Prostate Cancer Liquid Biopsy Biomarkers’ Clinical Utility in Diagnosis and Prognosis
Abstract
:Simple Summary
Abstract
1. Introduction: Prostate Cancer Diagnosis
2. Material and Methods
3. Urine Biomarkers
3.1. Prostate Cancer Antigen 3 (PCA3)
Commercial Product | Biomarkers | Purpose | Indication | Cohort | Avoid Biopsies | Specimen | FDA Approved | Method | Predictive Capacity | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
PCA3 | lncRNA PCA3, PSA mRNA | Predicts the presence of malignancy. Supports initial biopsy decisions by enhancing diagnostic value. Determines whether repeat biopsy is needed after an initially negative biopsy. | Diagnosis: repeat biopsy Prognosis * | n = 233 [12] n = 859 [14] n = 1072 [19] n = 351 [26] n = 3073 [27] | For PCA3 score < 20 and PSA < 4 ng/mL 8% of men would have avoided biopsies, while 9% of cancer (non-HG) have been underdiagnosed. For only PCA3 score < 20 46% biopsies would have been avoided, while missing 12% of cancers (3% HG [14]) | First catch (20–30 mL) post-DRE urine | Yes | Urine specimens were held at 2 °C to 8 °C and processed within 4 h by mixing with an equal volume of detergent-based stabilisation buffer (Gen-Probe® Hologic, San Diego, CA, USA) to lyse the prostate cells and stabilise the RNA. Samples were stored at −70 °C until testing and batch shipped on ice packs if needed. PCA3 and PSA mRNA were isolated from processed urine samples by capturing magnetic microparticles and amplified by transcription-assisted amplification. Products were detected with chemiluminescent DNA probes using a hybridisation protection assay [12]. Statistical analyses were performed by the data coordinating centre using SAS version 9.2 (SAS Institute, Cary, NC, USA) [14]. NCSS 2004 (NSCC Inc., Kaysville, UT, USA) was used for the analysis [19]. Data analysis was performed using Statistical Package for Social Sciences version 12.0.1 (SPSS, Chicago, IL, USA) [26]. | AUC = 0.68 Se. = 58% Sp. = 72% [12] For detection of any cancer, PPV = 80% for initial prostate biopsy, and for repeat prostate biopsy NPV = 88% Se. = 76% Sp. = 52% [14] AUC = 0.693 Se. = 48.4% Sp. = 78.6% [19] AUC = 0.72 Se. = 61% Sp. = 74% [26] AUC = 0.697 for prediction PCa AUC = 0.682 for HG PCa NPV = 0.67 PPV = 0.62 Se. = 53% Sp. = 75% [27] | [12,14,19,26,27] |
ConfirmMDx | Hypermethylation of GSTP1, APC and RASSF1 genes, PSA | Screening patients at risk of HG PCa after an initial negative biopsy. It is clinically validated for detection of PCa in tissue from PCa-negative biopsies. Helps to distinguish true negative biopsies from those with possible undetected cancer, and decide when to re-biopsy. | Diagnosis: repeat biopsy | n = 498 [28] n = 350 [29] n = 803 [30] n = 211 [31] ** | 30% of repeat biopsies can be safely avoided [30] | Tissue from prostate biopsy | No | All men underwent two consecutive biopsies: a negative index biopsy and then negative or positive rebiopsy. DNA was extracted and processed from fixed, paraffin-embedded blocks of prostate biopsy core tissue. In histologically negative prostate biopsy core tissues, epigenetic analyses were performed in a randomised, blinded fashion profiled for GSTP1, APC RASSF1 against the reference ACTB gene using methylation-specific PCR (MSP). In DOCUMENT (The Detection Of Cancer Using Methylated Events in Negative Tissue) [29] and studies [30,31] for direct comparison with the MATLOC (Methylation Analysis To Locate Occult Cancer) [28] cohort, the previously determined analytical gene cutoff values for determining methylation status were identical. All statistical analyses, including logistic regression and cross-validation, were performed in R software (R Foundation for Statistical Computing, Vienna, Austria). | NPV =90% Se. = 68% Sp. = 64% for any PCa [28] AUC = 0.628 NPV = 88% Se. = 62% Sp.= 64% [29] AUC = 0.742 NPV = 96% for HG NPV = 89.2% for all cancers PPV = 28.2% for any cancer [30] NPV = 78.8% PPV = 53.6% for detection of all PCa Se. = 74.1% Sp. = 60.0% [31] NPV = 94.2% PPV = 19.4% for detection of GS ≥ 7 PCa Se. = 77.8% Sp. = 52.7% [31] | [28,29,30,31] |
Commercial Product | African-Americans | Japanese Men | Chinese Men | Latino American |
---|---|---|---|---|
PCA3 | In a study [21] on a racially diverse group of men, 60% of the participants were African-American. It demonstrated that the PCA3 test also in African-Americans improves the ability to predict the presence of any prostate cancer and high malignancy. | Study [22] examined the diagnostic utility of PCA 3 in Japanese men undergoing prostate biopsy. They achieved a similar diagnostic value to that obtained in men in Europe and the USA. | Studies [23,24] showed the utility of PCA3 in Chinese men. | In a study [25] involving Latino Americans, results were comparable to those obtained in other publications for other populations indicating its potential use in Latino Americans with persistently elevated PSA and previous negative biopsies. |
ConfirmMDx | Study [31] showed no significant differences in sensitivity and specificity between this test and previously described validation studies involving predominantly Caucasian populations and indicates usefulness for African Americans in risk stratification after an initially negative biopsy. | No data about these ethnic groups were found. | ||
PHI | To assess the ability of PHI to detect Gleason grade 2-5 (GGG) PCa in African Americans, 158 patients with elevated PSA levels and 135 controls were recruited [32]. Results indicate that PHI ≥ 28.0 can be safely used to avoid unnecessary biopsies in African Americans. | In a study [33] involving a European (n = 503) and Asian (n = 1652) population, more biopsies were avoided in the Asian group (56% vs. 40%). This study also identified the need to establish differential cut-off points for diverse ethnic groups. The authors of the publication recommended cut-off points for csPCa: PHI > 40 for European men and PHI > 30 for men of Asian origin. | No data about these ethnic groups were found. | |
