. Histochem. Cytochem. 2007, 55, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O. Nitric oxide and the paranasal sinuses. Anat. Rec. 2008, 291, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.J.; Dell, S.D.; Gaston, B.; O’Connor, M.; Marozkina, N.; Manion, M.; Hazucha, M.J.; Leigh, M.W. Nasal Nitric Oxide Measurement in Primary Ciliary Dyskinesia. A Technical Paper on Standardized Testing Protocols. Ann. Am. Thorac. Soc. 2020, 17, e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Alexandru, M.; Veil, R.; Rubbo, B.; Goutaki, M.; Kim, S.; Lam, Y.T.; Nevoux, J.; Lucas, J.S.; Papon, J.F. Ear and upper airway clinical outcome measures for use in primary ciliary dyskinesia research: A scoping review. Eur. Respir. Rev. 2023, 32, 220200. [Google Scholar] [CrossRef]
- Beydon, N.; Tamalet, A.; Escudier, E.; Legendre, M.; Thouvenin, G. Breath-holding and tidal breathing nasal NO to screen children for Primary Ciliary Dyskinesia. Pediatr. Pulmonol. 2021, 56, 2242–2249. [Google Scholar] [CrossRef] [PubMed]
- Amirav, I.; Wallmeier, J.; Loges, N.T.; Menchen, T.; Pennekamp, P.; Mussaffi, H.; Abitbul, R.; Avital, A.; Bentur, L.; Dougherty, G.W.; et al. Systematic Analysis of CCNO Variants in a Defined Population: Implications for Clinical Phenotype and Differential Diagnosis. Hum. Mutat. 2016, 37, 396–405. [Google Scholar] [CrossRef]
- Olbrich, H.; Cremers, C.; Loges, N.T.; Werner, C.; Nielsen, K.G.; Marthin, J.K.; Philipsen, M.; Wallmeier, J.; Pennekamp, P.; Menchen, T.; et al. Loss-of-Function GAS8 Mutations Cause Primary Ciliary Dyskinesia and Disrupt the Nexin-Dynein Regulatory Complex. Am. J. Hum. Genet. 2015, 97, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Shoemark, A.; Moya, E.; Hirst, R.A.; Patel, M.P.; Robson, E.A.; Hayward, J.; Scully, J.; Fassad, M.R.; Lamb, W.; Schmidts, M.; et al. High prevalence of CCDC103 p.His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations. Thorax 2018, 73, 157–166. [Google Scholar] [CrossRef]
- Bustamante-Marin, X.M.; Shapiro, A.; Sears, P.R.; Charng, W.L.; Conrad, D.F.; Leigh, M.W.; Knowles, M.R.; Ostrowski, L.E.; Zariwala, M.A. Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J. Hum. Genet. 2020, 65, 175–180. [Google Scholar] [CrossRef]
- Edelbusch, C.; Cindric, S.; Dougherty, G.W.; Loges, N.T.; Olbrich, H.; Rivlin, J.; Wallmeier, J.; Pennekamp, P.; Amirav, I.; Omran, H. Mutation of serine/threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect. Hum. Mutat. 2017, 38, 964–969. [Google Scholar] [CrossRef]
- Shapiro, A.J.; Davis, S.D.; Leigh, M.W.; Knowles, M.R.; Lavergne, V.; Ferkol, T. Limitations of Nasal Nitric Oxide Testing in Primary Ciliary Dyskinesia. Am. J. Respir. Crit. Care Med. 2020, 202, 476–477. [Google Scholar] [CrossRef]
- Bukowy-Bieryllo, Z.; Zietkiewicz, E.; Loges, N.T.; Wittmer, M.; Geremek, M.; Olbrich, H.; Fliegauf, M.; Voelkel, K.; Rutkiewicz, E.; Rutland, J.; et al. RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr. Pulmonol. 2013, 48, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Loges, N.T.; Antony, D.; Maver, A.; Deardorff, M.A.; Gulec, E.Y.; Gezdirici, A.; Nothe-Menchen, T.; Hoben, I.M.; Jelten, L.; Frank, D.; et al. Recessive DNAH9 Loss-of-Function Mutations Cause Laterality Defects and Subtle Respiratory Ciliary-Beating Defects. Am. J. Hum. Genet. 2018, 103, 995–1008. [Google Scholar] [CrossRef]