4Kscore | The study [34] included 366 men, 205 of whom were African American. The results of the study showed an AUC = 0.81 in predicting aggressive prostate cancer in this population, therefore the 4Kscore can be used to guide biopsy decisions also in this ethnic group. | A multiethnic group study [35] (African Americans, Japanese, Latinos, Native Hawaiians, and Whites) confirmed the 4Kscore′s accuracy to discriminate benign from malignant cases and indolent from aggressive tumors. | ||
Mi-Prostate Score | It is unknown what the cut-off values should be and what the diagnostic and prognostic accuracy. There is a lack of studies on African-American, Asian or Latino American populations. | |||
ExoDx Prostate IntelliScore | It is unknown what the cut-off values should be and what the diagnostic and prognostic accuracy. There is a lack of studies on African-American, Asian or Latino American populations. | |||
SelectMDx | It is unknown what the cut-off values should be and what the diagnostic and prognostic accuracy. There is a lack of studies on African-American, Asian or Latino American populations. | |||
Stockholm3 Model | This test was evaluated only on men from an ethnically homogeneous population (Stockholm County, Sweden). |
3.2. Mi-Prostate Score (MiPS)
3.3. ExoDx Prostate ® (IntelliScore) (EPI)
Commercial Product | Biomarkers | Purpose | Indication | Cohort | Avoid Biopsies | Specimen | FDA Approved | Method | Predictive Capacity | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
PHI | tPSA, fPSA, p2PSA | Estimates the probability of a diagnosis of all grades PCa and csPCa (GS ≥ 7). Indicates the need for a biopsy, reduces the number of unnecessary ones and continues to follow up. Reduces overdiagnosis and overtreatment. | Diagnosis: initial biopsy, repeat biopsy. Prognosis. | n = 893 [49]. Two independent cohorts n = 561 and n = 395 [50] n = 769 [51] n = 350 [52] n = 658 [53] n = 1652 Asian men and n = 503 European men [33] n = 531 [54] n = 16,762 [55]. | A total of 26% of unnecessary biopsies [49]. In the primary cohort, avoided 41% of unnecessary biopsies. In the validation cohort, avoided 36% of unnecessary biopsies while missing only 2.5% of high-grade PCa [50] Among Asian men at 90% sensitivity for HG PCa and cut-off > 30, 56% of biopsies and 33% of GS 6 diagnoses could have been avoided [33]. Among European men at 90% sensitivity for HG PCa and cut-off > 40, 40% of biopsies and 31% of GS 6 diagnoses could have been avoided [33]. | blood serum | Yes | Specimens were analysed at the EDRN Biomarker Reference Laboratory at Johns Hopkins University. Serum was stored at −80 °C before testing. Prebiopsy measurements of total PSA, fPSA and p2PSA were performed using an Access 2 automated immunoassay analyser (Beckman Coulter Inc, CA, US). Technologists performing the assays were blinded to prostate biopsy results. PHI was calculated using the equation (p2PSA/fPSA) × √(PSA) [50] Statistical analysis was conducted by using SAS, version 9.3 and R, version 3.1.0 (R Foundation for Statistical Computing, Vienna, Austria) [50]. | AUC = 0.703 Se. = 95% Sp. = 16% [49] AUC = 0.815 for detecting aggressive PCa Se. = 95% Sp.= 36% [50] AUC = 0.73 [51] For prediction of GS ≥ 7 Se. = 90.8/66.3/44.8 Sp. = 34.8/66.3/89.9 for criterions ≥30.9/44.0/56.2, respectively [52] For prediction of GS 6–7 Se. = 89.9/60.0/37.4 Sp. = 26.0/61.6/90.4 for criterions ≥ 28.0/42.2/55.5, respectively [52] Se.= 80% for PCa/ csPCa and biopsy GS Sp. = 46.1/45.5/46.4, respectively [53] Se.= 95% of PHI for PCa/csPCa and biopsy GS Sp. = 14.1/16.3/27.4, respectively [53] AUC = 0.78 for PCa detection and for HG PCa (75% men were European) In Asian men group AUC = 0.76 for PCa detection and AUC = 0.77 for HG PCa Se. = 99–53% with corresponding Sp. = 10–72% in European group for cut-off = 25–55 [33] Se. = 96–27% with corresponding Sp. = 36–96% in Asian group for cut-off = 25–55 [33] AUC =0.704 for any cancer AUC = 0.711 for Gleason ≥ 7 [54] AUC = 0.76 for PCa detection Se. = 89% Sp. = 34% [55] AUC = 0.82 for HG PCa detection, Se. = 93% Sp. = 34% [55] | [33,49,50,51,52,53,54,55] |
4Kscore | tPSA, fPSA, iPSA, hK2 | Diagnosis: initial biopsy, repeat biopsy. Prognosis. | n = 531 [54] n = 16,762 [55] n = 1012 [56] n = 11,134 [57] n = 611 [58] n = 718 [59] n = 2872 [60] | Avoided 29% of biopsies, delayed diagnosis 10% of HG PCa [54] 43% avoided and delayed diagnosis of 2.4%. Gleason ≥ 7 for 9% 4Kscore cutoff [56]. 58% avoided and delayed diagnosis of 4.7% Gleason ≥ 7 for 15% 4Kscore cutoff [56]. reduction of 94.9%, 47.1% and 9.3% biopsies in men with low-risk, intermediate-risk and high-risk aggressive PCa, respectively [58] For different threshold 4%, 5%, 7.5%, 10% 58%, 66%, 75% and 80% of reduced biopsies while missed diagnose of HG PCa 1%, 2%, 2%, 2%, respectively [60] | Blood plasma | No | Blood was collected into tubes containing K2EDTA, inverted, centrifuged at 1600× g and frozen at 70 °C within 4 hours from collection. Frozen plasma was stored until shipped in dry ice to OPKO Labs (Nashville, TN, USA) for analysis. The analytical laboratory was blinded to all sample information and clinical data. Samples were thawed immediately before analysis. Then, tPSA, fPSA, iPSA and hK2 were measured. Statistical analysis was conducted by using R, version 3.1.1 (http://www.r-project.org/ accessed on 11 November 2016) [59]. | AUC = 0.69 for any cancer AUC = 0.718 for Gleason ≥ 7 [54] AUC = 0.72 for PCa detection Se. = 74% Sp. = 60% [55] AUC = 0.81 for HG PCa detection Se. = 87% Sp. = 61% [55] AUC = 0.82 [56] AUC = 0.81 [57] AUC = 0.75 [59] AUC = 0.876 for 4Kscore AUC = 0.888 for 4Kscore with RPCRP Se. = 87% Sp. = 71% [60] | [54,55,56,57,58,59,60] | |
Mi-Prostate Score | PCA3 and T2-ERG mRNA, tPSA | Diagnosis: Initial Biopsy, repeat biopsy. Prognosis * | n = 497 [42] n = 1225 [43] n = 48 [44] n = 1077 [45] n = 1525 [46] | Total of 35% of biopsies and missing 13% of ≥GG2 PCa [42] avoided 35–47% of biopsies while delaying the diagnosis of 1.0–2.3% of ≥ GG2 [43]. Avoided 67% of biopsies at the risk of a false-negative rate of 20% [44]. Avoided 33% of unnecessary biopsies, missing 7% of HG PCa [45] for threshold ≤10; avoided 32% of unnecessary biopsies, missing 3.7% of GG ≥ 2 cancers [46] | Post-DRE first void urine | No | Urine samples were obtained immediately after DRE, refrigerated and processed within 4 h by mixing with an equal volume of urine transport medium and stored below −70 °C until analysis. The amount of T2: ERG and PSA mRNA was determined by TMA. Statistical analyses was performed using R version 2.10.1 (R Foundation for Statistical Computing, http://www.R-project.org accessed on 16 May 2015 [43] | AUC= 0.842 ** Se. = 88.1% Sp. = 49.6% [42] AUC = 0.772 [43] AUC= 0.88 for detection of PCa AUC= 0.772 for csPCa Se. = 80% Sp. = 90% [44] In the developmental cohort(n = 516) Se. = 95% Sp. = 39% In the validation cohort (n = 561) Se. = 93% Sp. = 33% [45] NPV = 97% Se.= 96% for threshold ≤10 [46] | [42,43,44,45,46] | |
ExoDx Prostate IntelliScore | Exosomal mRNA ERG, PCA3 and SPDEF | Diagnosis: initial biopsy, repeat biopsy. Prognosis * | Validation cohort n = 519 (training cohort n = 255) [48] n = 503 [61] n = 229 [62] | Total of 20% of all biopsies, 26% of unnecessary biopsies, and missing 7% of ≥GG2 PCa [61] 26% of all biopsies, 27% of unnecessary biopsies and 2.1% delayed detection of ≥ GG2 [62]. | Urine | No 1 | Urine samples were collected in a 15–20 mL container and stored at 4 °C. for up to 5 days before shipment to a central laboratory (Exosome Diagnostics, Inc., Waltham, MA, USA) for EPI assay analysis [61]. R software version 3.6.1 (R Core Team, 2019, Vienna, Austria) was used for reporting and data analysis. Two-tailed p values ≤ 0.05 were considered statistically significant. [63] | AUC = 0.73 (combined with SOC2) AUC = 0.71 NPV = 91% PPV = 36% Se. = 92% Sp. = 34% [48] AUC = 0.70 NPV = 89% Se. = 93% [61] AUC = 0.66 NPV = 92% Se. = 82% [62] | [48,61,62] | |
SelectMDx | HOXC6, KLK3, DLX1 mRNA and PSAd | Diagnosis: Initial Biopsy. | First cohort n = 519 Second n = 386 [64] n = 1955 [65] n = 172 [66] | Total of 42% of all, 53% of unnecessary biopsies [64]. | Post-DRE first void urine | No | Approximately 30 mL of the first urine passed was collected into a collection cup after the DRE was performed. The urine was immediately transferred to a urine sample transport tube (Hologic San Diego, CA, USA) and samples were shipped at room temperature to a central laboratory and stored at −80 °C. Statistical analysis was performed using SPSS v.20.0 (IBM Corp., Armonk, NY, USA) and R v.3.2.1 (R Foundation for Statistical Computing, Vienna, Austria) [64]. | AUC = 0.86 AUC= 0.90 (+ clinical parameters) NPV = 94% PPV= 27% Se. = 91% Sp. = 36% [64] AUC = 0.82–0.85 NPV = 95% Se. = 89–93% Sp. = 47–53% [65] AUC = 0.83 NPV = 98% Se. = 96% [66] | [64,65,66] | |
Stockholm3 Model 3 | tPSA, fPSA, hK2, MIC1 and MSMB (with genetic markers based on (232–254 SNPs) *** | Diagnosis: Initial Biopsy. | Validation cohort = 111,819 (training cohort n = 32,453) [67] n = 59,159 [68] n = 533 [69] Two cohorts: n = 56,282 and n = 47,688 [70] | S3M could reduce the number of biopsies by 32% and could avoid 44% of benign biopsies [67], reduction in total biopsies 33–52% and avoid 42–62% of benign biopsies, while missing 10–20% GS ≥ 7 [68]. Total of 38% of all biopsy avoided, delaying diagnosis for 6% of men with GG ≥ 2 cancer [69] reduction in total biopsies 53% and avoided 76% of benign biopsies [70] | Blood plasma | No | Prior to prostate biopsy, sample blood was collected for testing. Biopsy results were used to validate the Stockholm3 test results.The program R version 3.4.2(R Foundation for Statistical Computing, http://www.R-project.org accessed on 31 August 2018) was used to perform the statistical analyses [69]. | AUC = 0.69 for all prostate cancers AUC = 0.74 for Gleason ≥ 7 [67] AUC = 0.75 for Gleason ≥ 7 [68] AUC = 0.89 for GG ≥ 2 [69] | [67,68,69,70] |
3.4. SelectMDx
4. Serum Biomarkers
4.1. Prostate Health Index (PHI)
4.2. 4Kscore
4.3. Stockholm3 Model
5. Tissue Biomarkers
ConfirmMDx (MDxHealth)
6. The Financial Aspect
7. Guidelines
8. Biomarkers and mpMRI
9. Discussion
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
BMI | Body Mass Index |
csPCa | Clinically significant prostate cancer |
DCA | Decision curve analysis |
DRE | Digital Rectal Examination |
EAU | European Association of Urology |
EPI | ExoDx Prostate IntelliScore |
ERSPC RC | European Randomised study of Screening for Prostate Cancer risk calculator |
fPSA | Free non-protein-bound PSA |
GG | Grade Group |
GS | Gleason score |
HG | High grade |
hK2 | Human kallikrein 2 |
iPSA | Intact PSA |
ISUP | International Society of Urological Pathology |
LG | Low grade |
lncRNA | Long non-coding RNA |
MiPS | Michigan Prostate Score |
mpMRI | Multiparametric Magnetic Resonance Imaging |
MRI | Magnetic Resonance Imaging |
NPV | Negative predictive value |
NCCN | National Comprehensive Cancer Network |
PCa | Prostate cancer |
PCA3 | Prostate Cancer Antigen 3 |
PCPT-RC | Prostate Cancer Prevention Trial Risk Calculator |
PHI | Prostate Health Index |
PHID | Prostate Health Index density |
PI-RADS | Prostate Imaging-Reporting and Data System |
PPV | Positive predictive value |
PSA | Prostate-specific antigen |
PSAD | Prostate-specific antigen density |
QALY | Quality-adjusted life year |
RP | Radical prostatectomy |
SBx | Systematic Biopsy |
SNPs | Single-nucleotide polymorphisms |
SOC | Standard of care |
STHLM3 | Stockholm 3 |
S3M | Stockholm 3 Model |
TBx | Targeted biopsy |
TNM | Tumor-Node-Metastasis (Staging System) |
tPSA | Total PSA |
TRUS | Transrectal ultrasound |
TRUS-Bx | Transrectal ultrasound (TRUS) guided biopsy |
4Kscore | Four-kallikrein score |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Lázaro, D.; Hernández, J.L.G.; García, A.C.; Martínez, A.C.; Mielgo-Ayuso, J. Liquid Biopsy as Novel Tool in Precision Medicine: Origins, Properties, Identification and Clinical Perspective of Cancer’s Biomarkers. Diagnostics 2020, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Cornford, P. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2020, 79, 243–262. [Google Scholar] [CrossRef]
- Lilja, H.; Ulmert, D.; Vickers, A.J. Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring. Nature reviews. Cancer 2008, 8, 268–278. [Google Scholar] [PubMed]