- Bustamante-Marin, X.M.; Yin, W.N.; Sears, P.R.; Werner, M.E.; Brotslaw, E.J.; Mitchell, B.J.; Jania, C.M.; Zeman, K.L.; Rogers, T.D.; Herring, L.E.; et al. Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance. Am. J. Hum. Genet. 2019, 104, 229–245. [Google Scholar] [CrossRef]
- Aprea, I.; Wilken, A.; Krallmann, C.; Nothe-Menchen, T.; Olbrich, H.; Loges, N.T.; Dougherty, G.W.; Bracht, D.; Brenker, C.; Kliesch, S.; et al. Pathogenic gene variants in CCDC39, CCDC40, RSPH1, RSPH9, HYDIN, and SPEF2 cause defects of sperm flagella composition and male infertility. Front. Genet. 2023, 14, 1117821. [Google Scholar] [CrossRef] [PubMed]
- Cindric, S.; Dougherty, G.W.; Olbrich, H.; Hjeij, R.; Loges, N.T.; Amirav, I.; Philipsen, M.C.; Marthin, J.K.; Nielsen, K.G.; Sutharsan, S.; et al. SPEF2- and HYDIN-Mutant Cilia Lack the Central Pair-associated Protein SPEF2, Aiding Primary Ciliary Dyskinesia Diagnostics. Am. J. Respir. Cell Mol. Biol. 2020, 62, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Bouhouche, K.; Whitfield, M.; Thouvenin, G.; Coste, A.; Louis, B.; Szymanski, C.; Bequignon, E.; Papon, J.F.; Castelli, M.; et al. TTC12 Loss-of-Function Mutations Cause Primary Ciliary Dyskinesia and Unveil Distinct Dynein Assembly Mechanisms in Motile Cilia Versus Flagella. Am. J. Hum. Genet. 2020, 106, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, X.; Li, H.; Wang, W.; Zhao, S. The value of nasal nitric oxide measurement in the diagnosis of primary ciliary dyskinesia. Pediatr. Investig. 2019, 3, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Ide, H.; Imada, M.; Osanai, S.; Takahashi, T.; Kikuchi, K.; Iwamoto, J. Reduced nasal nitric oxide in diffuse panbronchiolitis. Am. J. Respir. Crit. Care Med. 2000, 162, 2218–2220. [Google Scholar] [CrossRef] [PubMed]
- Zysman-Colman, Z.N.; Kaspy, K.R.; Alizadehfar, R.; NyKamp, K.R.; Zariwala, M.A.; Knowles, M.R.; Vinh, D.C.; Shapiro, A.J. Nasal Nitric Oxide in Primary Immunodeficiency and Primary Ciliary Dyskinesia: Helping to Distinguish Between Clinically Similar Diseases. J. Clin. Immunol. 2019, 39, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Barber, A.T.; Davis, S.D.; Boutros, H.; Zariwala, M.; Knowles, M.R.; Leigh, M.W. Use caution interpreting nasal nitric oxide: Overlap in primary ciliary dyskinesia and primary immunodeficiency. Pediatr. Pulmonol. 2021, 56, 4045–4047. [Google Scholar] [CrossRef] [PubMed]
- Marthin, J.K.; Philipsen, M.C.; Rosthoj, S.; Nielsen, K.G. Infant nasal nitric oxide over time: Natural evolution and impact of respiratory tract infection. Eur. Respir. J. 2018, 51, 1702503. [Google Scholar] [CrossRef] [PubMed]
- Autio, T.J.; Koskenkorva, T.; Leino, T.K.; Koivunen, P.; Alho, O.P. Longitudinal analysis of inflammatory biomarkers during acute rhinosinusitis. Laryngoscope 2017, 127, E55–E61. [Google Scholar] [CrossRef]