- Graif, T.; Loeb, S.; Roehl, K.A.; Gashti, S.N.; Griffin, C.; Yu, X.; Catalona, W.J. Under Diagnosis and Over Diagnosis of Prostate Cancer. J. Urol. 2007, 178, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Lundström, K.J.; Drevin, L.; Carlsson, S.; Garmo, H.; Loeb, S.; Stattin, P.; Bill-Axelson, A. Nationwide population based study of infections after transrectal ultrasound guided prostate biopsy. J. Urol. 2014, 192, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Bruyère, F.; Malavaud, S.; Bertrand, P.; Decock, A.; Cariou, G.; Doublet, J.D.; Bernard, L.; Bugel, H.; Conquy, S.; Sotto, A.; et al. Prosbiotate: A Multicenter, Prospective Analysis of Infectious Complications after Prostate Biopsy. J. Urol. 2015, 193, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Hessels, D.; Klein Gunnewiek, J.M.T.; van Oort, I.; Karthaus, H.F.; van Leenders, G.J.; van Balken, B.; Kiemeney, L.; Witjes, J.; Schalken, J.A. DD3PCA3-based Molecular Urine Analysis for the Diagnosis of Prostate Cancer. Eur. Urol. 2003, 44, 8–16. [Google Scholar] [CrossRef]
- Fenner, A. PCA3 as a Grade Reclassification Predictor. Nat. Rev. Urol. 2017, 14, 390. [Google Scholar] [CrossRef]
- Pal, R.P.; Maitra, N.U.; Mellon, J.K.; Khan, M.A. Defining prostate cancer risk before prostate biopsy. Urol. Oncol. Semin. Orig. Investig. 2013, 31, 1408–1418. [Google Scholar] [CrossRef]
- Marks, L.S.; Fradet, Y.; Deras, I.L.; Blase, A.; Mathis, J.; Aubin, S.M.; Cancio, A.T.; Desaulniers, M.; Ellis, W.J.; Rittenhouse, H.; et al. PCA3 Molecular Urine Assay for Prostate Cancer in Men Undergoing Repeat Biopsy. Urology 2007, 69, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, S.V.M.; García-Perdomo, H.A. Diagnostic accuracy of prostate cancer antigen 3 (PCA3) prior to first prostate biopsy: A systematic review and meta-analysis. Can. Urol. Assoc. J. 2019, 14, E214–E219. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.T.; Feng, Z.; Partin, A.W.; Brown, E.; Thompson, I.; Sokoll, L.; Chan, D.W.; Lotan, Y.; Kibel, A.S.; Busby, J.E.; et al. Can Urinary PCA3 Supplement PSA in the Early Detection of Prostate Cancer? J. Clin. Oncol. 2014, 32, 4066–4072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roobol, M.J.; Schröder, F.H.; Van Leenders, G.L.; Hessels, D.; van den Bergh, R.C.; Wolters, T.; Van Leeuwen, P.J. Performance of Prostate Cancer Antigen 3 (PCA3) and Prostate-Specific Antigen in Prescreened Men: Reproducibility and Detection Characteristics for Prostate Cancer Patients with High PCA3 Scores (≥100). Eur. Urol. 2010, 58, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Auprich, M.; Chun, F.K.; Ward, J.F.; Pummer, K.; Babaian, R.; Augustin, H.; Luger, F.; Gutschi, S.; Budäus, L.; Fisch, M.; et al. Critical Assessment of Preoperative Urinary Prostate Cancer Antigen 3 on the Accuracy of Prostate Cancer Staging. Eur. Urol. 2011, 59, 96–105. [Google Scholar] [CrossRef]
- Leyten, G.H.J.; Wierenga, E.A.; Sedelaar, J.P.; Van Oort, I.M.; Futterer, J.J.; Barentsz, J.O.; Schalken, J.A.; Mulders, P.F.A. Value of PCA3 to Predict Biopsy Outcome and Its Potential Role in Selecting Patients for Multiparametric MRI. Int. J. Mol. Sci. 2013, 14, 11347–11355. [Google Scholar] [CrossRef] [Green Version]
- Vlaeminck-Guillem, V.; Devonec, M.; Colombel, M.; Rodriguez-Lafrasse, C.; Decaussin-Petrucci, M.; Ruffion, A. Urinary PCA3 Score Predicts Prostate Cancer Multifocality. J. Urol. 2011, 185, 1234–1239. [Google Scholar] [CrossRef]
- Aubin, S.M.; Reid, J.; Sarno, M.J.; Blase, A.; Aussie, J.; Rittenhouse, H.; Rittmaster, R.; Andriole, G.L.; Groskopf, J. PCA3 Molecular Urine Test for Predicting Repeat Prostate Biopsy Outcome in Populations at Risk: Validation in the Placebo Arm of the Dutasteride REDUCE Trial. J. Urol. 2010, 184, 1947–1952. [Google Scholar] [CrossRef]
- Progensa PCA3 Assay. Available online: https://www.hologic.com/sites/default/files/2019-05/502083-IFU-PI_003_01.pdf (accessed on 20 December 2020).
- Feibus, A.H.; Sartor, O.; Moparty, K.; Chagin, K.; Kattan, M.W.; Ledet, E.; Levy, J.; Lee, B.; Thomas, R.; Silberstein, J.L. Clinical Use of PCA3 and TMPRSS2:ERG Urinary Biomarkers in African-American Men Undergoing Prostate Biopsy. J. Urol. 2016, 196, 1053–1060. [Google Scholar] [CrossRef]
- Ochiai, A.; Okihara, K.; Kamoi, K.; Oikawa, T.; Shimazui, T.; Murayama, S.; Tomita, K.; Umekawa, T.; Uemura, H.; Miki, T. Clinical utility of the prostate cancer gene 3 (PCA3) urine assay in Japanese men undergoing prostate biopsy. BJU Int. 2013, 111, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Chen, W.; Yu, K.; Chen, Z.; Zhou, W.; Lin, X.; Weng, Z.; Li, C.; Wu, X.; Tao, Z. The diagnostic value of PCA3 gene-based analysis of urine sediments after digital rectal examination for prostate cancer in a Chinese population. Exp. Mol. Pathol. 2011, 90, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-B.; Chen, R.; Ren, S.-C.; Shi, X.; Zhu, Y.-S.; Zhang, W.; Jing, T.-L.; Zhang, C.; Gao, X.; Hou, J.G.; et al. Prostate cancer antigen 3 moderately improves diagnostic accuracy in Chinese patients undergoing first prostate biopsy. Asian J. Androl. 2017, 19, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.G.; Valdevenito, R.; Vergara, I.; Anabalon, P.; Sanchez, C.; Fulla, J. PCA3 sensitivity and specificity for prostate cancer detection in patients with abnormal PSA and/or suspicious digital rectal examination. First Latin American experience. Urol. Oncol. 2013, 31, 1522–1526. [Google Scholar] [CrossRef] [PubMed]
- Hessels, D.; van Gils, M.P.M.Q.; van Hooij, O.; Jannink, S.A.; Witjes, J.A.; Verhaegh, G.W.; Schalken, J.A. Predictive value of PCA3 in urinary sediments in determining clinico-pathological characteristics of prostate cancer. Prostate 2010, 70, 10–16. [Google Scholar] [CrossRef]
- Chevli, K.K.; Duff, M.; Walter, P.; Yu, C.; Capuder, B.; Elshafei, A.; Jones, J.S.; Malczewski, S.; Kattan, M.W. Urinary PCA3 as a Predictor of Prostate Cancer in a Cohort of 3,073 Men Undergoing Initial Prostate Biopsy. J. Urol. 2014, 191, 1743–1748. [Google Scholar] [CrossRef]
- Stewart, G.D.; Van Neste, L.; Delvenne, P.; Delrée, P.; Delga, A.; McNeill, S.A.; O’Donnell, M.; Clark, J.; Van Criekinge, W.; Bigley, J.; et al. Clinical Utility of an Epigenetic Assay to Detect Occult Prostate Cancer in Histopathologically Negative Biopsies: Results of the MATLOC Study. J. Urol. 2013, 189, 1110–1116. [Google Scholar] [CrossRef]
- Partin, A.W.; Van Neste, L.; Klein, E.A.; Marks, L.S.; Gee, J.R.; Troyer, D.A.; Rieger-Christ, K.; Jones, J.S.; Magi-Galluzzi, C.; Mangold, L.A.; et al. Clinical Validation of an Epigenetic Assay to Predict Negative Histopathological Results in Repeat Prostate Biopsies. J. Urol. 2014, 192, 1081–1087. [Google Scholar] [CrossRef]
- Van Neste, L.; Partin, A.W.; Stewart, G.D.; Epstein, J.I.; Harrison, D.J.; Van Criekinge, W. Risk score predicts high-grade prostate cancer in DNA-methylation positive, histopathologically negative biopsies. Prostate 2016, 76, 1078–1087. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, R.L.; Van Neste, L.; Moses, K.A.; Barnswell, C.; Silberstein, J.L.; Jalkut, M.; Tutrone, R.; Sylora, J.; Anglade, R.; Murdock, M.; et al. Evaluation of an Epigenetic Assay for Predicting Repeat Prostate Biopsy Outcome in African American Men. Urology 2019, 128, 62–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babajide, R.; Carbunaru, S.; Nettey, O.S.; Watson, K.S.; Holloway-Beth, A.; McDowell, T.; Ben Levi, J.; Murray, M.; Stinson, J.; Hollowell, C.M.P.; et al. Performance of Prostate Health Index in Biopsy Naïve Black Men. J. Urol. 2021, 205, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.K.-F.; Ng, C.-F.; Semjonow, A.; Zhu, Y.; Vincendeau, S.; Houlgatte, A.; Lazzeri, M.; Guazzoni, G.; Stephan, C.; Haese, A.; et al. A Multicentre Evaluation of the Role of the Prostate Health Index (PHI) in Regions with Differing Prevalence of Prostate Cancer: Adjustment of PHI Reference Ranges is Needed for European and Asian Settings. Eur. Urol. 2019, 75, 558–561. [Google Scholar] [CrossRef]
- Punnen, S.; Freedland, S.J.; Polascik, T.J.; Loeb, S.; Risk, M.C.; Savage, S.; Mathur, S.C.; Uchio, E.; Dong, Y.; Silberstein, J.L. A Multi-Institutional Prospective Trial Confirms Noninvasive Blood Test Maintains Predictive Value in African American Men. J. Urol. 2018, 199, 1459–1463. [Google Scholar] [CrossRef]
- Darst, B.F.; Chou, A.; Wan, P.; Pooler, L.; Sheng, X.; Vertosick, E.A.; Conti, D.V.; Wilkens, L.R.; Le Marchand, L.; Vickers, A.J.; et al. The Four-Kallikrein Panel Is Effective in Identifying Aggressive Prostate Cancer in a Multiethnic Population. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1381–1388. [Google Scholar] [CrossRef]
- Merdan, S.; Tomlins, S.A.; Barnett, C.L.; Morgan, T.M.; Montie, J.E.; Wei, J.T.; Denton, B.T. Assessment of long-term outcomes associated with urinary prostate cancer antigen 3 and TMPRSS2:ERG gene fusion at repeat biopsy. Cancer 2015, 121, 4071–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Z.; Ji, A.; Yang, K.; He, W.; Hu, Y.; Zhang, Q.; Zhang, D.; Xie, L. Diagnostic performance of PCA3 and hK2 in combination with serum PSA for prostate cancer. Medicine 2018, 97, e12806. [Google Scholar] [CrossRef]
- Alshalalfa, M.; Verhaegh, G.W.; Gibb, E.A.; Santiago-Jiménez, M.; Erho, N.; Jordan, J.; Yousefi, K.; Lam, L.L.; Kolisnik, T.; Chelissery, J.; et al. Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: Exploratory analysis from 12,076 patients. Oncotarget 2017, 8, 50804–50813. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.C.; Soares, A.C.; Rodrigues, V.C.; Melendez, M.E.; Santos, A.C.; Faria, E.F.; Oliveira, O.N. Detection of the Prostate Cancer Biomarker PCA3 with Electrochemical and Impedance-Based Biosensors. ACS Appl. Mater. Interfaces 2019, 11, 46645–46650. [Google Scholar] [CrossRef] [PubMed]
- Yamkamon, V.; Htoo, K.; Yainoy, S.; Suksrichavalit, T.; Tangchaikeeree, T.; Eiamphungporn, W. Urinary PCA3 detection in prostate cancer by magnetic nanoparticles coupled with col-orimetric enzyme-linked oligonucleotide assay. EXCLI J. 2020, 19, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Tomlins, S.A.; Rhodes, D.R.; Perner, S.; Dhanasekaran, S.M.; Mehra, R.; Sun, X.-W.; Varambally, S.; Cao, X.; Tchinda, J.; Kuefer, R.; et al. Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer. Science 2005, 310, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Leyten, G.H.J.M.; Hessels, D.; Jannink, S.A.; Smit, F.P.; de Jong, H.; Cornel, E.B.; de Reijke, T.M.; Vergunst, H.; Kil, P.; Knipscheer, B.C.; et al. Prospective Multicentre Evaluation of PCA3 and TMPRSS2-ERG Gene Fusions as Diagnostic and Prognostic Urinary Biomarkers for Prostate Cancer. Eur. Urol. 2014, 65, 534–542. [Google Scholar] [CrossRef]
- Tomlins, S.A.; Day, J.R.; Lonigro, R.J.; Hovelson, D.; Siddiqui, J.; Kunju, L.P.; Dunn, R.L.; Meyer, S.; Hodge, P.; Groskopf, J.; et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur. Urol. 2016, 70, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Salami, S.S.; Schmidt, F.; Laxman, B.; Regan, M.M.; Rickman, D.S.; Scherr, D.; Bueti, G.; Siddiqui, J.; Tomlins, S.A.; Wei, J.T.; et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2013, 31, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Sanda, M.G.; Feng, Z.; Howard, D.H.; Tomlins, S.A.; Sokoll, L.J.; Chan, D.W.; Regan, M.M.; Groskopf, J.; Chipman, J.; Patil, D.H.; et al. Association Between Combined TMPRSS2:ERG and PCA3 RNA Urinary Testing and Detection of Aggressive Prostate Cancer. JAMA Oncol. 2017, 3, 1085. [Google Scholar] [CrossRef]
- Tosoian, J.J.; Trock, B.J.; Morgan, T.M.; Salami, S.S.; Tomlins, S.A.; Spratt, D.E.; Siddiqui, J.; Kunju, L.P.; Botbyl, R.; Chopra, Z.; et al. Use of the MyProstateScore Test to Rule Out Clinically Significant Cancer: Validation of a Straightforward Clinical Testing Approach. J. Urol. 2021, 205, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Denzer, K.; Kleijmeer, M.J.; Heijnen, H.F.; Stoorvogel, W.; Geuze, H.J. Exosome: From internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 2000, 113, 3365–3374. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, J.; Donovan, M.J.; O’Neill, V.; Bentink, S.; Noerholm, M.; Belzer, S.; Skog, J.; Kattan, M.W.; Partin, A.; Andriole, G.; et al. A Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer at Initial Biopsy. JAMA Oncol. 2016, 2, 882–889. [Google Scholar] [CrossRef] [Green Version]
- Catalona, W.J.; Partin, A.W.; Sanda, M.G.; Wei, J.T.; Klee, G.G.; Bangma, C.H.; Slawin, K.M.; Marks, L.S.; Loeb, S.; Broyles, D.L.; et al. A Multicenter Study of (–2)Pro-Prostate Specific Antigen Combined with Prostate Specific Antigen and Free Prostate Specific Antigen for Prostate Cancer Detection in the 2.0 to 10.0 ng/ml Prostate Specific Antigen Range. J. Urol. 2011, 185, 1650–1655. [Google Scholar] [CrossRef] [Green Version]