- Afzelius, B.A. A human syndrome caused by immotile cilia. Science 1976, 193, 317–319. [Google Scholar] [CrossRef]
- Shoemark, A.; Boon, M.; Brochhausen, C.; Bukowy-Bieryllo, Z.; De Santi, M.M.; Goggin, P.; Griffin, P.; Hegele, R.G.; Hirst, R.A.; Leigh, M.W.; et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur. Respir. J. 2020, 55, 1900725. [Google Scholar] [CrossRef]
- Brennan, S.K.; Ferkol, T.W.; Davis, S.D. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia. Int. J. Mol. Sci. 2021, 22, 8272. [Google Scholar] [CrossRef]
- Shoemark, A.; Dixon, M.; Corrin, B.; Dewar, A. Twenty-year review of quantitative transmission electron microscopy for the diagnosis of primary ciliary dyskinesia. J. Clin. Pathol. 2012, 65, 267–271. [Google Scholar] [CrossRef]
- Kouis, P.; Yiallouros, P.K.; Middleton, N.; Evans, J.S.; Kyriacou, K.; Papatheodorou, S.I. Prevalence of primary ciliary dyskinesia in consecutive referrals of suspect cases and the transmission electron microscopy detection rate: A systematic review and meta-analysis. Pediatr. Res. 2017, 81, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Antony, D.; Becker-Heck, A.; Zariwala, M.A.; Schmidts, M.; Onoufriadis, A.; Forouhan, M.; Wilson, R.; Taylor-Cox, T.; Dewar, A.; Jackson, C.; et al. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum. Mutat. 2013, 34, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Oda, T.; Yanagisawa, H.; Kamiya, R.; Kikkawa, M. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 2014, 346, 857–860. [Google Scholar] [CrossRef]
- Becker-Heck, A.; Zohn, I.E.; Okabe, N.; Pollock, A.; Lenhart, K.B.; Sullivan-Brown, J.; McSheene, J.; Loges, N.T.; Olbrich, H.; Haeffner, K.; et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. 2011, 43, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Merveille, A.C.; Davis, E.E.; Becker-Heck, A.; Legendre, M.; Amirav, I.; Bataille, G.; Belmont, J.; Beydon, N.; Billen, F.; Clement, A.; et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 2011, 43, 72–78. [Google Scholar] [CrossRef]
- Dixon, M.; Shoemark, A. Secondary defects detected by transmission electron microscopy in primary ciliary dyskinesia diagnostics. Ultrastruct. Pathol. 2017, 41, 390–398. [Google Scholar] [CrossRef]
- O’Callaghan, C.; Rutman, A.; Williams, G.M.; Hirst, R.A. Inner dynein arm defects causing primary ciliary dyskinesia: Repeat testing required. Eur. Respir. J. 2011, 38, 603–607. [Google Scholar] [CrossRef]
- Hirst, R.A.; Jackson, C.L.; Coles, J.L.; Williams, G.; Rutman, A.; Goggin, P.M.; Adam, E.C.; Page, A.; Evans, H.J.; Lackie, P.M.; et al. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS ONE 2014, 9, e89675. [Google Scholar] [CrossRef] [PubMed]
- Simoneau, T.; Zandieh, S.O.; Rao, D.R.; Vo, P.; Palm, K.E.; McCown, M.; Kopel, L.S.; Dias, A.; Casey, A.; Perez-Atayde, A.R.; et al. Impact of cilia ultrastructural examination on the diagnosis of primary ciliary dyskinesia. Pediatr. Dev. Pathol. 2013, 16, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Papon, J.F.; Coste, A.; Roudot-Thoraval, F.; Boucherat, M.; Roger, G.; Tamalet, A.; Vojtek, A.M.; Amselem, S.; Escudier, E. A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2010, 35, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yin, W.; Smith, M.C.; Song, K.; Leigh, M.W.; Zariwala, M.A.; Knowles, M.R.; Ostrowski, L.E.; Nicastro, D. Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nat. Commun. 2014, 5, 5727. [Google Scholar] [CrossRef] [PubMed]
- Funkhouser, W.K., 3rd; Niethammer, M.; Carson, J.L.; Burns, K.A.; Knowles, M.R.; Leigh, M.W.; Zariwala, M.A.; Funkhouser, W.K., Jr. A new tool improves diagnostic test performance for transmission em evaluation of axonemal dynein arms. Ultrastruct. Pathol. 2014, 38, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Chilvers, M.A.; O’Callaghan, C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: Comparison with the photomultiplier and photodiode methods. Thorax 2000, 55, 314–317. [Google Scholar] [CrossRef]
- Papon, J.F.; Bassinet, L.; Cariou-Patron, G.; Zerah-Lancner, F.; Vojtek, A.M.; Blanchon, S.; Crestani, B.; Amselem, S.; Coste, A.; Housset, B.; et al. Quantitative analysis of ciliary beating in primary ciliary dyskinesia: A pilot study. Orphanet J. Rare Dis. 2012, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Chilvers, M.A.; Rutman, A.; O’Callaghan, C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J. Allergy Clin. Immunol. 2003, 112, 518–524. [Google Scholar] [CrossRef]
- Schneiter, M.; Tschanz, S.A.; Escher, A.; Muller, L.; Frenz, M. The Cilialyzer—A freely available open-source software for the analysis of mucociliary activity in respiratory cells. Comput. Methods Programs Biomed. 2023, 241, 107744. [Google Scholar] [CrossRef]
- Rubbo, B.; Shoemark, A.; Jackson, C.L.; Hirst, R.; Thompson, J.; Hayes, J.; Frost, E.; Copeland, F.; Hogg, C.; O’Callaghan, C.; et al. Accuracy of High-Speed Video Analysis to Diagnose Primary Ciliary Dyskinesia. Chest 2019, 155, 1008–1017. [Google Scholar] [CrossRef]
- Lucas, J.S.; Rubbo, B.; Jackson, C.L.; Hirst, R.A.; Hogg, C.; O’Callaghan, C.; Reading, I.; Shoemark, A. Response. Chest 2019, 156, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.L.; Behan, L.; Collins, S.A.; Goggin, P.M.; Adam, E.C.; Coles, J.L.; Evans, H.J.; Harris, A.; Lackie, P.; Packham, S.; et al. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur. Respir. J. 2016, 47, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Shoemark, A.; Dell, S.; Shapiro, A.; Lucas, J.S. ERS and ATS diagnostic guidelines for primary ciliary dyskinesia: Similarities and differences in approach to diagnosis. Eur. Respir. J. 2019, 54, 1901066. [Google Scholar] [CrossRef] [PubMed]
- Shoemark, A.; Frost, E.; Dixon, M.; Ollosson, S.; Kilpin, K.; Patel, M.; Scully, J.; Rogers, A.V.; Mitchison, H.M.; Bush, A.; et al. Accuracy of Immunofluorescence in the Diagnosis of Primary Ciliary Dyskinesia. Am. J. Respir. Crit. Care Med. 2017, 196, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Fliegauf, M.; Olbrich, H.; Horvath, J.; Wildhaber, J.H.; Zariwala, M.A.; Kennedy, M.; Knowles, M.R.; Omran, H. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 2005, 171, 1343–1349. [Google Scholar] [CrossRef]