- De La Calle, C.; Patil, D.; Wei, J.T.; Scherr, D.; Sokoll, L.; Chan, D.W.; Siddiqui, J.; Mosquera, J.M.; Rubin, M.A.; Sanda, M.G. Multicenter Evaluation of the Prostate Health Index to Detect Aggressive Prostate Cancer in Biopsy Naïve Men. J. Urol. 2015, 194, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Boegemann, M.; Stephan, C.; Cammann, H.; Vincendeau, S.; Houlgatte, A.; Jung, K.; Blanchet, J.-S.; Semjonow, A. The percentage of prostate-specific antigen (PSA) isoform (–2)proPSA and the Prostate Health Index improve the diagnostic accuracy for clinically relevant prostate cancer at initial and repeat biopsy compared with total PSA and percentage free PSA in men. BJU Int. 2015, 117, 72–79. [Google Scholar] [CrossRef]
- Guazzoni, G.F.; Lazzeri, M.; Nava, L.; Lughezzani, G.; Larcher, A.; Scattoni, V.; Gadda, G.M.; Bini, V.; Cestari, A.; Buffi, N.M.; et al. Preoperative Prostate-Specific Antigen Isoform p2PSA and Its Derivatives, %p2PSA and Prostate Health Index, Predict Pathologic Outcomes in Patients Undergoing Radical Prostatectomy for Prostate Cancer. Eur. Urol. 2012, 61, 455–466. [Google Scholar] [CrossRef]
- Loeb, S.; Sanda, M.G.; Broyles, D.L.; Shin, S.S.; Bangma, C.H.; Wei, J.T.; Partin, A.; Klee, G.G.; Slawin, K.M.; Catalona, W.J.; et al. The Prostate Health Index Selectively Identifies Clinically Significant Prostate Cancer. J. Urol. 2015, 193, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Nordström, T.; Vickers, A.; Assel, M.; Lilja, H.; Grönberg, H.; Eklund, M. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer. Eur. Urol. 2015, 68, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Russo, G.I.; Regis, F.; Castelli, T.; Favilla, V.; Privitera, S.; Giardina, R.; Cimino, S.; Morgia, G. A Systematic Review and Meta-analysis of the Diagnostic Accuracy of Prostate Health Index and 4-Kallikrein Panel Score in Predicting Overall and High-grade Prostate Cancer. Clin. Genitourin. Cancer 2017, 15, 429–439.e1. [Google Scholar] [CrossRef]
- Parekh, D.J.; Punnen, S.; Sjoberg, D.D.; Asroff, S.W.; Bailen, J.L.; Cochran, J.S.; Concepcion, R.; David, R.D.; Deck, K.B.; Dumbadze, I.; et al. A Multi-institutional Prospective Trial in the USA Confirms that the 4Kscore Accurately Identifies Men with High-grade Prostate Cancer. Eur. Urol. 2015, 68, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Zappala, S.M.; Scardino, P.T.; Okrongly, D.; Linder, V.; Dong, Y. Clinical performance of the 4Kscore Test to predict high-grade prostate cancer at biopsy: A meta-analysis of us and European clinical validation study results. Rev. Urol. 2017, 19, 149–155. [Google Scholar] [CrossRef]
- Konety, B.; Zappala, S.M.; Parekh, D.J.; Osterhout, D.; Schock, J.; Chudler, R.M.; Oldford, G.M.; Kernen, K.M.; Hafron, J. The 4Kscore® Test Reduces Prostate Biopsy Rates in Community and Academic Urology Practices. Rev. Urol. 2015, 17, 231–240. [Google Scholar]
- Lin, D.W.; Newcomb, L.F.; Brown, M.D.; Sjoberg, D.D.; Dong, Y.; Brooks, J.D.; Carroll, P.R.; Cooperberg, M.; Dash, A.; Ellis, W.J.; et al. Evaluating the Four Kallikrein Panel of the 4Kscore for Prediction of High-grade Prostate Cancer in Men in the Canary Prostate Active Surveillance Study. Eur. Urol. 2017, 72, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Verbeek, J.F.M.; Bangma, C.H.; Kweldam, C.F.; van der Kwast, T.H.; Kümmerlin, I.P.; van Leenders, G.J.L.H.; Roobol, M.J. Reducing unnecessary biopsies while detecting clini-cally significant prostate cancer including cribriform growth with the ERSPC Rotterdam risk cal-culator and 4Kscore. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 138–144. [Google Scholar] [CrossRef]
- McKiernan, J.; Donovan, M.J.; Margolis, E.; Partin, A.; Carter, B.; Brown, G.; Torkler, P.; Noerholm, M.; Skog, J.; Shore, N.; et al. A Prospective Adaptive Utility Trial to Validate Performance of a Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer in Patients with Prostate-specific Antigen 2–10 ng/ml at Initial Biopsy. Eur. Urol. 2018, 74, 731–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKiernan, J.; Noerholm, M.; Tadigotla, V.; Kumar, S.; Torkler, P.; Sant, G.; Alter, J.; Donovan, M.J.; Skog, J. A urine-based Exosomal gene expression test stratifies risk of high-grade prostate Cancer in men with prior negative prostate biopsy undergoing repeat biopsy. BMC Urol. 2020, 20, 138. [Google Scholar] [CrossRef]
- Tutrone, R.; Donovan, M.J.; Torkler, P.; Tadigotla, V.; McLain, T.; Noerholm, M.; Skog, J.; McKiernan, J. Clinical utility of the exosome based ExoDx Prostate(IntelliScore) EPI test in men presenting for initial Biopsy with a PSA 2–10 ng/mL. Prostate Cancer Prostatic Dis. 2020, 23, 607–614. [Google Scholar] [CrossRef]
- Van Neste, L.; Hendriks, R.J.; Dijkstra, S.; Trooskens, G.; Cornel, E.B.; Jannink, S.A.; de Jong, H.; Hessels, D.; Smit, F.P.; Melchers, W.J.G.; et al. Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker–Based Risk Score. Eur. Urol. 2016, 70, 740–748. [Google Scholar] [CrossRef]
- Haese, A.; Trooskens, G.; Steyaert, S.; Hessels, D.; Brawer, M.; Vlaeminck-Guillem, V.; Ruffion, A.; Tilki, D.; Schalken, J.; Groskopf, J.; et al. Multicenter Optimization and Validation of a 2-Gene mRNA Urine Test for Detection of Clinically Significant Prostate Cancer before Initial Prostate Biopsy. J. Urol. 2019, 202, 256–263. [Google Scholar] [CrossRef]
- Hendriks, R.J.; van der Leest, M.; Dijkstra, S.; Barentsz, J.O.; van Criekinge, W.; van de Kaa, C.A.H.; Schalken, J.A.; Mulders, P.; van Oort, I.M. A urinary biomarker-based risk score correlates with multiparametric MRI for prostate cancer detection. Prostate 2017, 77, 1401–1407. [Google Scholar] [CrossRef]
- Grönberg, H.; Adolfsson, J.; Aly, M.; Nordström, T.; Wiklund, P.; Brandberg, Y.; Thompson, J.; Wiklund, F.; Lindberg, J.; Clements, M.; et al. Prostate cancer screening in men aged 50–69 years (STHLM3): A prospective population-based diagnostic study. Lancet Oncol. 2015, 16, 1667–1676. [Google Scholar] [CrossRef]