- Baz-Redon, N.; Rovira-Amigo, S.; Fernandez-Cancio, M.; Castillo-Corullon, S.; Cols, M.; Caballero-Rabasco, M.A.; Asensio, O.; Martin de Vicente, C.; Martinez-Colls, M.D.M.; Torrent-Vernetta, A.; et al. Immunofluorescence Analysis as a Diagnostic Tool in a Spanish Cohort of Patients with Suspected Primary Ciliary Dyskinesia. J. Clin. Med. 2020, 9, 603. [Google Scholar] [CrossRef]
- Onoufriadis, A.; Shoemark, A.; Schmidts, M.; Patel, M.; Jimenez, G.; Liu, H.; Thomas, B.; Dixon, M.; Hirst, R.A.; Rutman, A.; et al. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum. Mol. Genet. 2014, 23, 3362–3374. [Google Scholar] [CrossRef] [PubMed]
- Frommer, A.; Hjeij, R.; Loges, N.T.; Edelbusch, C.; Jahnke, C.; Raidt, J.; Werner, C.; Wallmeier, J.; Grosse-Onnebrink, J.; Olbrich, H.; et al. Immunofluorescence Analysis and Diagnosis of Primary Ciliary Dyskinesia with Radial Spoke Defects. Am. J. Respir. Cell Mol. Biol. 2015, 53, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, G.W.; Loges, N.T.; Klinkenbusch, J.A.; Olbrich, H.; Pennekamp, P.; Menchen, T.; Raidt, J.; Wallmeier, J.; Werner, C.; Westermann, C.; et al. DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes. Am. J. Respir. Cell Mol. Biol. 2016, 55, 213–224. [Google Scholar] [CrossRef]
- Liu, Z.; Nguyen, Q.P.H.; Guan, Q.; Albulescu, A.; Erdman, L.; Mahdaviyeh, Y.; Kang, J.; Ouyang, H.; Hegele, R.G.; Moraes, T.; et al. A quantitative super-resolution imaging toolbox for diagnosis of motile ciliopathies. Sci. Transl. Med. 2020, 12, eaay0071. [Google Scholar] [CrossRef]
- Horani, A.; Ferkol, T.W. Advances in the Genetics of Primary Ciliary Dyskinesia: Clinical Implications. Chest 2018, 154, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Gileles-Hillel, A.; Mor-Shaked, H.; Shoseyov, D.; Reiter, J.; Tsabari, R.; Hevroni, A.; Cohen-Cymberknoh, M.; Amirav, I.; Brammli-Greenberg, S.; Horani, A.; et al. Whole-exome sequencing accuracy in the diagnosis of primary ciliary dyskinesia. ERJ Open Res. 2020, 6, 213–2020. [Google Scholar] [CrossRef] [PubMed]
- Hijikata, M.; Morimoto, K.; Takekoshi, D.; Shimoda, M.; Wakabayashi, K.; Miyabayashi, A.; Guo, T.C.; Yamada, H.; Keicho, N. Analysis of Aberrant Splicing Events and Gene Expression Outliers in Primary Ciliary Dyskinesia. Am. J. Respir. Cell Mol. Biol. 2023, 68, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.J.; Stonebraker, J.R.; Knowles, M.R.; Zariwala, M.A. A Deep Intronic, Pathogenic Variant in DNAH11 Causes Primary Ciliary Dyskinesia. Am. J. Respir. Cell Mol. Biol. 2022, 67, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Petrarca, L.; De Luca, A.; Nenna, R.; Hadchouel, A.; Mazza, T.; Conti, M.G.; Masuelli, L.; Midulla, F.; Guida, V. Early genetic analysis by next-generation sequencing improves diagnosis of primary ciliary dyskinesia. Pediatr. Pulmonol. 2023, 58, 2950–2953. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Feng, G.; Yano, T.; Masuda, S.; Nagao, M.; Gotoh, S.; Ikejiri, M.; Tanabe, M.; Takeuchi, K. Characteristic genetic spectrum of primary ciliary dyskinesia in Japanese patients and global ethnic heterogeneity: Population-based genomic variation database analysis. J. Hum. Genet. 2023, 68, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.A.; Sagel, S.D.; Knowles, M.R.; Ferkol, T.W.; Davis, S.D.; Leigh, M.W.; Zariwala, M.A. Decoding negative genetic panels in primary ciliary dyskinesia. Pediatr. Pulmonol. 2023, 59, 784–787. [Google Scholar] [CrossRef]
- Yiallouros, P.K.; Kouis, P.; Pirpa, P.; Michailidou, K.; Loizidou, M.A.; Potamiti, L.; Kalyva, M.; Koutras, G.; Kyriacou, K.; Hadjisavvas, A. Wide phenotypic variability in RSPH9-associated primary ciliary dyskinesia: Review of a case-series from Cyprus. J. Thorac. Dis. 2019, 11, 2067–2075. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, A.; Namkoong, H.; Iwami, E.; Tsutsumi, A.; Nakajima, T.; Shinoda, H.; Katada, Y.; Iimura, J.; Suzuki, H.; Kosaki, K.; et al. X -linked inheritance of primary ciliary dyskinesia and retinitis pigmentosa due to RPGR variant: A case report and literature review. Respirol. Case Rep. 2023, 11, e01240. [Google Scholar] [CrossRef] [PubMed]
- Shoemark, A.; Rubbo, B.; Legendre, M.; Fassad, M.R.; Haarman, E.G.; Best, S.; Bon, I.C.M.; Brandsma, J.; Burgel, P.R.; Carlsson, G.; et al. Topological data analysis reveals genotype-phenotype relationships in primary ciliary dyskinesia. Eur. Respir. J. 2021, 58, 2002359. [Google Scholar] [CrossRef]
- Pifferi, M.; Bush, A.; Mariani, F.; Piras, M.; Michelucci, A.; Cangiotti, A.; Di Cicco, M.; Caligo, M.A.; Miccoli, M.; Boner, A.L.; et al. Lung Function Longitudinal Study by Phenotype and Genotype in Primary Ciliary Dyskinesia. Chest 2020, 158, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Henriques, A.R.; Constant, C.; Descalco, A.; Pinto, A.; Moura Nunes, J.; Sampaio, P.; Lopes, S.S.; Pereira, L.; Bandeira, T. Primary ciliary dyskinesia due to CCNO mutations-A genotype-phenotype correlation contribution. Pediatr. Pulmonol. 2021, 56, 2776–2779. [Google Scholar] [CrossRef]
- Schwabe, G.C.; Hoffmann, K.; Loges, N.T.; Birker, D.; Rossier, C.; de Santi, M.M.; Olbrich, H.; Fliegauf, M.; Failly, M.; Liebers, U.; et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum. Mutat. 2008, 29, 289–298. [Google Scholar] [CrossRef]
- Kispert, A.; Petry, M.; Olbrich, H.; Volz, A.; Ketelsen, U.P.; Horvath, J.; Melkaoui, R.; Omran, H.; Zariwala, M.; Noone, P.G.; et al. Genotype-phenotype correlations in PCD patients carrying DNAH5 mutations. Thorax 2003, 58, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Jeanson, L.; Copin, B.; Papon, J.F.; Dastot-Le Moal, F.; Duquesnoy, P.; Montantin, G.; Cadranel, J.; Corvol, H.; Coste, A.; Desir, J.; et al. RSPH3 Mutations Cause Primary Ciliary Dyskinesia with Central-Complex Defects and a Near Absence of Radial Spokes. Am. J. Hum. Genet. 2015, 97, 153–162. [Google Scholar] [CrossRef]