- Ström, P.; Nordström, T.; Aly, M.; Egevad, L.; Grönberg, H.; Eklund, M. The Stockholm-3 Model for Prostate Cancer Detection: Algorithm Update, Biomarker Contribution, and Reflex Test Potential. Eur. Urol. 2018, 74, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Möller, A.; Olsson, H.; Grönberg, H.; Eklund, M.; Aly, M.; Nordström, T. The Stock-holm3 blood-test predicts clinically-significant cancer on biopsy: Independent validation in a multi-center community cohort. Prostate Cancer Prostatic Dis. 2018, 22, 137–142. [Google Scholar] [CrossRef]
- Eklund, M.; Nordström, T.; Aly, M.; Adolfsson, J.; Wiklund, P.; Brandberg, Y.; Thompson, J.; Wiklund, F.; Lindberg, J.; Presti, J.C.; et al. The Stockholm-3 (STHLM3) Model can Improve Prostate Cancer Diagnostics in Men Aged 50–69 yr Compared with Current Prostate Cancer Testing. Eur. Urol. Focus 2018, 4, 707–710. [Google Scholar] [CrossRef]
- Shore, N.; Hafron, J.; Langford, T.; Stein, M.; Dehart, J.; Brawer, M.; Hessels, D.; Schalken, J.; Van Criekinge, W.; Groskopf, J.; et al. Urinary Molecular Biomarker Test Impacts Prostate Biopsy Decision Making in Clinical Practice. Urol. Pr. 2019, 6, 256–261. [Google Scholar] [CrossRef]
- Minnee, P.; Hessels, D.; Schalken, J.A.; Van Criekinge, W. Clinically significant Prostate Cancer diagnosed using a urinary molecular biomarker-based risk score: Two case reports. BMC Urol. 2019, 19, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Loeb, S.; Catalona, W.J. The Prostate Health Index: A new test for the detection of prostate cancer. Ther. Adv. Urol. 2013, 6, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Catalona, W.J.; Southwick, P.; Slawin, K.M.; Partin, A.W.; Brawer, M.K.; Flanigan, R.C.; Patel, A.; Richie, J.P.; Walsh, P.C.; Scardino, P.T.; et al. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging. Urology 2000, 56, 255–260. [Google Scholar] [CrossRef]
- Stephan, C.; Kahrs, A.-M.; Cammann, H.; Lein, M.; Schrader, M.; Deger, S.; Miller, K.; Jung, K. A (–2)proPSA-based artificial neural network significantly improves differentiation between prostate cancer and benign prostatic diseases. Prostate 2009, 69, 198–207. [Google Scholar] [CrossRef]
- Jansen, F.H.; van Schaik, R.H.; Kurstjens, J.; Horninger, W.; Klocker, H.; Bektic, J.; Wildhagen, M.F.; Roobol, M.J.; Bangma, C.H.; Bartsch, G. Prostate-Specific Antigen (PSA) Isoform p2PSA in Combination with Total PSA and Free PSA Improves Diagnostic Accuracy in Prostate Cancer Detection. Eur. Urol. 2010, 57, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Guazzoni, G.; Nava, L.; Lazzeri, M.; Scattoni, V.; Lughezzani, G.; Maccagnano, C.; Dorigatti, F.; Ceriotti, F.; Pontillo, M.; Bini, V.; et al. Prostate-Specific Antigen (PSA) Isoform p2PSA Significantly Improves the Prediction of Prostate Cancer at Initial Extended Prostate Biopsies in Patients with Total PSA Between 2.0 and 10 ng/ml: Results of a Prospective Study in a Clinical Setting. Eur. Urol. 2011, 60, 214–222. [Google Scholar] [CrossRef]
- Lepor, A.; Catalona, W.J.; Loeb, S. The Prostate Health Index. Urol. Clin. North Am. 2016, 43, 1–6. [Google Scholar] [CrossRef] [Green Version]
- White, J.; Shenoy, B.V.; Tutrone, R.F.; Karsh, L.I.; Saltzstein, D.R.; Harmon, W.J.; Broyles, D.L.; Roddy, T.E.; Lofaro, L.R.; Paoli, C.J.; et al. Clinical utility of the Prostate Health Index (phi) for biopsy decision management in a large group urology practice setting. Prostate Cancer Prostatic Dis. 2017, 21, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehdaie, B.; Carlsson, S. Reply to ’Clinical utility of the Prostate Health Index (phi) for biopsy decision management in a large group urology practice setting’. Prostate Cancer Prostatic Dis. 2018, 21, 446–447. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Tutrone, R.F. Reply to Letter to the Editor re: ’Clinical utility of the Prostate Health Index (phi) for biopsy decision management in a large group urology practice setting’. Prostate Cancer Prostatic Dis. 2018, 21, 604. [Google Scholar] [CrossRef]
- White, J.; Tutrone, R.F.; Reynolds, M.A. Second Reply to Letter to the Editor re: “Clinical utility of the Prostate Health Index (phi) for biopsy decision management in a large group urology practice setting”. Prostate Cancer Prostatic Dis. 2019, 22, 639–640. [Google Scholar] [CrossRef]
- Tosoian, J.J.; Druskin, S.C.; Andreas, D.; Mullane, P.; Chappidi, M.; Joo, S.; Ghabili, K.; Mamawala, M.; Agostino, J.; Carter, H.B.; et al. Prostate Health Index density improves detection of clinically significant prostate cancer. BJU Int. 2017, 120, 793–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, A.; Christoph, F.; Sachs, M.; Schroeder, J.; Stephan, C.; Schostak, M.; Koenig, F. Use of the Prostate Health Index and Density in 3 Outpatient Centers to Avoid Unnecessary Prostate Biopsies. Urol. Int. 2020, 104, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Vertosick, E.A.; Häggström, C.; Sjoberg, D.D.; Hallmans, G.; Johansson, R.; Vickers, A.J.; Stattin, P.; Lilja, H. Prespecified 4-Kallikrein Marker Model at Age 50 or 60 for Early Detection of Lethal Prostate Cancer in a Large Population Based Cohort of Asymptomatic Men Followed for 20 Years. J. Urol. 2020, 204, 281–288. [Google Scholar] [CrossRef]
- Nordström, T.; Grönberg, H.; Adolfsson, J.; Egevad, L.; Aly, M.; Eklund, M. Balancing Overdiagnosis and Early Detection of Prostate Cancer using the Stockholm-3 Model. Eur. Urol. Focus 2018, 4, 385–387. [Google Scholar] [CrossRef] [Green Version]
- Viste, E.; Vinje, C.A.; Lid, T.G.; Skeie, S.; Evjen-Olsen, Ø.; Nordström, T.; Thorsen, O.; Gilje, B.; Janssen, E.A.M.; Kjosavik, S.R. Effects of replacing PSA with Stockholm3 for diagnosis of clinically significant prostate cancer in a healthcare system—The Stavanger experience. Scand. J. Prim. Heal. Care 2020, 38, 315–322. [Google Scholar] [CrossRef]
- Wojno, K.J.; Costa, F.J.; Cornell, R.J.; Small, J.D.; Pasin, E.; Van Criekinge, W.; Bigley, J.W.; Van Neste, L. Reduced Rate of Repeated Prostate Biopsies Observed in ConfirmMDx Clinical Utility Field Study. Am. Health Drug Benefits 2014, 7, 129–134. [Google Scholar]
- Yonover, P.; Steyaert, S.; Cohen, J.; Ruiz, C.; Grafczynska, K.; Garcia, E.; Dehart, J.; Brawer, M.; Groskopf, J.; Van Criekinge, W. Mp24-02 clinical utility of confirmmdx for prostate cancer in a community urology practice. J. Urol. 2019, 201 (Suppl. 4), e334. [Google Scholar] [CrossRef] [Green Version]