- Olbrich, H.; Schmidts, M.; Werner, C.; Onoufriadis, A.; Loges, N.T.; Raidt, J.; Banki, N.F.; Shoemark, A.; Burgoyne, T.; Al Turki, S.; et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum. Genet. 2012, 91, 672–684. [Google Scholar] [CrossRef] [PubMed]
- El Khouri, E.; Thomas, L.; Jeanson, L.; Bequignon, E.; Vallette, B.; Duquesnoy, P.; Montantin, G.; Copin, B.; Dastot-Le Moal, F.; Blanchon, S.; et al. Mutations in DNAJB13, Encoding an HSP40 Family Member, Cause Primary Ciliary Dyskinesia and Male Infertility. Am. J. Hum. Genet. 2016, 99, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Biebach, L.; Cindric, S.; Koenig, J.; Aprea, I.; Dougherty, G.W.; Raidt, J.; Bracht, D.; Ruppel, R.; Schreiber, J.; Hjeij, R.; et al. Recessive Mutations in CFAP74 Cause Primary Ciliary Dyskinesia with Normal Ciliary Ultrastructure. Am. J. Respir. Cell Mol. Biol. 2022, 67, 409–413. [Google Scholar] [CrossRef]
- Nothe-Menchen, T.; Wallmeier, J.; Pennekamp, P.; Hoben, I.M.; Olbrich, H.; Loges, N.T.; Raidt, J.; Dougherty, G.W.; Hjeij, R.; Dworniczak, B.; et al. Randomization of Left-right Asymmetry and Congenital Heart Defects: The Role of DNAH5 in Humans and Mice. Circ. Genom. Precis. Med. 2019, 12, e002686. [Google Scholar] [CrossRef]
- Funk, M.C.; Bera, A.N.; Menchen, T.; Kuales, G.; Thriene, K.; Lienkamp, S.S.; Dengjel, J.; Omran, H.; Frank, M.; Arnold, S.J. Cyclin O (Ccno) functions during deuterosome-mediated centriole amplification of multiciliated cells. EMBO J. 2015, 34, 1078–1089. [Google Scholar] [CrossRef]
- Wallmeier, J.; Frank, D.; Shoemark, A.; Nothe-Menchen, T.; Cindric, S.; Olbrich, H.; Loges, N.T.; Aprea, I.; Dougherty, G.W.; Pennekamp, P.; et al. De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry. Am. J. Hum. Genet. 2019, 105, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Wee, W.B.; Leigh, M.W.; Davis, S.D.; Rosenfeld, M.; Sullivan, K.M.; Sawras, M.G.; Ferkol, T.W.; Knowles, M.R.; Milla, C.; Sagel, S.D.; et al. Association of Neonatal Hospital Length of Stay with Lung Function in Primary Ciliary Dyskinesia. Ann. Am. Thorac. Soc. 2022, 19, 1865–1870. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, R.; Yang, D.; Lu, C.; Xu, Y.; Liu, Y.; Guo, T.; Lei, C.; Luo, H. Novel RSPH4A Variants Associated With Primary Ciliary Dyskinesia-Related Infertility in Three Chinese Families. Front. Genet. 2022, 13, 922287. [Google Scholar] [CrossRef] [PubMed]
- Kos, R.; Israels, J.; van Gogh, C.D.L.; Altenburg, J.; Diepenhorst, S.; Paff, T.; Boon, E.M.J.; Micha, D.; Pals, G.; Neerincx, A.H.; et al. Primary ciliary dyskinesia in Volendam: Diagnostic and phenotypic features in patients with a CCDC114 mutation. Am. J. Med. Genet. C Semin. Med. Genet. 2022, 190, 89–101. [Google Scholar] [CrossRef]