- Aubry, W.; Lieberthal, R.; Willis, A.; Bagley, G.; Willis, S.M., 3rd; Layton, A. Budget impact model: Epigenetic assay can help avoid unnecessary repeated prostate biopsies and re-duce healthcare spending. Am. Health Drug Benefits 2013, 6, 15–24. [Google Scholar]
- Weiner, A.; Manjunath, A.; Kirsh, G.M.; Scott, J.A.; Concepcion, R.D.; Verniero, J.; Kapoor, D.A.; Shore, N.D.; Schaeffer, E.M. The Cost of Prostate Biopsies and their Complications: A Summary of Data on All Medicare Fee-for-Service Patients over 2 Years. Urol. Pr. 2020, 7, 145–151. [Google Scholar] [CrossRef]
- Sathianathen, N.J.; Kuntz, K.M.; Alarid-Escudero, F.; Lawrentschuk, N.L.; Bolton, D.M.; Murphy, D.G.; Weight, C.; Konety, B.R. Incorporating Biomarkers into the Primary Prostate Biopsy Setting: A Cost-Effectiveness Analysis. J. Urol. 2018, 200, 1215–1220. [Google Scholar] [CrossRef]
- Nicholson, A.; Mahon, J.; Boland, A.; Beale, S.; Dwan, K.; Fleeman, N.; Hockenhull, J.; Dundar, Y. The clinical effectiveness and cost-effectiveness of the PROGENSA® prostate cancer antigen 3 assay and the Prostate Health Index in the diagnosis of prostate cancer: A systematic review and economic evaluation. Heal. Technol. Assess. 2015, 19, 1–192. [Google Scholar] [CrossRef] [Green Version]
- Falagario, U.G.; Lantz, A.; Jambor, I.; Martini, A.; Ratnani, P.; Wagaskar, V.; Treacy, P.; Veccia, A.; Bravi, C.A.; Bashorun, H.O.; et al. Using biomarkers in patients with positive multiparametric magnetic resonance imaging: 4Kscore predicts the presence of cancer outside the index lesion. Int. J. Urol. 2020, 28, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Govers, T.M.; Hessels, D.; Vlaeminck-Guillem, V.; Schmitz-Dräger, B.J.; Stief, C.G.; Martinez-Ballesteros, C.; Ferro, M.; Borque-Fernando, A.; Rubio-Briones, J.; Sedelaar, J.P.M.; et al. Cost-effectiveness of SelectMDx for prostate cancer in four European countries: A comparative modeling study. Prostate Cancer Prostatic Dis. 2018, 22, 101–109. [Google Scholar] [CrossRef]
- Govers, T.; Caba, L.; Resnick, M.J. Cost-Effectiveness of Urinary Biomarker Panel in Prostate Cancer Risk Assessment. J. Urol. 2018, 200, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Margel, D.; Ber, Y.; Baniel, J. Re: Optimizing Patient’s Selection for Prostate Biopsy: A Single Institution Experience with Multi-parametric MRI and the 4Kscore Test for the Detection of Aggressive Prostate Cancer. Eur. Urol. 2019, 76, 535–536. [Google Scholar] [CrossRef] [PubMed]
- Punnen, S.; Nahar, B.; Soodana-Prakash, N.; Koru-Sengul, T.; Stoyanova, R.; Pollack, A.; Kava, B.; Gonzalgo, M.L.; Ritch, C.R.; Parekh, D.J. Optimizing patient’s selection for prostate biopsy: A single institution experience with multi-parametric MRI and the 4Kscore test for the detection of aggressive prostate cancer. PLoS ONE 2018, 13, e0201384. [Google Scholar] [CrossRef]
- Falagario, U.G.; Martini, A.; Wajswol, E.; Treacy, P.-J.; Ratnani, P.; Jambor, I.; Anastos, H.; Lewis, S.; Haines, K.; Cormio, L.; et al. Avoiding Unnecessary Magnetic Resonance Imaging (MRI) and Biopsies: Negative and Positive Predictive Value of MRI According to Prostate-specific Antigen Density, 4Kscore and Risk Calculators. Eur. Urol. Oncol. 2020, 3, 700–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stejskal, J.; Adamcová, V.; Záleský, M.; Novák, V.; Čapoun, O.; Fiala, V.; Dolejšová, O.; Sedláčková, H.; Veselý, Š.; Zachoval, R. The predictive value of the prostate health index vs. multiparametric magnetic resonance imaging for prostate cancer diagnosis in prostate biopsy. World J. Urol. 2020, 39, 1889–1895. [Google Scholar] [CrossRef]
- Hsieh, P.-F.; Li, W.-J.; Lin, W.-C.; Chang, H.; Chang, C.-H.; Huang, C.-P.; Yang, C.-R.; Chen, W.-C.; Chang, Y.-H.; Wu, H.-C. Combining prostate health index and multiparametric magnetic resonance imaging in the diagnosis of clinically significant prostate cancer in an Asian population. World J. Urol. 2010, 38, 1207–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grönberg, H.; Eklund, M.; Picker, W.; Aly, M.; Jäderling, F.; Adolfsson, J.; Landquist, M.; Haug, E.S.; Ström, P.; Carlsson, S.; et al. Prostate Cancer Diagnostics Using a Combination of the Stockholm3 Blood Test and Multiparametric Magnetic Resonance Imaging. Eur. Urol. 2018, 74, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, R.J.; Van Oort, I.M.; Schalken, J.A. Blood-based and urinary prostate cancer biomarkers: A review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis. 2017, 20, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Seisen, T.; Rouprêt, M.; Brault, D.; Léon, P.; Cancel-Tassin, G.; Compérat, E.; Renard-Penna, R.; Mozer, P.; Guechot, J.; Cussenot, O. Accuracy of the prostate health index versus the urinary prostate cancer antigen 3 score to predict overall and significant prostate cancer at initial biopsy. Prostate 2015, 75, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Vedder, M.M.; de Bekker-Grob, E.W.; Lilja, H.G.; Vickers, A.; van Leenders, G.J.; Steyerberg, E.W.; Roobol, M.J. The Added Value of Percentage of Free to Total Prostate-specific Antigen, PCA3, and a Kallikrein Panel to the ERSPC Risk Calculator for Prostate Cancer in Prescreened Men. Eur. Urol. 2014, 66, 1109–1115. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuszczak, M.; Schalken, J.A.; Salagierski, M. Prostate Cancer Liquid Biopsy Biomarkers’ Clinical Utility in Diagnosis and Prognosis. Cancers 2021, 13, 3373. https://doi.org/10.3390/cancers13133373
Matuszczak M, Schalken JA, Salagierski M. Prostate Cancer Liquid Biopsy Biomarkers’ Clinical Utility in Diagnosis and Prognosis. Cancers. 2021; 13(13):3373. https://doi.org/10.3390/cancers13133373
Chicago/Turabian StyleMatuszczak, Milena, Jack A. Schalken, and Maciej Salagierski. 2021. "Prostate Cancer Liquid Biopsy Biomarkers’ Clinical Utility in Diagnosis and Prognosis" Cancers 13, no. 13: 3373. https://doi.org/10.3390/cancers13133373
APA StyleMatuszczak, M., Schalken, J. A., & Salagierski, M. (2021). Prostate Cancer Liquid Biopsy Biomarkers’ Clinical Utility in Diagnosis and Prognosis. Cancers, 13(13), 3373. https://doi.org/10.3390/cancers13133373