- Whitfield, M.; Thomas, L.; Bequignon, E.; Schmitt, A.; Stouvenel, L.; Montantin, G.; Tissier, S.; Duquesnoy, P.; Copin, B.; Chantot, S.; et al. Mutations in DNAH17, Encoding a Sperm-Specific Axonemal Outer Dynein Arm Heavy Chain, Cause Isolated Male Infertility Due to Asthenozoospermia. Am. J. Hum. Genet. 2019, 105, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Hannah, W.B.; Debrosse, S.; Kinghorn, B.; Strausbaugh, S.; Aitken, M.L.; Rosenfeld, M.; Wolf, W.E.; Knowles, M.R.; Zariwala, M.A. The expanding phenotype of OFD1-related disorders: Hemizygous loss-of-function variants in three patients with primary ciliary dyskinesia. Mol. Genet. Genom. Med. 2019, 7, e911. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Escudier, E.; Roger, G.; Tamalet, A.; Pelosse, B.; Marlin, S.; Clement, A.; Geremek, M.; Delaisi, B.; Bridoux, A.M.; et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J. Med. Genet. 2006, 43, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Bakey, Z.; Cabrera, O.A.; Hoefele, J.; Antony, D.; Wu, K.; Stuck, M.W.; Micha, D.; Eguether, T.; Smith, A.O.; van der Wel, N.N.; et al. IFT74 variants cause skeletal ciliopathy and motile cilia defects in mice and humans. PLoS Genet. 2023, 19, e1010796. [Google Scholar] [CrossRef] [PubMed]
- Wallmeier, J.; Bracht, D.; Alsaif, H.S.; Dougherty, G.W.; Olbrich, H.; Cindric, S.; Dzietko, M.; Heyer, C.; Teig, N.; Thiels, C.; et al. Mutations in TP73 cause impaired mucociliary clearance and lissencephaly. Am. J. Hum. Genet. 2021, 108, 1318–1329. [Google Scholar] [CrossRef]
- Fein, V.; Maier, C.; Schlegtendal, A.; Denz, R.; Koerner-Rettberg, C.; Brinkmann, F. Risk factors for the deterioration of pulmonary function in primary ciliary dyskinesia. Pediatr. Pulmonol. 2023, 58, 1950–1958. [Google Scholar] [CrossRef]
- Kobbernagel, H.E.; Buchvald, F.F.; Haarman, E.G.; Casaulta, C.; Collins, S.A.; Hogg, C.; Kuehni, C.E.; Lucas, J.S.; Moser, C.E.; Quittner, A.L.; et al. Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): A multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2020, 8, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Ringshausen, F.C.; Shapiro, A.J.; Nielsen, K.G.; Mazurek, H.; Pifferi, M.; Donn, K.H.; van der Eerden, M.M.; Loebinger, M.R.; Zariwala, M.A.; Leigh, M.W.; et al. Safety and efficacy of the epithelial sodium channel blocker idrevloride in people with primary ciliary dyskinesia (CLEAN-PCD): A multinational, phase 2, randomised, double-blind, placebo-controlled crossover trial. Lancet Respir. Med. 2023, 12, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Paff, T.; Omran, H.; Nielsen, K.G.; Haarman, E.G. Current and Future Treatments in Primary Ciliary Dyskinesia. Int. J. Mol. Sci. 2021, 22, 9834. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Despotes, K.A.; Zariwala, M.A.; Davis, S.D.; Ferkol, T.W. Primary Ciliary Dyskinesia: A Clinical Review. Cells 2024, 13, 974. https://doi.org/10.3390/cells13110974
Despotes KA, Zariwala MA, Davis SD, Ferkol TW. Primary Ciliary Dyskinesia: A Clinical Review. Cells. 2024; 13(11):974. https://doi.org/10.3390/cells13110974
Chicago/Turabian StyleDespotes, Katherine A., Maimoona A. Zariwala, Stephanie D. Davis, and Thomas W. Ferkol. 2024. "Primary Ciliary Dyskinesia: A Clinical Review" Cells 13, no. 11: 974. https://doi.org/10.3390/cells13110974
APA StyleDespotes, K. A., Zariwala, M. A., Davis, S. D., & Ferkol, T. W. (2024). Primary Ciliary Dyskinesia: A Clinical Review. Cells, 13(11), 974. https://doi.org/10.3390/cells13110974